CENTRAL EXTENSIONS BY Ky; AND FACTORIZATION LINE BUNDLES
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ABSTRACT. Let X be a smooth, geometrically connected curve over a perfect field k. Given
a connected, reductive group G, we prove that central extensions of G by the sheaf K2 on the

big Zariski site of X, studied in Brylinski-Deligne [ ], are equivalent to factorization line

bundles on the Beilinson—Drinfeld affine Grassmannian Grg. Our result affirms a conjecture

of Gaitsgory-Lysenko [ ] and classifies factorization line bundles on Grg.
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INTRODUCTION

This paper compares two kinds of data parametrizing metaplectic extensions of the Langlands
program. One is K-theoretic, and the other has to do with factorization structures on the affine
Grassmannian Grg.

Let us first explain how these structures arise in the theory.
0.1. K-theoretic metaplectic parameters.

0.1.1. In the classical theory of automorphic forms, one starts with a global field F and a
reductive group G over it. Denote by Ag the topological ring of adeles of F. The principal
objects of interest are certain functions on the homogeneous space G(Ar)/G(F). Roughly
speaking, the goal of the Langlands program is to relate them to representations of Gal(F /F)
valued in the L-group of G.

0.1.2. The study of automorphic forms has seen several generalizations, where one replaces
G(AF) by certain topological coverings. The first example of such a covering is the metaplectic
group constructed by Weil | ]. These are double covers of the symplectic groups Sp,,, (F.),
for local fields F,,, and combine into a cover of Sp,,, (Ar) equipped with a section over Sp,,, (F).

0.1.3. The existence of interesting topological coverings is by no means restricted to the sym-
plectic group. For any reductive group G, Brylinski-Deligne | ] observed that a large class
of coverings of G(Ar) arise from K-theoretic data.

To explain their work more precisely, we let Ko denote the Zariski sheafification of the second
algebraic K-theory group. Brylinski-Deligne | | started with a central extension:

1Ko E—-G—1 (0.1)
1
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of sheaves on the big Zariski site of F. Using the Hilbert symbol on local fields F,, they
produced topological central extensions Gof G (Ag) by the group pr of roots of unity in F. As
a consequence of the reciprocity law of the Hilbert symbol, the central extension G splits over
GEF) | , §10]. This splitting makes it possible to define “metaplectic” automorphic forms

as functions on G/G(F), equivariant against a character of ur and satisfying certain analytic
properties.

0.1.4. The main theorem of loc.cit. is that the groupoid of central extensions (0.1) admits a
purely combinatorial description. Among other things, the Brylinski—Deligne theorem allows
one to define the L-group associated to such a central extension, as has been done by Weissman
[ ]. These works bring the study of metaplectic automorphic forms into the broader scope
of the Langlands program.

It is thus reasonable to view central extensions by Ko as metaplectic parameters of the Lang-
lands program and the resulting topological coverings G as “metaplectic groups” for G(Ap).

0.2. Geometric metaplectic parameters.

0.2.1. Let us now specialize to the function field case, where a more geometric perspective in
generalizing the Langlands program is available.

We fix a finite ground field k& and a smooth, proper, geometrically connected curve X over
k. The letter F will stand for the field of fractions of X. For simplicity, let us also assume that
the reductive group G is defined over k. In the function field setting, automorphic functions
can be accessed via f-adic sheaves on the moduli stack Bung of principal G-bundles on X (or
certain variants thereof in the ramified situation).

0.2.2. The moduli stack Bung has a local avatar, known as the affine Grassmannian Grg. It
is an ind-scheme attached to each closed point x of X and comes equipped with a canonical
map to Bung. Unlike Bung, the affine Grassmannian is not in general (ind-)smooth (e.g. when
G is a torus). The usual ind-scheme presentation of the affine Grassmannian is as a colimit of
Schubert varieties, whose singularities have representation-theoretic meaning.

Following Beilinson-Drinfeld | ], one may also view Grg as an ind-scheme over the
global curve X. As such, it possesses an additional structure called “factorization.” Roughly
speaking, factorization structure describes a fusion rule of the fibers of Grg as distinct points
merge in X. A precise formulation makes use of the Ran space and will be recalled in §0.5.

0.2.3. The ind-scheme Grg plays a central role in the Langlands program. Indeed, the cate-
gory of spherical sheaves Sph;, which are Q,-sheaves on Grg equivariant with respect to the
arc group (i.e., positive loop group), is equivalent to representations of the Langlands dual
group G under the geometric Satake equivalence of Mirkovié-Vilonen | ]. Their proof uses
the factorization structure of Grg to construct the symmetry constraint for the convolution
monoidal structure on Sph.

0.2.4. Motivated by these considerations, Gaitsgory—Lysenko [ ] proposed to define geo-
metric metaplectic parameters as étale gerbes over Grg banded by a suitable torsion abelian
group A C @IX , which furthermore respect its factorization structure. These objects are called
factorization gerbes.

A factorization gerbe allows one to form a “twisted” (or “metaplectic”) category of ¢-adic
sheaves on Grg. Furthermore, it is possible to replicate the Mirkovié—Vilonen proof in order to
construct the metaplectic geometric Satake equivalence and formulate a vanishing conjecture
in the metaplectic geometric Langlands program | , §9-10].
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0.3. Relationship between the two.

0.3.1. Let us now turn to the problem addressed in the present paper, which is a comparison
of the above two kinds of metaplectic parameters. Since the problem is independent of the
global geometry of X, we shall formulate it for any smooth, geometrically connected curve X
(i.e., not necessarily proper) over a perfect ground field k.

We shall consider the groupoid of central extensions of G by Ko, over the big Zariski site of
X rather than its field of fractions’. We denote this groupoid by CExt(G, Ka).

0.3.2. Subject to a restriction on char(k), Gaitsgory | | defined a functor from the groupoid
CExt(G, Ky) to the (2-)category Gef i (Grg) of factorization gerbes on Grg. It is a composi-
tion of two functors:

CExt(G,K») 2% Pic™ (Grg)
Kum, Ge'i(Grg).

Here, PicfaCt(Grg) denotes the groupoid of factorization line bundles, i.e., line bundles on Grg
which respect its factorization structure. The second functor is a standard construction using
the Kummer exact sequence (where we fix an element in A(—1).) The first functor ®¢, a kind
of residue map on algebraic K-theory, is more interesting. To wit, it relates K-theoretic data
to purely geometric objects. The comparison of the two kinds of metaplectic parameters thus
amounts to understanding the behavior of ®¢.

The restriction on char(k) enters in the definition of ®c—it states that char(k) cannot
divide a certain integer Ng which depends on GG. The integer N¢ is the index of the subgroup
of the group of Weyl-invariant, integral quadratic forms on the co-weight lattice generated by
Chern classes of representations G — GL(V') (see | , §0.1.8]). Tautologically, the condition
char(k) { N¢ is satisfied when G is a product of general linear groups (or when char(k) = 0).

0.3.3. Main result. We can now state our main result, which asserts that ®4 is an equivalence
of categories whenever it is defined. It will appear as Theorem 3.1 in the main text.

Theorem A. Suppose k is a perfect field, X is a smooth, geometrically connected curve and
G is a connected reductive group over k. If char(k) t N, then ®¢ is an equivalence:

d¢ : CExt(G,Ky) = Pic™(Grg).
This result affirms | , Conjecture 3.4.2]. Roughly speaking, it means that no information is

lost when we pass from K-theoretic metaplectic data to geometry of the affine Grassmannian.

0.3.4. Let us note some consequences of Theorem A. First, the classification theorem of
Brylinski-Deligne | | applies to any regular scheme of finite type over a field. In par-
ticular, CExt(G,K>) is equivalent to a groupoid of combinatorial gadgets, to be denoted by
Oc(Ar).

We shall establish a commutative triangle (appearing as (2.27) in the main text):

CExt(G, Ky) ——¢ > Pic™(Grg) (0.2)

mw Y

fc(Ar)

1Any central extension over F extends to one over X; for some open X7 C X. Any two such extensions to
X1 become canonically isomorphic over some open Xo C X7.
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where the functor ¥ is defined in explicit terms (i.e., without recourse to algebraic K-theory).
Therefore, Theorem A implies a combinatorial classification of factorization line bundles on
Grg. The notation O (A7) is meant to recall the groupoid of “A-data” considered by Beilinson—
Drinfeld | ], whose classification of factorization line bundles on the space of colored divisors
is a precursor to our theorem.

0.3.5. Another application of our theorem is the following.

Corollary B. Suppose we are under the hypothesis of Theorem A and X is furthermore proper.
Then every factorization line bundle on Grg canonically descends to Bung.

Indeed, this follows from the fact that the composition:
CExt(G,K3) 2% Pic™(Grg) — Pic(Crg)

factors through Pic(Bung) (see | , §2.4]). Our Corollary may be viewed as an analogue of
Gaitsgory’s theorem | ] on cohomological contractibility of the fibers of Grg — Bung.

