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Abstract. Let X be a smooth, geometrically connected curve over a perfect field k. Given

a connected, reductive group G, we prove that central extensions of G by the sheaf K2 on the

big Zariski site of X, studied in Brylinski–Deligne [BD01], are equivalent to factorization line
bundles on the Beilinson–Drinfeld affine Grassmannian GrG. Our result affirms a conjecture

of Gaitsgory-Lysenko [GL16] and classifies factorization line bundles on GrG.
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Introduction

This paper compares two kinds of data parametrizing metaplectic extensions of the Langlands
program. One is K-theoretic, and the other has to do with factorization structures on the affine
Grassmannian GrG.

Let us first explain how these structures arise in the theory.

0.1. K-theoretic metaplectic parameters.

0.1.1. In the classical theory of automorphic forms, one starts with a global field F and a
reductive group G over it. Denote by AF the topological ring of adèles of F. The principal
objects of interest are certain functions on the homogeneous space G(AF)/G(F). Roughly
speaking, the goal of the Langlands program is to relate them to representations of Gal(F/F)
valued in the L-group of G.

0.1.2. The study of automorphic forms has seen several generalizations, where one replaces
G(AF) by certain topological coverings. The first example of such a covering is the metaplectic
group constructed by Weil [We64]. These are double covers of the symplectic groups Sp2n(Fν),
for local fields Fν , and combine into a cover of Sp2n(AF) equipped with a section over Sp2n(F).

0.1.3. The existence of interesting topological coverings is by no means restricted to the sym-
plectic group. For any reductive group G, Brylinski–Deligne [BD01] observed that a large class
of coverings of G(AF) arise from K-theoretic data.

To explain their work more precisely, we let K2 denote the Zariski sheafification of the second
algebraic K-theory group. Brylinski–Deligne [BD01] started with a central extension:

1→ K2 → E → G→ 1 (0.1)
1
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of sheaves on the big Zariski site of F. Using the Hilbert symbol on local fields Fν , they

produced topological central extensions G̃ of G(AF) by the group µF of roots of unity in F. As

a consequence of the reciprocity law of the Hilbert symbol, the central extension G̃ splits over
G(F) [BD01, §10]. This splitting makes it possible to define “metaplectic” automorphic forms

as functions on G̃/G(F), equivariant against a character of µF and satisfying certain analytic
properties.

0.1.4. The main theorem of loc.cit. is that the groupoid of central extensions (0.1) admits a
purely combinatorial description. Among other things, the Brylinski–Deligne theorem allows
one to define the L-group associated to such a central extension, as has been done by Weissman
[We15]. These works bring the study of metaplectic automorphic forms into the broader scope
of the Langlands program.

It is thus reasonable to view central extensions by K2 as metaplectic parameters of the Lang-

lands program and the resulting topological coverings G̃ as “metaplectic groups” for G(AF).

0.2. Geometric metaplectic parameters.

0.2.1. Let us now specialize to the function field case, where a more geometric perspective in
generalizing the Langlands program is available.

We fix a finite ground field k and a smooth, proper, geometrically connected curve X over
k. The letter F will stand for the field of fractions of X. For simplicity, let us also assume that
the reductive group G is defined over k. In the function field setting, automorphic functions
can be accessed via `-adic sheaves on the moduli stack BunG of principal G-bundles on X (or
certain variants thereof in the ramified situation).

0.2.2. The moduli stack BunG has a local avatar, known as the affine Grassmannian GrG. It
is an ind-scheme attached to each closed point x of X and comes equipped with a canonical
map to BunG. Unlike BunG, the affine Grassmannian is not in general (ind-)smooth (e.g. when
G is a torus). The usual ind-scheme presentation of the affine Grassmannian is as a colimit of
Schubert varieties, whose singularities have representation-theoretic meaning.

Following Beilinson–Drinfeld [BD04], one may also view GrG as an ind-scheme over the
global curve X. As such, it possesses an additional structure called “factorization.” Roughly
speaking, factorization structure describes a fusion rule of the fibers of GrG as distinct points
merge in X. A precise formulation makes use of the Ran space and will be recalled in §0.5.

0.2.3. The ind-scheme GrG plays a central role in the Langlands program. Indeed, the cate-
gory of spherical sheaves SphG, which are Q`-sheaves on GrG equivariant with respect to the
arc group (i.e., positive loop group), is equivalent to representations of the Langlands dual
group Ǧ under the geometric Satake equivalence of Mirković–Vilonen [MV07]. Their proof uses
the factorization structure of GrG to construct the symmetry constraint for the convolution
monoidal structure on SphG.

0.2.4. Motivated by these considerations, Gaitsgory–Lysenko [GL16] proposed to define geo-
metric metaplectic parameters as étale gerbes over GrG banded by a suitable torsion abelian

group A ⊂ Q×` , which furthermore respect its factorization structure. These objects are called
factorization gerbes.

A factorization gerbe allows one to form a “twisted” (or “metaplectic”) category of `-adic
sheaves on GrG. Furthermore, it is possible to replicate the Mirković–Vilonen proof in order to
construct the metaplectic geometric Satake equivalence and formulate a vanishing conjecture
in the metaplectic geometric Langlands program [GL16, §9-10].
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0.3. Relationship between the two.

0.3.1. Let us now turn to the problem addressed in the present paper, which is a comparison
of the above two kinds of metaplectic parameters. Since the problem is independent of the
global geometry of X, we shall formulate it for any smooth, geometrically connected curve X
(i.e., not necessarily proper) over a perfect ground field k.

We shall consider the groupoid of central extensions of G by K2, over the big Zariski site of
X rather than its field of fractions1. We denote this groupoid by CExt(G,K2).

0.3.2. Subject to a restriction on char(k), Gaitsgory [Ga18] defined a functor from the groupoid

CExt(G,K2) to the (2-)category Gefact
A (GrG) of factorization gerbes on GrG. It is a composi-

tion of two functors:

CExt(G,K2)
ΦG−−→ Picfact(GrG)

Kum.−−−→ Gefact
A (GrG).

Here, Picfact(GrG) denotes the groupoid of factorization line bundles, i.e., line bundles on GrG
which respect its factorization structure. The second functor is a standard construction using
the Kummer exact sequence (where we fix an element in A(−1).) The first functor ΦG, a kind
of residue map on algebraic K-theory, is more interesting. To wit, it relates K-theoretic data
to purely geometric objects. The comparison of the two kinds of metaplectic parameters thus
amounts to understanding the behavior of ΦG.

The restriction on char(k) enters in the definition of ΦG—it states that char(k) cannot
divide a certain integer NG which depends on G. The integer NG is the index of the subgroup
of the group of Weyl-invariant, integral quadratic forms on the co-weight lattice generated by
Chern classes of representations G→ GL(V ) (see [Ga18, §0.1.8]). Tautologically, the condition
char(k) - NG is satisfied when G is a product of general linear groups (or when char(k) = 0).

0.3.3. Main result. We can now state our main result, which asserts that ΦG is an equivalence
of categories whenever it is defined. It will appear as Theorem 3.1 in the main text.

Theorem A. Suppose k is a perfect field, X is a smooth, geometrically connected curve and
G is a connected reductive group over k. If char(k) - NG, then ΦG is an equivalence:

ΦG : CExt(G,K2)
∼−→ Picfact(GrG).

This result affirms [GL16, Conjecture 3.4.2]. Roughly speaking, it means that no information is
lost when we pass from K-theoretic metaplectic data to geometry of the affine Grassmannian.

0.3.4. Let us note some consequences of Theorem A. First, the classification theorem of
Brylinski–Deligne [BD01] applies to any regular scheme of finite type over a field. In par-
ticular, CExt(G,K2) is equivalent to a groupoid of combinatorial gadgets, to be denoted by
θG(ΛT ).

We shall establish a commutative triangle (appearing as (2.27) in the main text):

CExt(G,K2)
ΦG //

ΦBD %%

Picfact(GrG)

Ψyy
θG(ΛT )

(0.2)

1Any central extension over F extends to one over X1 for some open X1 ⊂ X. Any two such extensions to
X1 become canonically isomorphic over some open X2 ⊂ X1.
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where the functor Ψ is defined in explicit terms (i.e., without recourse to algebraic K-theory).
Therefore, Theorem A implies a combinatorial classification of factorization line bundles on
GrG. The notation θG(ΛT ) is meant to recall the groupoid of “θ-data” considered by Beilinson–
Drinfeld [BD04], whose classification of factorization line bundles on the space of colored divisors
is a precursor to our theorem.

0.3.5. Another application of our theorem is the following.

Corollary B. Suppose we are under the hypothesis of Theorem A and X is furthermore proper.
Then every factorization line bundle on GrG canonically descends to BunG.