0.4. Our strategy.

0.4.1. 'We should mention first that our proof of Theorem A relies on the classification theorem
of Brylinski-Deligne, a fact which has two practical implications:

(a) One does not need to know the precise definition of ®¢ in order to understand our proof;
in fact, as long as ®¢ gives the correct value on regular test schemes S — Grg (where it
is defined using Gersten’s resolution of Ks) and satisfies some reasonable properties, then
our proof runs through.

(b) After all functors in the triangle (0.2) are defined, checking that it commutes is an essential
step towards the proof, and takes up a large part of our work.

A proof of Theorem A without using the Brylinski-Deligne classification would certainly be
desirable, but the authors could not find one.?

0.4.2. Assuming the commutativity of (0.2) (which will be proved in §2), our proof of the main
theorem proceeds by checking that ¥ is an equivalence for various kinds of reductive groups G.
We summarize the key ideas and make attributions below (although the main text is organized
somewhat differently):

Step 1: G = T is a (split) torus. This case amounts to showing that Pic™'(Gry) is
equivalent to f-data for the lattice Ap. This is the content of §1. In fact, we will show that the
same is true for factorization line bundles on various versions of Grp. This part of the proof
relies on A. Beilinson and V. Drinfeld’s classification of factorization line bundles on Ar-colored
divisors of X (see | ]) and the Pic-contractibility of Ran(X) ([ D-

Step 2: G is semisimple and simply connected. This case is essentially reduced to classifying
line bundles on Grg at a point of the curve X, and the latter has been worked out by G. Faltings
[ ]. Since this case is also needed in proving the commutativity of (0.2), it will appear along
with it in §2.

Step 3: The derived subgroup Gge, is simply connected. This case essentially follows from
the two previous ones. More precisely, let 77 be the torus G/Gger. We observe that Grg
is an étale-locally trivial fiber bundle over Grp,, with typical fiber Grg, . We then use our
knowledge from Step 2 to study when a factorization line bundle on Grg descends to Grr,, and
we use Step 1 to classify the ones that are pulled back from the base.

2As of now, even the definition of ®¢ appeals to the Brylinski-Deligne classification ([ , §5.1]).
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Step 4: An arbitrary reductive group G. This follows from the previous cases, by h-descent
of line bundles on derived schemes.® Steps 3 and 4 form the content of §3.

0.5. Notations and conventions.

0.5.1.  Unlike the main references | 11 |, we do not need the theory of co-categories.
Hence terms such as categories, groupoids, prestacks, etc., are understood in the classical sense.

Moreover, the prestacks we consider in the present paper are O-truncated. Namely, they
are synonymous to presheaves on the category of affine schemes. However, in order to stay
consistent with existing literature, we shall continue to call them prestacks.

0.5.2. Throughout the paper, we let k be an algebraically closed field. The general case of a
perfect field is handled using Galois descent. The fact that central extensions by Ko satisfy
Galois descent follows from work of Colliot-Thélene and Suslin. We refer the reader to | ,
§2] for a detailed discussion.

0.5.3. We let X be a connected, smooth algebraic curve over k.

0.5.4. Let Ran(X) denote the Ran space associated to X, regarded as a prestack (in fact, a
presheaf). For an affine test scheme S over k, an element of Maps(.S, Ran(X)) is by definition
a finite subset 2! = {z™M) ... 21D} of Maps(S, X).

The prestack Ran(X) has an explicit presentation as a colimit of schemes. Let fSets
denote the category of finite nonempty sets with surjections as morphisms. Then we have an
equivalence:

Ran(X) = colim X',

IefSetsuri
where for each I; — I, the corresponding map X'2 — X't is the diagonal embedding. We
refer the reader to | , §1] for basic properties of the Ran space.
xT

0.5.5.  For a finite nonempty set I, we let Ran(X)j; denote the open locus in Ran(X) *I where
the sets of points associated to distinct elements i1 # i3 € I are pairwise disjoint.

A prestack Y over Ran(X) is a factorization prestack if its pullback L*Y along the map of
taking disjoint union:
L : Ran(X)XL — Ran(X)

disj
«1r for each I. This

disj

comes equipped with an identification with the restriction Y*! ’Ran( x)

identification is required to satisfy the obvious compatibility condition for compositions along
surjections of finite nonempty sets I; — I5.

0.5.6. Let Y be a factorization prestack over Ran(X). A factorization line bundle on Y is a
line bundle £ together with an isomorphism
L L lwmbm (0.3)

XTI
Ran(X)Clisj

over the factorization isomorphism L*Y = YxI ‘Ra satisfying compatibility for compo-

n(X)‘;gj ’
sitions. In fact, it suffices to specify isomorphisms (0.3) for |I| = 2, and check the compatilibity

conditions for |I| < 3.

3Aside from this descent technique, which was suggested to us by D. Gaitsgory, our paper lives entirely
within classical (i.e., non-derived) algebraic geometry.
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0.5.7. Let G be a connected, reductive group over k. We write Gqe, for the derived subgroup
of G, and Gge, for its universal cover.

When we have fixed a maximal torus T C G, the notations Ty., and Tder will be used to
denote the induced maximal tori in Gger and Gger.

0.5.8. We write Grg for the Beilinson—Drinfeld affine Grassmannian associated to G. For a
test affine scheme S, the set Maps(S, Grg) consists of triples ({z}, Pg,a), where:

(a) a! is a finite subset of Maps(S, X);
(b) Pg is a(n étale-locally trivial) G-bundle over S x X;

(c) o is a trivialization of P¢ over S x X — J;o; Iy, where I' (i) denotes the graph of z(¥.

The morphism Grg — Ran(X) is ind-schematic and of ind-finite type, and realizes Grg as
a factorization prestack over Ran(X). The base change of Grg along X! — Ran(X) will be
denoted by Grg x1. We refer the reader to [ | for properties of Grg.

0.5.9. We let LG (resp. £LG) denote the arc (resp. loop) group, regarded as factorization
group prestacks over Ran(X). For a test affine scheme S, a lift of #/ : S — Ran(X) to
LTG (resp. LG) is given by a map from the formal completion D,: (resp. punctured formal
completion D1 == D1\ Uier Tz) of Uer Tow inside S x X to G.

Furthermore, the projection £L*G — Ran(X) is schematic (but not of finite type) and
LG — Ran(X) is ind-schematic. The affine Grassmannian Grg can be expressed as the quotient
LG/LTG of étale sheaves.

0.5.10. For a closed point x € X, we denote by O, the completed local ring at z and K, its
localization at a uniformizer. The fibers of the above prestacks at a closed point x € X will be
denoted by Grg z, £,G, and LI G. Thus £,G(k) = G(X,) and LI G(k) = G(O,).

Acknowledgements. We thank D. Gaitsgory for suggesting this problem to us, and for many
insights that played a substantial role in its solution. We also benefited from discussions with
Justin Campbell, Elden Elmanto, Quoc P. Ho, and Xinwen Zhu.

1. FACTORIZATION LINE BUNDLES FOR TORI

In this section, we prove that factorization line bundles on various versions of Grr (e.g., com-
binatorial, rational) are all classified by 6-data.

1.1. The many faces of Grr.

1.1.1. Suppose T is a torus over k. Let Ap denote its co-character lattice. We will first
introduce a few variants of the affine Grassmannian Gry. They are summarized in the following
commutative diagram:

Grr comb —> Grr — Div(X) ® Ar (1.1)
Z

| |

GrT,lax > GrT,rat
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1.1.2. The combinatorial variant. Consider an index category whose objects are pairs (I, \(1)),
where I is a finite set, and A() is an I-family of elements in Ar (its element corresponding
to i € I is denoted by A®). A morphism (I, \(")) — (J,A\(/)) in this category consists of a
surjective map ¢ : I — J such that \0) = Ziew,l(j) A9 for all j € J. We set:
Gr7,comb = colim XTI,
(I A(D)

Gr7comb is a factorization prestack over Ran(X). Furthermore, we have a canonical map
Grr.comb — Grr sending an S-point 2!+ S — X! corresponding to (I,)\(I)) to the triple
({2}, ®,cr O(NIT i), o) where o is the tautological trivialization.

1.1.3. The laz variant. We let Grr jax denote the lax prestack® whose value at S is the category
whose objects are triples (!, Py, ) as in Gry(S), but there is a morphism:

(z!, Pr,a) = (27, P, a'),

whenever 2! C 2/, Pr = P/, and the trivialization « restricts to o/ over the complement of
U e I',). Such a morphism is non-invertible when 2! C 2/ is a proper inclusion.

Grrax is a factorization lax prestack over the lax version of the Ran space Ran(X)iax.
Furthermore, we have a canonical map Gry — Grrax sending (xl ,Pr,a) to the very same
object.

1.1.4. The rational variant. We define Grr ;. as a prestack whose value at S is the groupoid of
T-bundles Pr over S x X equipped with a rational trivialization, i.e., for some open U C S x X
which is schematically dense after arbitrary base change S’ — S, the T-bundle Pr admits a
trivialization over U; we regard two rational trivializations as equivalent if they agree on the
overlaps.