Indeed, this follows from the fact that the composition:

CExt(G,K2)
ΦG−−→ Picfact(GrG)→ Pic(GrG)

factors through Pic(BunG) (see [Ga18, §2.4]). Our Corollary may be viewed as an analogue of
Gaitsgory’s theorem [Ga13] on cohomological contractibility of the fibers of GrG → BunG.

0.4. Our strategy.

0.4.1. We should mention first that our proof of Theorem A relies on the classification theorem
of Brylinski–Deligne, a fact which has two practical implications:

(a) One does not need to know the precise definition of ΦG in order to understand our proof;
in fact, as long as ΦG gives the correct value on regular test schemes S → GrG (where it
is defined using Gersten’s resolution of K2) and satisfies some reasonable properties, then
our proof runs through.

(b) After all functors in the triangle (0.2) are defined, checking that it commutes is an essential
step towards the proof, and takes up a large part of our work.

A proof of Theorem A without using the Brylinski–Deligne classification would certainly be
desirable, but the authors could not find one.2

0.4.2. Assuming the commutativity of (0.2) (which will be proved in §2), our proof of the main
theorem proceeds by checking that Ψ is an equivalence for various kinds of reductive groups G.
We summarize the key ideas and make attributions below (although the main text is organized
somewhat differently):

Step 1: G = T is a (split) torus. This case amounts to showing that Picfact(GrT ) is
equivalent to θ-data for the lattice ΛT . This is the content of §1. In fact, we will show that the
same is true for factorization line bundles on various versions of GrT . This part of the proof
relies on A. Beilinson and V. Drinfeld’s classification of factorization line bundles on ΛT -colored
divisors of X (see [BD04]) and the Pic-contractibility of Ran(X) ([Ta19]).

Step 2: G is semisimple and simply connected. This case is essentially reduced to classifying
line bundles on GrG at a point of the curve X, and the latter has been worked out by G. Faltings
[Fa03]. Since this case is also needed in proving the commutativity of (0.2), it will appear along
with it in §2.

Step 3: The derived subgroup Gder is simply connected. This case essentially follows from
the two previous ones. More precisely, let T1 be the torus G/Gder. We observe that GrG
is an étale-locally trivial fiber bundle over GrT1

, with typical fiber GrGder
. We then use our

knowledge from Step 2 to study when a factorization line bundle on GrG descends to GrT1 , and
we use Step 1 to classify the ones that are pulled back from the base.

2As of now, even the definition of ΦG appeals to the Brylinski–Deligne classification ([Ga18, §5.1]).
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Step 4: An arbitrary reductive group G. This follows from the previous cases, by h-descent
of line bundles on derived schemes.3 Steps 3 and 4 form the content of §3.

0.5. Notations and conventions.

0.5.1. Unlike the main references [GL16] [Ga18], we do not need the theory of ∞-categories.
Hence terms such as categories, groupoids, prestacks, etc., are understood in the classical sense.

Moreover, the prestacks we consider in the present paper are 0-truncated. Namely, they
are synonymous to presheaves on the category of affine schemes. However, in order to stay
consistent with existing literature, we shall continue to call them prestacks.

0.5.2. Throughout the paper, we let k be an algebraically closed field. The general case of a
perfect field is handled using Galois descent. The fact that central extensions by K2 satisfy
Galois descent follows from work of Colliot-Thélène and Suslin. We refer the reader to [BD01,
§2] for a detailed discussion.

0.5.3. We let X be a connected, smooth algebraic curve over k.

0.5.4. Let Ran(X) denote the Ran space associated to X, regarded as a prestack (in fact, a
presheaf). For an affine test scheme S over k, an element of Maps(S,Ran(X)) is by definition
a finite subset xI = {x(1), · · · , x(|I|)} of Maps(S,X).

The prestack Ran(X) has an explicit presentation as a colimit of schemes. Let fSetsurj

denote the category of finite nonempty sets with surjections as morphisms. Then we have an
equivalence:

Ran(X)
∼−→ colim

I∈fSetsurj
XI ,

where for each I1 � I2, the corresponding map XI2 → XI1 is the diagonal embedding. We
refer the reader to [Ga13, §1] for basic properties of the Ran space.

0.5.5. For a finite nonempty set I, we let Ran(X)×Idisj denote the open locus in Ran(X)×I where
the sets of points associated to distinct elements i1 6= i2 ∈ I are pairwise disjoint.

A prestack Y over Ran(X) is a factorization prestack if its pullback t∗Y along the map of
taking disjoint union:

t : Ran(X)×Idisj → Ran(X)

comes equipped with an identification with the restriction Y×I
∣∣
Ran(X)×Idisj

for each I. This

identification is required to satisfy the obvious compatibility condition for compositions along
surjections of finite nonempty sets I1 � I2.

0.5.6. Let Y be a factorization prestack over Ran(X). A factorization line bundle on Y is a
line bundle L together with an isomorphism

t∗ L ∼−→ L�I
∣∣
Y×I |

Ran(X)
×I
disj

(0.3)

over the factorization isomorphism t∗Y ∼−→ Y×I
∣∣
Ran(X)×Idisj

, satisfying compatibility for compo-

sitions. In fact, it suffices to specify isomorphisms (0.3) for |I| = 2, and check the compatilibity
conditions for |I| ≤ 3.

3Aside from this descent technique, which was suggested to us by D. Gaitsgory, our paper lives entirely
within classical (i.e., non-derived) algebraic geometry.
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0.5.7. Let G be a connected, reductive group over k. We write Gder for the derived subgroup

of G, and G̃der for its universal cover.

When we have fixed a maximal torus T ⊂ G, the notations Tder and T̃der will be used to

denote the induced maximal tori in Gder and G̃der.

0.5.8. We write GrG for the Beilinson–Drinfeld affine Grassmannian associated to G. For a
test affine scheme S, the set Maps(S,GrG) consists of triples ({xI},PG, α), where:

(a) xI is a finite subset of Maps(S,X);
(b) PG is a(n étale-locally trivial) G-bundle over S ×X;
(c) α is a trivialization of PG over S ×X −

⋃
i∈I Γx(i) , where Γx(i) denotes the graph of x(i).

The morphism GrG → Ran(X) is ind-schematic and of ind-finite type, and realizes GrG as
a factorization prestack over Ran(X). The base change of GrG along XI → Ran(X) will be
denoted by GrG,XI . We refer the reader to [Zh16] for properties of GrG.

0.5.9. We let L+G (resp. LG) denote the arc (resp. loop) group, regarded as factorization
group prestacks over Ran(X). For a test affine scheme S, a lift of xI : S → Ran(X) to
L+G (resp. LG) is given by a map from the formal completion DxI (resp. punctured formal

completion D̊xI := DxI\
⋃
i∈I Γx(i)) of

⋃
i∈I Γx(i) inside S ×X to G.

Furthermore, the projection L+G → Ran(X) is schematic (but not of finite type) and
LG→ Ran(X) is ind-schematic. The affine Grassmannian GrG can be expressed as the quotient
LG/L+G of étale sheaves.

0.5.10. For a closed point x ∈ X, we denote by Ox the completed local ring at x and Kx its
localization at a uniformizer. The fibers of the above prestacks at a closed point x ∈ X will be
denoted by GrG,x, LxG, and L+

xG. Thus LxG(k) ∼= G(Kx) and L+
xG(k) ∼= G(Ox).

Acknowledgements. We thank D. Gaitsgory for suggesting this problem to us, and for many
insights that played a substantial role in its solution. We also benefited from discussions with
Justin Campbell, Elden Elmanto, Quoc P. Ho, and Xinwen Zhu.

1. Factorization line bundles for tori

In this section, we prove that factorization line bundles on various versions of GrT (e.g., com-
binatorial, rational) are all classified by θ-data.

1.1. The many faces of GrT .

1.1.1. Suppose T is a torus over k. Let ΛT denote its co-character lattice. We will first
introduce a few variants of the affine Grassmannian GrT . They are summarized in the following
commutative diagram:

GrT,comb
// GrT //

��

Div(X)⊗
Z

ΛT

��
GrT,lax

// GrT,rat

(1.1)
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1.1.2. The combinatorial variant. Consider an index category whose objects are pairs (I, λ(I)),
where I is a finite set, and λ(I) is an I-family of elements in ΛT (its element corresponding
to i ∈ I is denoted by λ(i)). A morphism (I, λ(I)) → (J, λ(J)) in this category consists of a
surjective map ϕ : I � J such that λ(j) =

∑
i∈ϕ−1(j) λ

(i) for all j ∈ J . We set:

GrT,comb := colim
(I,λ(I))

XI .

GrT,comb is a factorization prestack over Ran(X). Furthermore, we have a canonical map

GrT,comb → GrT sending an S-point xI : S → XI corresponding to (I, λ(I)) to the triple

({x(i)},
⊗

i∈I O(λ(i)Γxi), α) where α is the tautological trivialization.