Even though Grr .ot does not live over any version of the Ran space, one can still make sense
of factorization line bundles (or any other gadget) over Gry a¢. Namely, it is a line bundle £
over Grr rat together with isomorphisms:

Cp) @ :L|1PT - L|?<T“ ®L|:P§?>’

whenever fP(Tl ) (resp. fP(TQ )) admits a trivialization over U") (resp. U(?) such that the com-

)‘U(2> and T¥)|U(1> along

are required to satisfy

plements of UM and U® are disjoint, and Pr is the gluing of ng}

UM NU® | where they are both trivialized. The isomorphisms CpD) @)
T T
the obvious compatibility conditions in the presence of three T-bundles.

Remark 1.1. The objects Grr jax and Grr . have analogues for a general group G, but we
will not use them in this paper.

1.1.5. Colored divisors. Recall the prestack Div(X) whose value at S is the abelian group of
Cartier divisors of S x X relative to S. We take Div(X) ® Ar as its extension of scalars to Ar.
Z

There is a morphism Div(X) — Grg,, rat defined by associating to a Cartier divisor D the line
bundle Ogx x (D). It extends to a morphism Div(X) ® Ap — Grp ras.
Z

As in the previous case, we make sense of factorization line bundles over Div(X) ® Ar as
Z

follows. It is a line bundle £ together with isomorphisms:

CD,,D, e Dy+Ds ’—)L|D1 ®L|D2’

4See | , §2] for an introduction to lax prestacks.
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whenever the support of D; and Dy are disjoint. The isomorphisms cp, p, are required to
satisfy the obvious compatibility conditions for three divisors.

1.2. Classification statements.

1.2.1. 6-data. We recall the notion of §-data for a lattice A due to Beilinson—Drinfeld | ,
§3.10.3]. The Picard groupoid #(A) consists of triples (g, L, Cx,u) Where:

(a) ¢ € Q(A,Z) is an integral valued quadratic form on A; we use x to denote its symmetric
bilinear form, defined by the formula: (X, ) := q(A + p) — q(A\) — q(p);

(b) L™ is a system of line bundles on X parametrized by A € A, and

(c) e, are isomorphisms:

et £V @ L) 2y g O+ g 5 (1.2)
which are associative, and satisfy a k-twisted commutativity condition, i.e.
epla®b) = (1) M e, \(b® a). (1.3)

Remark 1.2. The authors of | ] work in the setting of Z/2Z-graded line bundles, so what
we call #-data corresponds to what they call even 6-data.

1.2.2. Shifted 6-data. For later purposes, we also introduce a Picard groupoid 6% (A) consisting
of triples (g,L™, cj\r’#), where we replace (1.2) by isomorphisms c;\r’# LN @ L) 2y O+R)
and also demand that they are associative and satisfy the xk-twisted commutativity condition.
Clearly, we have an equivalence:

O(A) =5 01 (M), (g, £N) ~ (¢, 6P @ wi™),
Lemma 1.3. There is a canonical equivalence of Picard groupoids PicfaCt(GrT7comb) AN O(Ar).

Proof. Given a factorization line bundle over Gry comb, we denote its pullback along the inclu-
sion X — Gry comp corresponding to ({1}, ) by L()‘), and its pullback along X? — GI7,comb
corresponding to ({1,2}, (A, 1)) by L), The factorization isomorphism shows that there is
an isomorphism £®) X £#) }wg_A =y L0 Tt extends to an isomorphism

LORLE Z LB @Oy (—r(N p)A), (1.4)

for some uniquely determined integer (A, u); its dependency on A, p is bilinear, by considering
LOY) for a triple ({1,2,3}, (\, u,v)), using the compatibility between factorization isomor-
phism and composition. Since £ #) restricts to LA+ along A < X2, the isomorphism (1.4)
restricts to a system of isomorphisms ¢y, as in (1.2).

Next, because the factorization isomorphisms are ¥o-invariant, so are the isomorphisms (1.4).
In other words, we have a commutative diagram:

LORLHW = 5 OB @Oy (—k(\ p1)A) (1.5)

o (LW R L) s o LN @ 0% O x2 (—k(p, \)A),
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where o is the isomorphism X*#) = X2 One deduces from this fact that x is also
symmetric. Restricting (1.5) to the diagonal, we obtain a commutative diagram:

LN g L) 2t sOFn) g w;(%#)

I~ l(l)ﬁ(%u)

L) @ LV 22 ) g i)

where the multiplication by (—1)*(*#*) appears because the isomorphism O y2(—A) ‘A = owy is
only Yo-invariant up to a sign. This commutative diagram expresses the identity (1.3). Finally
taking A\ = u, we see that (—1)**N) =1, s0 x(\, A) = 2¢()\) for a uniquely determined integer
g(A). Thus we have define an integral quadratic form ¢ on Ar.

The above procedure defines the functor PicfaCt(GrT’comb) — ©(Ar; Pic). Checking that it
is an equivalence is straightforward. O

1.2.3.  We can now state the main result of this section. By pulling back along the morphisms
of (1.1), we obtain a diagram of Picard groupoids, where the leftmost equivalence comes from
Lemma 1.3:

O(Ar) < Pic™"(Grr comp) <— Pic™(Grr) SO Pic™"(Div(X) @ Ar) (1.6)

of b

b
PicfaCt(GrTﬁlaX) <L PicfaCt(GrT’rat)
Proposition 1.4. All morphisms in (1.6) are equivalences.

Proof. We shall deduce from existing literature how each of the labeled maps is an equivalence:

(a) By | , §3.10.7, Proposition], the composition of the top row defines an equivalence:
Pic™*(Div(X) ® Ap) = 0(Ar). This shows that the map (a) has a left inverse.
7

(b) By | , Proposition 5.2.2], the map Gry jax — Grrrat induces an equivalence after fppf
sheafification. Hence pulling back defines an equivalence Pic(Grrrat) — Pic(Gro jax)-
One immediately checks that the additional data defining factorization structures on both
are also equivalent. Hence (b) is an equivalence.

(¢) By | , Theorem 4.3.9(2)], pulling back along Gry — Gryya defines an equivalence on
rigidified line bundles®. On the other hand, every factorization line bundle on Gry pulls
back to one along the unit section Ran(X) — Grg, which is canonically trivial by Lemma
1.3 (applied to the trivial group). Thus a factorization line bundle on Grz descends to a line
bundle on Grr rat, and the result has a canonical factorization structure as well, so we have
an equivalence Pic™(Grya) = Pic™*(Gry). This shows that (¢) is an equivalence.

The undecorated maps in (1.6) are now equivalences by the 2-out-of-3 property. O

Remark 1.5. When X is proper, | , Theorem 2.3.3] shows that the map Div(X) ® Ap —
7

Gr7 rat is an isomorphism of prestacks, which immediately implies that factorization line bundles
on them are equivalent.

5[ , Theorem 4.3.9(2)] is not given a proof in loc.cit., and we refer the reader to | ] for a complete

proof of the key Pic-contractibility statement involved.
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Remark 1.6. We have the following equivalence for any smooth, fiberwise connected, affine
group scheme G over X:

PicfaCt(GrG,rat) = PicfaCt(GrG,lax) = PicfaCt(Grg).

This is because the results | , Proposition 5.2.2] and | , Theorem 4.3.9(2)] both hold in
this general context.

2. COMPATIBILITY WITH THE BRYLINSKI-DELIGNE CLASSIFICATION

In this section, we first summarize Brylinski—Deligne’s classification of central extensions of
G by K. Then we construct a functor from Pic™(Grg) to the same classification data and
we prove that it is compatible with Gaitsgory’s functor ®¢.

2.1. Extensions by Ko.

2.1.1. This subsection serves as a summary of the main result of | ]. Let G be a connected,
reductive group over k. Fix a maximal torus T' C G. We recall the notations 6(Ar) and 07 (Ar)
for the f-data associated to Ar (see §1.2.1-1.2.2).

2.1.2. We let K5 denote the Zariski sheafification of the presheaf on Sch"}f)f( that sends any
S — X to K5(S). For a connected, reductive group G, we let CExt(G, Kz) denote the Picard
groupoid of central extensions

12Ky - E—G—1, (2.1)

in the category of Zariski sheaves of groups on Sch7§f<. This is Picard groupoid of Brylinski—
Deligne data.

2.1.3. We will first define a functor
CExt(T,K3) — 07 (A7). (2.2)

Indeed, given a central extension E of T, we construct a triple (g, £V, c; u) € 0T (A1) from
the following procedure:

(a) The commutator in E defines a map comm : T'® T — Ko of Zariski sheaves on Sch%f(.
Z

For any A, u € Ap, the composition: G,, ® G,, A8, p ® T — Ko is some integral multiple
7 z

of the universal symbol {—, —} (c.f. §3.8 of loc.cit.). We call this integer (A, ). One then
checks that k(—, —) is the bilinear form associated to some quadratic form gq.