1.1.3. The lax variant. We let GrT,lax denote the lax prestack4 whose value at S is the category
whose objects are triples (xI ,PT , α) as in GrT (S), but there is a morphism:

(xI ,PT , α)→ (xJ ,P′T , α
′),

whenever xI ⊂ xJ , PT
∼−→ P′T , and the trivialization α restricts to α′ over the complement of⋃

j∈J Γx(j) . Such a morphism is non-invertible when xI ⊂ xJ is a proper inclusion.

GrT,lax is a factorization lax prestack over the lax version of the Ran space Ran(X)lax.
Furthermore, we have a canonical map GrT → GrT,lax sending (xI ,PT , α) to the very same
object.

1.1.4. The rational variant. We define GrT,rat as a prestack whose value at S is the groupoid of
T -bundles PT over S×X equipped with a rational trivialization, i.e., for some open U ⊂ S×X
which is schematically dense after arbitrary base change S′ → S, the T -bundle PT admits a
trivialization over U ; we regard two rational trivializations as equivalent if they agree on the
overlaps.

Even though GrT,rat does not live over any version of the Ran space, one can still make sense
of factorization line bundles (or any other gadget) over GrT,rat. Namely, it is a line bundle L

over GrT,rat together with isomorphisms:

c
P

(1)
T ,P

(2)
T

: L
∣∣
PT

∼−→ L
∣∣
P

(1)
T

⊗ L
∣∣
P

(2)
T

,

whenever P
(1)
T (resp. P

(2)
T ) admits a trivialization over U (1) (resp. U (2)) such that the com-

plements of U (1) and U (2) are disjoint, and PT is the gluing of P
(1)
T

∣∣
U(2) and P

(2)
T

∣∣
U(1) along

U (1) ∩U (2), where they are both trivialized. The isomorphisms c
P

(1)
T ,P

(2)
T

are required to satisfy

the obvious compatibility conditions in the presence of three T -bundles.

Remark 1.1. The objects GrT,lax and GrT,rat have analogues for a general group G, but we
will not use them in this paper.

1.1.5. Colored divisors. Recall the prestack Div(X) whose value at S is the abelian group of
Cartier divisors of S×X relative to S. We take Div(X)⊗

Z
ΛT as its extension of scalars to ΛT .

There is a morphism Div(X)→ GrGm,rat defined by associating to a Cartier divisor D the line
bundle OS×X(D). It extends to a morphism Div(X)⊗

Z
ΛT → GrT,rat.

As in the previous case, we make sense of factorization line bundles over Div(X) ⊗
Z

ΛT as

follows. It is a line bundle L together with isomorphisms:

cD1,D2 : L
∣∣
D1+D2

∼−→ L
∣∣
D1
⊗ L

∣∣
D2
,

4See [Ga15, §2] for an introduction to lax prestacks.
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whenever the support of D1 and D2 are disjoint. The isomorphisms cD1,D2
are required to

satisfy the obvious compatibility conditions for three divisors.

1.2. Classification statements.

1.2.1. θ-data. We recall the notion of θ-data for a lattice Λ due to Beilinson–Drinfeld [BD04,
§3.10.3]. The Picard groupoid θ(Λ) consists of triples (q,L(λ), cλ,µ) where:

(a) q ∈ Q(Λ,Z) is an integral valued quadratic form on Λ; we use κ to denote its symmetric
bilinear form, defined by the formula: κ(λ, µ) := q(λ+ µ)− q(λ)− q(µ);

(b) L(λ) is a system of line bundles on X parametrized by λ ∈ Λ, and
(c) cλ,µ are isomorphisms:

cλ,µ : L(λ) ⊗ L(µ) ∼−→ L(λ+µ) ⊗ ωκ(λ,µ)
X , (1.2)

which are associative, and satisfy a κ-twisted commutativity condition, i.e.

cλ,µ(a⊗ b) = (−1)κ(λ,µ) · cµ,λ(b⊗ a). (1.3)

Remark 1.2. The authors of [BD04] work in the setting of Z/2Z-graded line bundles, so what
we call θ-data corresponds to what they call even θ-data.

1.2.2. Shifted θ-data. For later purposes, we also introduce a Picard groupoid θ+(Λ) consisting

of triples (q,L(λ), c+λ,µ), where we replace (1.2) by isomorphisms c+λ,µ : L(λ) ⊗ L(µ) ∼−→ L(λ+µ)

and also demand that they are associative and satisfy the κ-twisted commutativity condition.
Clearly, we have an equivalence:

θ(Λ)
∼−→ θ+(Λ), (q,L(λ)) (q,L(λ) ⊗ ωq(λ)

X ).

Lemma 1.3. There is a canonical equivalence of Picard groupoids Picfact(GrT,comb)
∼−→ θ(ΛT ).

Proof. Given a factorization line bundle over GrT,comb, we denote its pullback along the inclu-

sion X → GrT,comb corresponding to ({1}, λ) by L(λ), and its pullback along X2 → GrT,comb

corresponding to ({1, 2}, (λ, µ)) by L(λ,µ). The factorization isomorphism shows that there is

an isomorphism L(λ) � L(µ)
∣∣
x2−∆

∼−→ L(λ,µ). It extends to an isomorphism

L(λ) � L(µ) ∼−→ L(λ,µ) ⊗ OX2(−κ(λ, µ)∆), (1.4)

for some uniquely determined integer κ(λ, µ); its dependency on λ, µ is bilinear, by considering
L(λ,µ,ν) for a triple ({1, 2, 3}, (λ, µ, ν)), using the compatibility between factorization isomor-
phism and composition. Since L(λ,µ) restricts to L(λ+µ) along ∆ ↪→ X2, the isomorphism (1.4)
restricts to a system of isomorphisms cλ,µ as in (1.2).

Next, because the factorization isomorphisms are Σ2-invariant, so are the isomorphisms (1.4).
In other words, we have a commutative diagram:

L(λ) � L(µ) ∼ //

∼=
��

L(λ,µ) ⊗ OX2(−κ(λ, µ)∆)

∼=
��

σ∗(L(µ) � L(λ))
∼ // σ∗L(µ,λ) ⊗ σ∗OX2(−κ(µ, λ)∆),

(1.5)
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where σ is the isomorphism X(λ,µ) ∼−→ X(µ,λ). One deduces from this fact that κ is also
symmetric. Restricting (1.5) to the diagonal, we obtain a commutative diagram:

L(λ) ⊗ L(µ)
cλ,µ //

∼=
��

L(λ+µ) ⊗ ωκ(λ,µ)
X

(−1)κ(λ,µ)

��
L(µ) ⊗ L(λ)

cµ,λ // L(µ+λ) ⊗ ωκ(µ,λ)
X

where the multiplication by (−1)κ(λ,µ) appears because the isomorphism OX2(−∆)
∣∣
∆

∼−→ ωX is

only Σ2-invariant up to a sign. This commutative diagram expresses the identity (1.3). Finally
taking λ = µ, we see that (−1)κ(λ,λ) = 1, so κ(λ, λ) = 2q(λ) for a uniquely determined integer
q(λ). Thus we have define an integral quadratic form q on ΛT .

The above procedure defines the functor Picfact(GrT,comb)→ Θ(ΛT ; Pic). Checking that it
is an equivalence is straightforward. �

1.2.3. We can now state the main result of this section. By pulling back along the morphisms
of (1.1), we obtain a diagram of Picard groupoids, where the leftmost equivalence comes from
Lemma 1.3:

θ(ΛT ) Picfact(GrT,comb)
∼oo Picfact(GrT )oo Picfact(Div(X)⊗

Z
ΛT )

(a)oo

Picfact(GrT,lax)

(c)

OO

Picfact(GrT,rat)
(b)oo

OO
(1.6)

Proposition 1.4. All morphisms in (1.6) are equivalences.

Proof. We shall deduce from existing literature how each of the labeled maps is an equivalence:

(a) By [BD04, §3.10.7, Proposition], the composition of the top row defines an equivalence:

Picfact(Div(X)⊗
Z

ΛT )
∼−→ θ(ΛT ). This shows that the map (a) has a left inverse.

(b) By [Ba12, Proposition 5.2.2], the map GrT,lax → GrT,rat induces an equivalence after fppf

sheafification. Hence pulling back defines an equivalence Pic(GrT,rat)
∼−→ Pic(GrT,lax).

One immediately checks that the additional data defining factorization structures on both
are also equivalent. Hence (b) is an equivalence.

(c) By [Zh16, Theorem 4.3.9(2)], pulling back along GrT → GrT,rat defines an equivalence on
rigidified line bundles5. On the other hand, every factorization line bundle on GrT pulls
back to one along the unit section Ran(X)→ GrT , which is canonically trivial by Lemma
1.3 (applied to the trivial group). Thus a factorization line bundle on GrT descends to a line
bundle on GrT,rat, and the result has a canonical factorization structure as well, so we have

an equivalence Picfact(GrT,rat)
∼−→ Picfact(GrT ). This shows that (c) is an equivalence.