(b) Consider the projection p : G,, x X — X. Using the vanishing result R' p, Ky = 0 of
Sherman (c.f. §3.1 of loc.cit.), we find an exact sequence of Zariski sheaves on X:

1—-p.Ko = p. EF—pT — 1.

Pushing out along the symbol map p, Ko — K; = 0%, we obtain a multiplicative O % -torsor
over p,T. The line bundle £ then arises as the fiber of the section of p,T" defined by
A€ Ar.

(¢) Note that the aforementioned multiplicative O x-torsor over p,T equips the system {L(’\)}
with the multiplicative structure cﬁ_’ u Its failure of commutativity is measured by k, as

desired.
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2.1.4. Tt is proved in loc.cit. that (2.2) is an equivalence of Picard groupoids. We record here
the unshifted version of this equivalence:

CExt(T,K») = 0(Ar), (2.3)

i.e., it is the composition of (2.2) with the equivalence of Picard groupoids 6 (Ar) = (A7)
sending £X to L&) @ w1,

2.1.5.  We now turn to the general case. Note that there is always a functor:
CExt(G,Ks) —» CExt(T,Ks) = 0(Ar) — Q(Ar,Z), (2.4)

whose image lands in the W-invariant part of Q(Ar,Z). Thus, we may speak of the quadratic
form ¢ associated to an extension (2.1).

2.1.6. Suppose G is semisimple and simply connected. Then Theorem 4.7 of loc.cit. asserts
that (2.4) defines an equivalence: CExt(G,Kz) = Q(Ar,Z)". Thus for a semisimple, simply
connected group G, there is a map which associates theta data to a W-invariant quadratic form:

Q(Ar,Z)V — 6(Ar). (2.5)

2.1.7. Let C:'dcr be the simply connected cover of Gqer. It contains a maximal torus Tdcr which
is the preimage of Tger. We now let 05 (Ar) denote the Picard groupoid classifying:

(a) a theta datum (q, L&), cxpu) for Ap, where ¢ is Weyl-invariant.
(b) an isomorphism ¢ between the following theta data for Az

— the restriction of (g, L0V, Cap) to Afder;

— the theta data associated to q|AN via (2.5).
Tae

o1

In other words, ¢ consists of isomorphisms between line bundles, preserving their (w-twisted)
multiplicative structure. We shall call 8 (A7) the Picard groupoid of enhanced theta data. By
definition, we have a functor:

(I)BD : CEXt(G,KQ) — Qg(AT), (26)

obtained by restrictions to 7' and Tye;. The main theorem of | ] is that (2.6) is an equiva-
lence of Picard groupoids, i.e., central extensions of G by Ky are classified by enhanced theta
data.

2.2. Gaitsgory’s functor 9.

2.2.1.  Under the condition that the characteristic of k does not divide the integer N¢, Gaits-
gory | ] constructed a functor:

d¢ : CExt(G,Ky) — Pic™*(Crg). (2.7)

Only two features of &g will be used in proving its compatibility with the Brylinski-Deligne
classification. We first cast them in informal language:

(a) Given a central extension (2.1), its image under ®¢ is a line bundle £ over Grg with
additional factorization data; for a regular affine scheme S — Grg, we need the restriction
L|S to be given by “taking the residue” along S x X — S.

(b) Suppose G =T is a torus; we need the functor & to factor through the Picard groupoid
of multiplicative factorization line bundles on LT, and for a closed point x € X, we need
the multiplicative structure on £,7T to be given by the “tautological” one.

We will make precise what features (a) and (b) mean in the rest of this subsection, and explain

how they can be deduced from loc.cit.
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2.2.2. Let S be a regular affine scheme over k and 7 : X — S be a smooth relative curve, whose
fibers are geometrically connected. Furthermore, suppose we have a finite set {z!} of sections
() .S — X. Let T'yr denote the (scheme-theoretic) union of their images, and U,r := X — ',z
be its complement.

We will construct a functor, referred to hereafter as taking the residue along m:

{ Ks-gerbes § on X with } — Pic(9). (2.8)
neutralization v over U1

Indeed, the datum (G, ~) is equivalent to a section of t'K3[2] over X, where ¢ : ;1 < X is the
closed immersion. On the other hand, the Gersten resolution of Ko on X shows that :'K»[2] is
quasi-isomorphic to the complex concentrated in degrees [—1, 0]:

@(Ln(i))*Kl(n) — @ (t)+Z (2.9)
el codim(v)=1
in Fz:I
where ¢, i) (resp. t,,) denotes the inclusion of the generic point of the ith section (resp. codimension-
one point v of T',r). On the other hand, K;[1] over S is quasi-isomorphic to:

(K1) = P (W)
codim(v)=1
in S
Thus the image of (2.9) under 7 maps to K;[1] via summation. Hence a section of /'K3[2] over
X gives rise to a section of K;[1] = O§[1], i.e., a line bundle on S.

2.2.3. Given an extension E (2.1) and a map S — Grg specified by the triple ({'}, Pg, @)
where P¢ is Zariski locally trivial, we obtain a (Zariski) Kao-gerbe G over S x X, which classifies
an E-torsor Pr equipped with an identification of its induced G-torsor (Pg)e — Pg. The
trivialization « gives rise to a neutralization ~y of G over U,:.

Suppose S is regular, then (G, ) produces a line bundle on S by taking the residue (2.8)
along 7 : § x X — S. This process also applies when P¢ is only étale locally trivial, since étale
locally on S the bundle P¢ becomes Zariski locally trivial (see | ]). The fact that O (F)| s
naturally agrees with this line bundle is the content of | , §2.3]; this is what we meant in
part (a) of §2.2.1.

2.2.4. Recall that a multiplicative line bundle £ on LG amounts to the additional isomorphism:
mult* £ = LKL (2.10)

over LG x LG that satisfies the cocycle condition on the triple product. If £ is a factoriza-
Ran(X)

tion line bundle, then being multiplicative amounts to an isomorphism (2.10) that is compatible
with the factorization structures on both sides.

We let Pic™"*(LG) (resp. Picf/achgé(LG)) denote the Picard groupoid of multiplicative
factorization line bundles on LG (resp. together with a trivialization as such over LT G). Clearly,
there is a descent functor:

Pic)'{u5(LG) — Pic™* (Grg).

We now state part (b) of §2.2.1 as a lemma:

Lemma 2.1. (a) The functor ®r factors through Pici;agi;(LT), i.e., ®p(E) has a canonical

multiplicative structure over LT, trivialized over L1T;
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(b) Over a closed point x € X, the restriction of the above multiplicative structure to the
abstract group T(X,)® agrees with that on the kX -torsor coming from the push-out of

0— Ko(X,) = BE(X;) > T(XK,) =0 (2.11)
along the residue map Ko(K,) — k™. The same holds over any field extension k C k.

Remark 2.2. Part (b) makes sense since (I)T(E)’t for t € T'(X,) agrees with the k*-torsor
induced from (2.11); this follows from the description of ®7(F) on regular test schemes (§2.2.3).

Proof of Lemma 2.1. Recall that £ := ®p(FE) is constructed as follows. The datum E can
be interpreted as a pointed morphism e : X x BT — B?K,. Let K denote the full K-
theory spectrum, regarded as a Zariski sheaf on Sch®®. Then e lifts (non-uniquely) to some
€: X xBT - Kso (] , §5.3.1]). Hence the data ({z'}, Pz, ) of an S-point of Grr (where
we may again assume Pp to be Zariski-locally trivial) give us a section of K>y over S x X with
support on I',r. The line bundle Lé| 5 1s then constructed using the map:
70 Ky — 0%[1] (2.12)
(c.f. (3.2.2) of loc.cit.). For two lifts € and €, we need to produce a canonical isomorphism
Lz =5 Lz. This is done as follows:
(a) for S the spectrum of an Artinian k-algebra, (2.12) factors through 7<%7,:.'Ks, so we obtain
a canonical isomorphism Lg‘s = Lé/|s;
(b) there exists an isomorphism £z —» Lz which restricts to the one in (a) for any S the
spectrum of an Artinian k-algebra (§5.3.4-6 of loc.cit.).

We now claim that Lg’ o acquires a canonical multiplicative structure. Indeed, € induces a
morphism X x T — Kx>a[—1] of group sheaves. Given S-points ¢,¢' of LT over the same point

[e]
x! € Ran(X), we may view them both as maps D, — X x T. There is a canonical homotopy

between é(t) +é(t’) and é(¢t') as maps D, — K>o[—1]. Under the map K>o [—1] = 'Ks»

le
of sheaves over D_r, we obtain a canonical homotopy between the corresponding sections of
L!Kzz; it gives rise to the desired multiplicative structure £é|t ® Lg!t/ =L w under (2.12).

It remains to check that for two lifts & and é&’, the canonical isomorphism £z — L& is
compatible with the multiplicative structures on both sides. This amounts to checking that the

following diagram of line bundles over LT x LT commutes:
Ran(X)

mult* Lg —— Lg X Lé

\ !

mult* Lz — Lo X Ly

It suffices to test the commutativity over S the spectrum of an Artinian k-algebra. Note again
that for such S, (2.12) factors through 7=%7,.'Ks, so the construction of the multiplicative
structure does not require a lift of e. Therefore, we have equipped £ with a canonical multi-
plicative structure over LT

Part (b) of the lemma is immediate from the above construction, applied to S = Spec(k) (or
Spec(k’) for a field extension k C k). O

2.3. Compatibility: torus case.

6i.e., the group of k-points of LT
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2.3.1. Fix a torus T. Recall the equivalence of Proposition 1.4:
Pic™(Grr) = 0(A7). (2.13)
The goal of this subsection is to prove:

Lemma 2.3. The following diagram of Picard groupoids commutes functorially in T':

CExt(T, Ky) —2 > Pic™*(Gry) (2.14)

(k AB)

Remark 2.4. Although Lemma 2.3 appears as the special case of Proposition 2.9 for G =T,
its proof contains most of the technical difficulties.

2.3.2. Notations. Fix an object E of CExt(T,K5). We denote its image in 6 (A7) under (2.2)
by (q,LS_ ), e + ), and its image under ®7 by £. The image of £ in §(Ar) will be denoted by
(q', LW, cuw). We ought to show:

(a) ¢=q;

(b) there is a canonical system of isomorphisms:

LY 2 0™ gt (2.15)

; . B
which respects Cow and ¢, .

2.3.3. Quadratic forms. We first show q = ¢ by checking that their bilinear forms x and '
agree. Fixing a closed point € X and any co-character u € Ap, we will show that x(—, u)
and &/'(—, ) define the same character T(k") — G, (k') for every field extension k C k’; this
will 1mp1y that k = k'.7

We now further fix a uniformizer of the completed local ring t € O,. This provides an
isomorphism k[t] = O, so we regard t* as an element of T'(X,). Consider the central extension
(2.11) corresponding to € X. Pushing-out along the residue map Ko (X, ) — k™, we obtain
central extension:

0—k* = E —T(X;) — 0.
So the conjugation action of T(O,) on the fiber of E(X,) — T(X,) at t* induces a map:
T(0,) — k*. (2.16)
We will calculate this map (and its variant for a field extension k C k') in two ways.

Step 1. We first show that the map (2.16) is given by the composition:
T(0,) <5 T(k) 28 g,

Indeed, recall from §2.1.3(a) that the composition G, %} G 28w ® T 2™ K, is the
K(A, p)-multiple of the universal symbol. Thus the map:

G (K2) @ G (K ) 2E55 T(K,) © T(K) <205 Ko (K, ) 25 k%
Z Z

7Indeed, for every A € Ap, suppose z ~ z5(%H) and z ~» 25" (A1) define the same map G, (k') — Gm (k')
for all field extension k C k’. By suitably choosing k’, we can ensure that (k')* contains an element of infinite
order. Thus k(\, u) agrees with &’(\, p).
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is the s (), u)-multiple of the Contou-Carrére symbol {f, g} := (fr4(9) /g°rd(£))(0). Hence the
conjugation action of f € G,,(0,) (through ) on E’ is given by ¢’ ~ {f,t}**#e/. Note that
{f,t} = f(0), as required.

For a field extension k C k', the above computation holds without modification.

Step 2. We now calculate the map (2.16) alternatively as follows. Recall the canonical
multiplicative structure on £ | or from Lemma 2.1. It induces a strong LT T-equivariance struc-
ture on £ (over Grr, c.f. | , §7.3.4]) with respect to the trivial left £ T-action; in other
words, the twisted product LKL on the convolution Grassmannian EﬂT, x2 is identified with
the pullback of £ along the action map &T,Xz — Grp x2, in a way that is compatible with
the factorization structure of L.

Furthermore, its value at Gr’}@ is given by the conjugation action (2.16). We claim now that
the map (2.16) is given by

T(0,) <% T(k) 28, px

Indeed, this follows from the fact that for a factorization line bundle £ on Grp with associated
bilinear form r’, every strong L£1T-equivariance structure acts on t* € Grp, through the

composition £+T <% T =, G, (c.f. [GL16, §7.4]).
Again for a field extension k C £/, the above computation holds without modification. This
finishes the proof that k = &'

2.3.4. Isomorphisms of line bundles. We now construct the isomorphisms (2.15). The strategy
is to first identify £ with the twist of L(j‘) by some power of the tangent sheaf Ty, and then
determine this power.

Step 1. Consider the diagonal embedding A : X < X x X. Define 3 as the Ky-gerbe on
X x X classifying a prj E-torsor P, together with an isomorphism (Pg)r = O(AA). Then
G comes equipped with a neutralization v over X x X —A. The line bundle £ arises from
(G™, ) by taking the residue along pr; (c.f. §2.2.2).

Let X x Al < ¥ — A! be the deformation of the diagonal embedding to the normal cone,
constructed as the blow-up of X x X x Al along the diagonally embedded subscheme X x {0},
where we then remove the strict transform of X x X x {0}. It has the following features:

(a) X x{t} — Z{|t identifies with X — X x X for ¢ # 0;

(b) X x{0} = X% |0 identifies with the embedding of X as the zero section inside the total space
of the tangent sheaf Tx.

(¢) there is a canonical map X ~22 X x X which is identity for ¢ # 0, and the canonical
projection Tx 2P X x X at t =0.

Consider 3 := X x Al as a divisor inside X. We define ™ as the Ks-gerbe classifying a

prs E-torsor P over X, together with an isomorphism (3~9E)T =5 O(\3). Note that G s

equipped with a neutralization over X — 3, so we may take the residue along pr; to obtain a

line bundle L™ over X x Al

Tautologically, Z()‘)’ Xx{t} identifies with £ for t # 0. On the other hand, every line
bundle on X x A! canonically identifies with the pullback of a line bundle from X. Thus, we
obtain an isomorphism £®) ‘Xx{t} = L™ |X><{0}' This shows that £(*) arises from the residue

of (9%377%() along p : Tx — X, where:

(a) 9%3 is the Ko-gerbe on Tx classifying a p* E-torsor Pg, together with an isomorphism
Pe)r = O(A{0}), where {0} denotes the zero section X — Tx; and
( ; ;
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(b) 7y is the tautological neutralization of Sgi\x) over Tx — {0}.

Step 2. In the above description, suppose we replaced p : Tx — X by the trivial line bundle
AL — X; then the line bundle arising from taking the residue of the analogously defined pair

(9&3,7%() would identify with L(j‘). Indeed, this follows from comparing the construction of
§2.2.2 with that of §2.1.3(b).

We now explain an alternative way to arrive at £ via twisting the line bundle AL - X
in the above construction. Consider the G,,-action on A by scaling. The pair (91(%2’7%( )

admits a G,,-equivariance structure. Hence LS:‘) (the total space of LS:‘)) is equipped with a

fiberwise G,,-action. Since S(T’\X) identifies with the twisted product 9()@9‘(&;{) on the total space
X

Ty G>2" Al (where G° denotes the trivial gerb W) =y xS
% X gerbe), we find L'V — T'¢ x LY. In other words,

suppose the fiberwise G,,-action on Lgf\) is given by some character ¢;(\) € Z, then there is a
canonical isomorphism:
~ A A
LX) 2 gu®) g X (2.17)

Step 3. We now calculate the character q;(\).®

It suffices to do so at a closed point
z € X. The line Lgf\) |z€X admits a simple description as follows (c.f. §2.1.3). Evaluating F at

Gy, == Spec(k[t,t1]), we obtain an exact sequence:

0 — Ka(klt,t7']) = E(k[t,t™"]) = T'(ky[t,t™"]) = 0, (2.18)
and consequently a K (k[t,t~!])-torsor E(z) at every point z € T(k[t,t!]). The line Lgf\) | ex
is the k*-torsor induced from E(t*) along the residue map Ko (k[t, t~1]) — k*.

To unburden the notation, we again use LS;\)
admits a simple description. Take a € G,,(k), the action by a9

to denote this line; the G, (k)-action on it also
).

NEAOR Al I A (2.19)

reX
is given as follows.
(a) Consider the scaling map k[t,t~!] — k[t,t71], t ~ t - a. It induces a group automorphism
E(k[t,t71]) 2 BE(k[t,t™']), covering the analogously defined automorphism on T'(k[t,t~1]).
In particular, we obtain a map a, : E(t)) — E(t*a’) (incompatible with the Ko (k[t,t])-
torsor structures.)
After inducing to k*-torsors, we obtain a map compatible with the k*-torsor structures:

Ay : LS:‘) — L (t"a*) := E(t*a™);x,

since a, : Ko(k[t,t71]) — Ka(k[t,t71]) induces the identity on k*.