The undecorated maps in (1.6) are now equivalences by the 2-out-of-3 property. �

Remark 1.5. When X is proper, [Ca17, Theorem 2.3.3] shows that the map Div(X)⊗
Z

ΛT →
GrT,rat is an isomorphism of prestacks, which immediately implies that factorization line bundles
on them are equivalent.

5[Zh16, Theorem 4.3.9(2)] is not given a proof in loc.cit., and we refer the reader to [Ta19] for a complete
proof of the key Pic-contractibility statement involved.
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Remark 1.6. We have the following equivalence for any smooth, fiberwise connected, affine
group scheme G over X:

Picfact(GrG,rat)
∼−→ Picfact(GrG,lax)

∼−→ Picfact(GrG).

This is because the results [Ba12, Proposition 5.2.2] and [Zh16, Theorem 4.3.9(2)] both hold in
this general context.

2. Compatibility with the Brylinski–Deligne classification

In this section, we first summarize Brylinski–Deligne’s classification of central extensions of
G by K2. Then we construct a functor from Picfact(GrG) to the same classification data and
we prove that it is compatible with Gaitsgory’s functor ΦG.

2.1. Extensions by K2.

2.1.1. This subsection serves as a summary of the main result of [BD01]. Let G be a connected,
reductive group over k. Fix a maximal torus T ⊂ G. We recall the notations θ(ΛT ) and θ+(ΛT )
for the θ-data associated to ΛT (see §1.2.1-1.2.2).

2.1.2. We let K2 denote the Zariski sheafification of the presheaf on Schaff
/X that sends any

S → X to K2(S). For a connected, reductive group G, we let CExt(G,K2) denote the Picard
groupoid of central extensions

1→ K2 → E → G→ 1, (2.1)

in the category of Zariski sheaves of groups on Schaff
/X . This is Picard groupoid of Brylinski–

Deligne data.

2.1.3. We will first define a functor

CExt(T,K2)→ θ+(ΛT ). (2.2)

Indeed, given a central extension E of T , we construct a triple (q,L(λ), c+λ,µ) ∈ θ+(ΛT ) from
the following procedure:

(a) The commutator in E defines a map comm : T ⊗
Z
T → K2 of Zariski sheaves on Schaff

/X .

For any λ, µ ∈ ΛT , the composition: Gm⊗
Z
Gm

λ⊗µ−−−→ T ⊗
Z
T → K2 is some integral multiple

of the universal symbol {−,−} (c.f. §3.8 of loc.cit.). We call this integer κ(λ, µ). One then
checks that κ(−,−) is the bilinear form associated to some quadratic form q.

(b) Consider the projection p : Gm × X → X. Using the vanishing result R1 p∗K2 = 0 of
Sherman (c.f. §3.1 of loc.cit.), we find an exact sequence of Zariski sheaves on X:

1→ p∗K2 → p∗E → p∗T → 1.

Pushing out along the symbol map p∗K2 → K1
∼= O×X , we obtain a multiplicative O×X -torsor

over p∗T . The line bundle L(λ) then arises as the fiber of the section of p∗T defined by
λ ∈ ΛT .

(c) Note that the aforementioned multiplicative OX -torsor over p∗T equips the system {L(λ)}
with the multiplicative structure c+λ,µ. Its failure of commutativity is measured by κ, as
desired.



CENTRAL EXTENSIONS BY K2 AND FACTORIZATION LINE BUNDLES 11

2.1.4. It is proved in loc.cit. that (2.2) is an equivalence of Picard groupoids. We record here
the unshifted version of this equivalence:

CExt(T,K2)
∼−→ θ(ΛT ), (2.3)

i.e., it is the composition of (2.2) with the equivalence of Picard groupoids θ+(ΛT )
∼−→ θ(ΛT )

sending L(λ) to L(λ) ⊗ ω−q(λ)
X .

2.1.5. We now turn to the general case. Note that there is always a functor:

CExt(G,K2)
res−−→ CExt(T,K2)

∼−→ θ(ΛT )→ Q(ΛT ,Z), (2.4)

whose image lands in the W -invariant part of Q(ΛT ,Z). Thus, we may speak of the quadratic
form q associated to an extension (2.1).