(b) On the other hand, every element in T'(k[t]) admits a lift to E(k[t]), up to an element from
Ko (k[t]) (as follows from R' p, Ky = 0 for p : AL, — S, c.f. | , §3.1]) Hence we have
another map E(t") — E(t*a’), defined as right-multiplying by any lift of a* € T(k[t]).

Inducing along Ko (k[t,t71]) — k>, we again obtain a map of k*-torsors:

Ror : LY = Lo ().
Note that this map is independent of the choice of the lift.

(¢) The automorphism (2.19) identifies with the composition R;} O .

8Caution: we do not yet know that g1 () depends quadratically on A.
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Step 4. We shall now deduce two identities:

71(2A) — k(A A) =2-q¢1(N) (2.20)
4-q1(N) = q1(2)) (2.21)

The combination of these identities will show that g1(A\) = $r(X,A) = g(A). Then the desired
isomorphism follows from (2.17).

Proof of (2.20). This follows from the mutiplicative structure on E(k[t,t!]). Indeed, consider
the following commutative diagrams:
a*ON.R

Lf)\) G L+ (t2)\a2>\) Lfk) L+ (t2/\a2/\)

- - - -

s Ra s R \®R,
LY eIV EEE L (PaM) o Ly (a) LYY @ IV L, (1ha) ® Ly ()

where vertical arrows witness the multiplicativity of LS:‘). The first diagram commutes because
a, defines a group homomorphism on E(k[t,t!]). The second diagram commutes (note the
factor a®(»M)) because it calculates the commutator comm(a?, t) € Ky (k[t,t~1]), whose residue
identifies with @A),

Now, tracing through the horizontal arrows gives rise to the identity a?*
in k*. Since the same calculation is valid for any field extension k& C &/, we obtain (2.20). O

@N=K(AN) — g2a (V)

Proof of (2.21). This follows from the functoriality of E(k[t,t~!]) with respect to the double
covering map sq(t) = t? on k[t,t~!]. Note that sq, : E(k[t,t7]) — E(k[t,t™!]) induces a
quadratic map of k*-torsors”:

Sq, : LE:‘) — LS_QA).

On the other hand, we have the following commutative diagrams:

(12 5 Ra
SRy SR VLR B S e S SR P2 VLY

\qu* J/Sq* \LS‘I* \LS‘I*

R
L(f’\) L L (1P Lf’\) 23 Ly (tPa®)

The first diagram commutes tautologically. The second diagram commutes because a?* belongs
to the subgroup T'(k) — T(k[t,t7!]), and we may first lift a®>* to E(k) so that its image in
E(k[t,t~1]) is fixed by the automorphism sq,. Tracing through the horizontal maps and using
the quadraticity of vertical maps, we find a*®) = ¢91(2) in k>, Again because the same
calculation is valid for any field extension k C k', we obtain (2.21). O

O(Lemma 2.3)
2.4. Compatibility: general case.

9 2

i.e., the k*-action on the two lines intertwines kX — kX, a ~» a*.
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2.4.1. We now return to the general case of a reductive group G. Appealing to the equivalence
(2.13), we obtain a functor:

Pic™(Grg) =5 Pic™ (Grp) = 0(Ar) — Q(Ar, Z). (2.22)

Proposition 2.5. Suppose G is semisimple and simply connected. Then (2.22) defines an
equivalence: Pic™*(Grg) = Q(Ar, Z)W

In this subsection, we will first prove Proposition 2.5, and then use it to deduce the general
compatibility result between Gaitsgory functor ®4 and the Brylinski-Deligne classification.

2.4.2.  We use the notation Pic®(Grg) to denote the Picard groupoid of line bundles on Grg
together with a rigidification at the unit section e : Ran(X) < Grg; the notation Pic®(Grg xr)
carries an analogous meaning. Since factorization line bundles on Ran(X) are canonically trivial
(c.f. Lemma 1.3), we have a forgetful functor Pic™**(Grg) — Pic®(Crg).

2.4.3. We first prove Proposition 2.5 in the case where G is simple and simply connected. We
note that in this case, the abelian group Q(Ar,Z)" is isomorphic to Z, where a generator is
given by the minimal W-invariant quadratic form g, uniquely specified by the property that
g(a) = 1 for any short coroot .

We fix a point 2 € X. The calculation of Picard schemes Pic®(Grg, xr) in | , §3.4] proves
that there are isomorphisms:
Pic™*(Grg) = Pic’(Grg) = Pic(Grg..), (2.23)

given by pulling back along Grg , — Grg. On the other hand, the result of G. Faltings | ]
shows that Pic®(Grg ;) is also isomorphic to Z (in particular, it is discrete), and the generator
of Pic®(Grg ) is a certain line bundle L, satisfying the following property:

(*) Let Lget be the determinant line bundle on Grg ,, whose fiber at an S-point (Pg, Pq

o —
D,

P%,) is the relative determinant of the lattices g, gp0, C §(X;). Then there is an isomor-

phism (Lmin)®?" =5 Lges.
In order to show that (2.22) is an isomorphism onto Q(Az,Z)W, it suffices to show that for
some nonzero integer d, the image of (Lmin)®¢ (regarded as an element in PicfaCt(Grg) via
(2.23)) equals d - q. We will prove this statement for d = 2h by calculating the image of £get.

Note that Lge has a natural factorization structure (c.f. | , §5.2.1]). By tracing through
the functors in (2.22), we see that its image is the quadratic form gqet Wwhose associated bilinear
form kqet equals:
Kdet()‘? /’L) = Z <)" d> <N’a d) = Kﬂ(/\a /J’)a
aed

where Kil stands for the Killing form. On the other hand, h is defined so that Kil = 2% - Kumin.
Thus qqet = 2k - (min as desired.

2.4.4. In order to handle the general case, we first note a cohomological vanishing result that
will also be useful later. We continue to fix a k-point £ € X. Recall that for a dominant

cocharacter \ € Ag, we have the affine Schubert variety Gré’\w — Grg,, such that Grg s is

isomorphic to the infinite union cohrf Gr(—;’\x. When G is semisimple and simply connected, each
XEAT ’

<N .
Grg’, is integral.

Lemma 2.6. Suppose G is semisimple and simply connected. Then for any \ € AJCE, we have
Hi(Gré?‘x, 0)=0 fori>1.
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Proof. Let I denote the Iwahori subgroup of £} G and Flg ,, := £,G/I be the affine flag variety.
The I-orbits of Flg ., are parametrized by the affine Weyl group W#. Let F1¢ , denote the orbit
corresponding to w € W2 and Flé“; its closure. We note that the projection Flg , — Grg s

is a flat-locally trivial fiber bundle with typical fiber G/B. Furthermore, for any A € Ag, there
is a Cartesian square:

FI5%C—Flg,

|

<
Gré?\m(—> GI‘G@

where w is the longest element in the double coset of A, after we identify AL with W\W=f /.
Since k = RT'(G/B, O), we reduce the proof to showing k ~ RF(FIE?’;, 0).

We now make an argument similar to that for finite dimensional Schubert varieties. Namely,
for each simple (affine) reflection s € W we let P, := I U (IsI) denote the corresponding
minimal parahoric subgroup. Suppose w = s; - - - 5; is an reduced expression. Then we have an
affine Bott—Samelson resolution:

~ <w I I I <w
Flg := P, X Py, x---x Py /T = FI5", (2.24)

where the I-superscripts indicate quotients by anti-diagonal actions. Since each Pg/I is iso-

~ <

morphic to P!, the scheme Flaw is an iterated P'-bundle. Thus, we reduce to showing that

(‘Jﬁlgw has vanishing higher direct image along (2.24), and this follows from the same proof as
G

the usual Bott—Samelson resolution, c.f. | , Theorem 2.2.3]. O

Remark 2.7. Lemma 2.6 can be seen as an affine version of the Borel-Weil-Bott theorem and
is likely to be known, but the authors could not find a reference.

2.4.5. We now prove Proposition 2.5 in the general case. Suppose G has simple factors
{Gj}jes. It suffices to prove that pulling back along the factors Grg, — Grg defines an
equivalence of Picard groupoids:

Pic"(Gre) = [[ Pic™* (Grg,). (2.25)
jeJ

Note that this morphism fits into a commutative diagram of Picard groupoids:

Pic™ (Grg) Pic®(Crg) Pic®(Crg )

|e2s) l(e) l(a)

[1,c, Pic™"(Grg,) == [1,;¢, Pic*(Grg,) == [, Pic(Grg, )

where the lower row consists of equivalences, c.f. (2.23). We note that the cohomological
vanishing Lemma 2.6 for i = 1 implies that (a) is an equivalence.'” That (b) is an equivalence
follows from [ , Lemma 3.4.2] and the proof of | , Lemma 3.4.3]. Together, these facts
imply that (c) is an equivalence.

10Recall: suppose X,Y € Sch/, are connected schemes of finite type with base points, and X is integral,
projective with H'(X,0x) = 0. Then Pic®(X) x Pic®(Y) == Pic®(X x Y) (see | , Exercise 111.12.6]).
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2.4.6. Finally, we argue that the left square is Cartesian, which would imply that (2.25) is
an equivalence. Concretely, this means that given a rigidified line bundle £ over Grg (which
passes to M;c ;L over HjeJ Grg, via the equivalence (c)), the datum needed to upgrade it to
a factorization structure on £:

L3, (S LORLO

X2
is equivalent to that of factorization structures ¢; on each £;. We note that the collection

{®;};es defines a factorization structure M;¢c y¢; on £ and conversely a factorization structure ¢

on £ defines ; by restriction to the jth unit section X2 x - -+ x Grg, x2 X --+ X X2 < Grg xe.
X2 X2 T x2 x2 ’
Thus it remains to show:

Claim 2.8. Any £ € Pic®(Grg) has at most one factorization structure compatible with its
rigidification.

Indeed, any two such factorization structures differ by an automorphism £ of £(2) ’ 2 that

restricts to identity along the unit section. Since Grg x2 is an ind-integral ind-scheme

2
over X2 — A, it suffices to show that 3 becomes the identity after restricting to the fibers at
k-points of X? — A. The latter follows from the discreteness of Pic®(Grg . x Grg,y), which in
turn follows from that of Pic®(Grg ) and Lemma 2.6. O(Proposition 2.5)

2.4.7. For a semisimple and simply connected group G, we obtain a map:
Q(AT,Z)W — G(AT)

by first lifting an element of Q(Ar,Z)" to Picfct (Grg) using the isomorphism of Proposition
2.5, and then mapping to (Ar). By Lemma 2.3, the above functor identifies with (2.5).

2.4.8. Recall the Picard groupoid 6g(Ar) of §2.1. We will define a functor:
Ug : Pic™(Grg) — Oa (A7) (2.26)

Given £ € Pic™(Grg), we will construct a theta datum (q,£™), ¢y ) for Ar as well as an
isomorphism ¢ of two corresponding theta data for AT, .

Indeed, (q,£™,cy ) is the image of £ under the first two maps of (2.22). On the other
hand, £ restricts to a factorization line bundle on Gréder; under the same two maps, we obtain a

theta datum (q|A~ ,Z(’\),E,\,“). By §2.4.1, this is the theta datum associated to q|AN under
T,

der Tger
(2.5). Therefore, we obtain ¢ from the commutativity datum of the diagram:

Pic™(Grg) —=> Pic™ (Gry) — == 0(A7)

i i l

Pic™ (Grg, ) "% Pic™ (Grz, ) <= 0(A7, ).

2.4.9. We now state the main compatibility result, generalizing Lemma 2.3:

Proposition 2.9. The following diagram of Picard groupoids is canonically commutative:

CExt(G, K») —% Pic™"(Grg) (2.27)

.@\)A

Oc(Ar
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Proof. Given a central extension of G by K5, we have to construct an isomorphism between two
elements of §(Ar) and check that it respects the isomorphism denoted by . The isomorphism
comes from the commutativity datum of Lemma 2.3, and the required compatibility follows
from its functoriality with respect to the map of tori fder —T. O

Let us describe the functoriality of the commutativity datum in Proposition 2.9. Given a
morphism « : (G',T") — (G,T) between pairs of a reductive group together with a chosen
maximal torus, there is a pullback functor

o QG(AT) — 0@/ (AT/).

The morphisms ®pp and Vs are canonically compatible with this pullback. For each E €
CExt(G, Ks) whose pullback to CExt(G’,Kz2) is denoted by E’, one deduces from the func-
toriality in Lemma 2.3 that the following diagram commutes:

CDBD (E/) —— \Ifg/ (I)G/ (E/)

- g

a*Bpp(E) = a* Uedg(E).

Here, the horizontal arrows are the commutativity data exhibited in Proposition 2.9.

3. THE MAIN THEOREM

This section is devoted to the proof that Gaitsgory’s functor ® is an equivalence of cate-
gories. We assume char(k) { Ng so that the functor ®¢ is well-defined.

3.1. Statement and reduction.

3.1.1. Let us first state the main theorem of the paper.

Theorem 3.1. Suppose char(k) t Ng. Then the functor ®¢ (2.7) is an equivalence of Picard
groupoids.

Using the commutativity of (2.27) and the fact that ®pp is an equivalence, we have already
obtained some special cases of Theorem 3.1:
(a) the case G =T is a torus follows from Proposition 1.4, as g (Ar) becomes 0(Ar);

(b) the case G semisimple, simply connected follows from Proposition 2.5, as (A7) becomes
the (discrete) abelian group Q(Ar,Z)W.

3.1.2.  We now perform a reduction of Theorem 3.1 to the case where Gy, is simply connected.
Choose an exact sequence of groups:

15T, —G—G—1, (3.1)

where T5 is a torus, and G is a reductive group whose derived subgroup is simply connected.
The sequence (3.1) is called a z-extension, c.f. | , Proposition 3.1]. Consider the simplicial
system G x T3, where the nth simplex is given by G x T, and the boundary maps are mul-
tiplications. Since T5 is central in C?', these multiplication maps define morphisms of algebraic
groups. As a consequence, we obtain a simplicial system of prestacks GréxT; over Ran(X).
Appealing to [ , Corollary 5.2.7], the Picard groupoid Pic™(Gr¢) identifies with the limit

of the co-simplicial system PicfaCt(GréxT.).
2
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Remark 3.2. The cited result follows from h-descent of line bundles for derived schemes.
The proof given there uses h-descent of ind-coherent sheaves, which has been established by
Gaitsgory | , Theorem 8.2.2] in the context where char(k) = 0 (see also | , Chapter 4,
Proposition 7.2.2] for a more detailed account).

However, invoking ind-coherent sheaves is unnecessary for this application: h-descent of
line bundles is also a consequence of a theorem of Halpern-Leistner—Preygel | , Theorem
3.3.1], which is valid for derived schemes over any Noetherian base scheme.

Lemma 3.3. The canonical map of Picard groupoids is an equivalence:
CExt(G, Ks) =5 lim CExt(G x T3, Ko).

Proof. We argue that the Picard groupoid of (not necessarily central) extensions Ext(G, Ks)
maps isomorphically to lim Ext(CN}’ x Ty, Ks); the result would follow since a Ky-extension of
G is central if and only if its pullback to each G x Ty is central.

Since Ext(G, Ks) identifies with homomorphisms from G to BKs, it suffices to show that
G identifies with colim(é x Tg) in the category of Zariski sheaves of groups (in spaces). This
in turn follows from:

(a) the forgetful functor from Zariski sheaves of groups to plain Zariski sheaves is conservative
and commutes with geometric realizations;

(b) @ identifies with colim(G xT3) in the category of plain Zariski sheaves, since every Th-torsor
is Zariski-locally trivial (Hilbert 90). O

In other words, Theorem 3.1 for G follows from the same result for each G x Tg. In proving
Theorem 3.1, we may thus assume that Gqe, is simply connected.

3.2. Proof of Theorem 3.1 for Gy, simply connected.

3.2.1. 'We now prove Theorem 3.1 in the case that G e, is simply connected. Let T1 := G/Gger-
Then the fiber of 0g(Ar) — Q(Ar,,,,Z)" identifies with 8(Ar,). Let Picfli‘;tzo(Grg) be the
full subgroupoid of PicfaCt(Grg), consisting of objects whose images vanish under the following
composition:

(2.22)

— Q(ATder7 Z)'

We then have a commutative diagram of Picard groupoids:

f/
Pic*'_ (Grg)——= Pic™*(Grg) .

gder=0

i \IIG\L ®pp

O(Ar, ) — Oa(Ar) —— Q(Aq,,,, Z)V.

Pic™(Grg) — Pic™(Grg,,,)

Here, U is the functor (2.26). Inspecting this diagram, we see that it suffices to show that the
first vertical map:

Pic™_ (Grg) — 0(Aq,) (3.2)

Gder=0

is an equivalence.
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3.2.2. Consider the projection p : Grg — Grr,. It defines a pullback functor
p* : Pic™*(Gry,) — Picl'_ (Grg) (3.3)

qd
such that the composition:
Pic™! (Grr, ) 25 Pick_(Gra) C25 0(Ar,)
canonically identifies with the equivalence (2.13). It therefore suffices to show that (3.3) is an
equivalence.

3.2.3. We note that (3.3) factors through the full subcategory
Pic"(Grg) — Pici®_(Grg) (3.4)

gd
of factorization line bundles on Grg which are trivial along fibers of p over k-points. In the rest
of this subsection, we shall show that
(a) the containment (3.4) is an equivalence.
(b) pullback along p defines an equivalence

Pic®*(Grr, ) — Pic**(Grg). (3.5)
The combination of these two statements will imply Theorem 3.1.

3.2.4. In order to prove the above statements, we first study the geometric properties of the
projection p.

Lemma 3.4. The map p realizes Grg as an étale locally trivial Grg,,, -bundle over Grr, .

In other words, for every affine scheme S — Grr,, there is an étale cover S — S and an
isomorphism Grg x S =» Grg,,, X S.
Grr, Ran(X)
Proof of Lemma 3./. We first show that G — Tj splits. Indeed, the maximal (split) torus
T C G surjects onto T7, so it suffices to show that the kernel T'N Gge, is connected. The latter
follows since T' N Gger i a maximal torus of Gger.
Given an S-point S X Grp,, we denote by S 2, Grq, the “neutral poin

to 7, i.e., the composition § % Gry, = Ran(X) < Grp,. Since Grg xS identifies with
Grry Y0

”

corresponding

Grg x S, it suffices to produce an isomorphism:
der
Ran(X)

Grg X § = Grg X g (3.6)
Grr, v Grry ;70
after passing to some étale cover S S. B
We choose S — S such that the elements 7,70 € Maps, ga,(x) (S, Grr,) differ by the action of
some a € Maps, Ran(X)(g, LT) (this is possible, for example, by lifting S — Gry, to S — £T7).
The above discussion shows that we have a splitting 0£ the canonical projection LG — LT7.
Hence « can be lifted to an element o € Maps / Ran( X)(S ,L@G). The equivariance property of p
shows that the following diagram commutes:

GI"G X § Lta> GI‘G X g
Ran(X) Ran(X)
l/ ~ acty \L ~

Grr, x S——Gr, x S
Ran(X) Ran(X)
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Since act,, transforms the section 7 : S = Grp, X S to Yo, we obtain the required isomor-
Ran(X)
phism (3.6) as actg x idg. O

actq

3.2.5. Proof of (a). We now show that every £ € Picgiifzo (Grg) is fiberwise trivial along the
projection p : Grg — Grpy. Since the question concerns only points on Grpy, it suffices to show

that the base change of £ to the subscheme X1 Air1) GrTl,qu is fiberwise trivial.
We write E()‘I) for the étale sheaf of relative Picard group of Grg x:r x  XGuAup)

GrTl’XI
over XAuoAin) e it associates to every étale map V. — XAuAin) the abelian group
I
Pic(Grg x» x V)/Pic(V). Thus £ defines a global section 1D of PAY) for every n-tuple
G

T XN

M. The goal is to show that all 1A vanish.

3.2.6. Recall the computation of the étale sheaf of relative Picard groups Pic(Grg, . x1 /X")
in [ , §3.4]. Tt fits into an exact sequence of sheaves of abelian groups over X?:

0 = Pic(Grg,,, x1 /X') = Bie/Ax = @ (A=) Bjes Ax.
|J|=|1]-1
Here, A denotes the abelian group Z* '22%(Gaer) "and A, is its associated constant sheaf of groups

over X. Lemma 3.4 shows that the sheaf E(’\I) is étale locally isomorphic to Pic(Grg, . xr /X1
under the identification X *1- A1) =5 X1 We note a simple Lemma:

Lemma 3.5. LetY be a connected, Noetherian scheme and F be an étale sheaf on'Y . Suppose
furthermore that F is étale locally isomorphic to a subsheaf of a constant sheaf. Then a section
s € D(Y, F) vanishes if and only if it does so over some étale open V.— Y.

Proof. One can pick finitely many étale maps V; — Y (i € T) so that:

(a) each V; is connected;

(b) F |w is isomorphic to a subsheaf of a constant sheaf;

(c) the images U; of V; collectively cover Y.

We induct on the cardinality of I over all connected, Noetherian schemes admitting such a
cover; the base case I = () is trivial. The image U of V' — Y must intersect some U;. The
condition (b) implies that the restriction s; € I'(U;, F) vanishes. Now, let Y = Ujzi Ui 1t is
not necessarily connected. However, the fact that Y is connected shows that U; intersects every

[e]
connected component of Y. We apply the induction hypothesis to each connected component

of Y to conclude that s vanishes. O

3.2.7.  Our proof that each ") vanishes now proceeds as follows:

Step 1: 1) = 0. Indeed, since line bundles on Grg,,, x are classified by the quadratic form
Qder, We see that £ is trivialized when pulled back along Grg,.,, x — Grg,x. On the other hand,
Grg,,, x appears as the fiber of p along the unit map X < Gry,. Hence 1) = 0.

Step 2: IV =0 for all A € Ap,. Consider the section (M=) of PY N It s represented
by some line bundle L&~ over Grg x2  x XA~V We know from Step 1 that the re-
GrTl,Xg

striction of £~ to the diagonal comes from the base X (0) < X (=)

. Hence, over an étale

HRecall that for an I-family of co-characters AD = (A1, ”\\I\)’ there is a closed immersion X! «

Grq, x1 whose image we call XA )
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neighborhood of X the section {*~*) has to vanish by the identification of P~ with
Pic(Grg,., x2 /X?). We then apply Lemma 3.5 to conclude that 1= vanishes.

Now, under the identification of P*™ with P& & PN away from the diagonal, the
section 1= passes to IV K=Y, The fact that [~ = 0 now implies that IV (and (=)
vanishes.

Step 3: 1A =0 for all I-tuple M. When the cardinality of I is at least 2, we may use the
factorization property of 1A to see that I vanishes away from the union of the diagonals
in X(1A1) | Hence by Lemma 3.5 again we have 1A = 0.

This finishes the proof that (3.4) is an equivalence.

3.2.8. Proof of (b). We first recall some standard results.

Lemma 3.6. Suppose G is semisimple and simply connected. Then the morphism Grgz —
Ran(X) has the property that for every affine scheme S — Ran(X), we have a presentation

Grg x S =5 colim Y;
Ran(X) 2

where each Y; is a scheme of finite type over S, satisfying:
(a) Y; is proper and faithfully flat over S;
(b) The fiber (Y;)s at every k-point s € S is connected and H*((Y;)s,0) 0.
Proof. Since each S — Ran(X) factors through some X/, it suffices to produce such a presen-
tation for Grg ;. For each I-tuple A of elements of Ag, we may consider the Schubert variety
GréAXI which is proper, surjective over X?. The flatness is proved in | ,81.2) for I = {1,2}
and the general case is similar. The property (b) of its fibers is a special case of Lemma 2.6. O

Remark 3.7. Lemma 3.6(b) fails for non-semisimple groups, since Grg may not be ind-reduced.
We do not know whether the flatness in part (a) holds more generally.

3.2.9. Suppose p: X — Y is a morphism of finite type schemes over k'? such that

(a) p is proper and faithfully flat;

(b) its fiber X, at every k-point y € Y is connected and H'(X,,0) = 0.

Lemma 3.8. Let £ be a line bundle on X. Under the above hypotheses onp: X — Y, the
following are equivalent:

(a) L is trivial along the fibers of p;

(b) p.L is a line bundle over Y, and the canonical map p*p,.L — L is an isomorphism.

Proof. We use the formulation of the “cohomology and base change” theorem in [Va, 28.1.6].
The fiberwise triviality of £, together with the vanishing of H! (Xy,Ox, ), shows that the canon-
ical map:

R'p.L[, — H'(X,, L] ) (3.7)
is surjective, for any k-point y € Y. Hence part (i) of loc.cit. applies and we see that that
(3.7) is an isomorphism. Since R'p,L is coherent, it must vanish. In particular, part (i) of
loc.cit. applies and shows that the canonical map p. £ |y — HO(Xy, L ’ < ) is surjective. Another

Y

application of part (i) then shows that p,L is locally free near y of rank hO(Xy,L’ )=
y
hO(Xy, 0) =1, i.e., it is a line bundle. The isomorphism p*p,L£ — £ is then obvious. O

12Recall that k is assumed to be algebraically closed.
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3.2.10. Suppose p : X — Y is ind-schematic morphism, represented by morphisms p; : X; - Y
of schemes satisfying the hypothesis of §3.2.9. Then p* : Pic(Y) — Pic(X) has a partially
defined right adjoint:

p«L :=lim (p;)«L;, while representing £ by the inverse system £; € Pic(X;)
1

which is well defined on the full subcategory of Pic(X) consisting of line bundles which are
trivial along the fibers of p, and we furthermore have an isomorphism p*p.£ = £. For any line
bundle M from the base Y, it is also clear that M = p,.p*M. Hence p* defines an equivalence
from Pic(Y) to the full subcategory of Pic(X) consisting of fiberwise trivial line bundles.

3.2.11. The above discussion, together with Lemma 3.4 and 3.6, shows that p* defines an
equivalence Pic(Grr,) — Picy(Grg). To see that this upgrades to an equivalence of factor-
ization line bundles, we simply note that the map Grg x Grg — Grp, x Grp again

Ran(X) Ran(X)
satisfies the hypothesis of §3.2.10 after base change to a scheme. This finishes the proof that
(3.5) is an equivalence. O(Theorem 3.1)
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