2.1.6. Suppose G is semisimple and simply connected. Then Theorem 4.7 of loc.cit. asserts
that (2.4) defines an equivalence: CExt(G,K2)

∼−→ Q(ΛT ,Z)W . Thus for a semisimple, simply
connected group G, there is a map which associates theta data to a W -invariant quadratic form:

Q(ΛT ,Z)W → θ(ΛT ). (2.5)

2.1.7. Let G̃der be the simply connected cover of Gder. It contains a maximal torus T̃der which
is the preimage of Tder. We now let θG(ΛT ) denote the Picard groupoid classifying:

(a) a theta datum (q,L(λ), cλ,µ) for ΛT , where q is Weyl-invariant.
(b) an isomorphism ϕ between the following theta data for ΛT̃der

:

– the restriction of (q,L(λ), cλ,µ) to ΛT̃der
;

– the theta data associated to q
∣∣
ΛT̃der

via (2.5).

In other words, ϕ consists of isomorphisms between line bundles, preserving their (ω-twisted)
multiplicative structure. We shall call θG(ΛT ) the Picard groupoid of enhanced theta data. By
definition, we have a functor:

ΦBD : CExt(G,K2)→ θG(ΛT ), (2.6)

obtained by restrictions to T and T̃der. The main theorem of [BD01] is that (2.6) is an equiva-
lence of Picard groupoids, i.e., central extensions of G by K2 are classified by enhanced theta
data.

2.2. Gaitsgory’s functor ΦG.

2.2.1. Under the condition that the characteristic of k does not divide the integer NG, Gaits-
gory [Ga18] constructed a functor:

ΦG : CExt(G,K2)→ Picfact(GrG). (2.7)

Only two features of ΦG will be used in proving its compatibility with the Brylinski–Deligne
classification. We first cast them in informal language:

(a) Given a central extension (2.1), its image under ΦG is a line bundle L over GrG with
additional factorization data; for a regular affine scheme S → GrG, we need the restriction
L
∣∣
S

to be given by “taking the residue” along S ×X → S.

(b) Suppose G = T is a torus; we need the functor ΦT to factor through the Picard groupoid
of multiplicative factorization line bundles on LT , and for a closed point x ∈ X, we need
the multiplicative structure on LxT to be given by the “tautological” one.

We will make precise what features (a) and (b) mean in the rest of this subsection, and explain
how they can be deduced from loc.cit.
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2.2.2. Let S be a regular affine scheme over k and π : X→ S be a smooth relative curve, whose
fibers are geometrically connected. Furthermore, suppose we have a finite set {xI} of sections
x(i) : S → X. Let ΓxI denote the (scheme-theoretic) union of their images, and UxI := X− ΓxI
be its complement.

We will construct a functor, referred to hereafter as taking the residue along π:{
K2-gerbes G on X with

neutralization γ over UxI

}
→ Pic(S). (2.8)

Indeed, the datum (G, γ) is equivalent to a section of ι!K2[2] over X, where ι : ΓxI ↪→ X is the
closed immersion. On the other hand, the Gersten resolution of K2 on X shows that ι!K2[2] is
quasi-isomorphic to the complex concentrated in degrees [−1, 0]:⊕

i∈I
(ιη(i))∗K1(η)→

⊕
codim(ν)=1

in ΓxI

(ιν)∗Z (2.9)

where ιη(i) (resp. ιν) denotes the inclusion of the generic point of the ith section (resp. codimension-
one point ν of ΓxI ). On the other hand, K1[1] over S is quasi-isomorphic to:

(ιη)∗K1(η)→
⊕

codim(ν)=1
in S

(ιν)∗Z.

Thus the image of (2.9) under π maps to K1[1] via summation. Hence a section of ι!K2[2] over
X gives rise to a section of K1[1] ∼= O×S [1], i.e., a line bundle on S.

2.2.3. Given an extension E (2.1) and a map S → GrG specified by the triple ({xI},PG, α)
where PG is Zariski locally trivial, we obtain a (Zariski) K2-gerbe G over S×X, which classifies

an E-torsor PE equipped with an identification of its induced G-torsor (PE)G
∼−→ PG. The

trivialization α gives rise to a neutralization γ of G over UxI .
Suppose S is regular, then (G, γ) produces a line bundle on S by taking the residue (2.8)

along π : S×X → S. This process also applies when PG is only étale locally trivial, since étale
locally on S the bundle PG becomes Zariski locally trivial (see [DS95]). The fact that ΦG(E)

∣∣
S

naturally agrees with this line bundle is the content of [Ga18, §2.3]; this is what we meant in
part (a) of §2.2.1.

2.2.4. Recall that a multiplicative line bundle L on LG amounts to the additional isomorphism:

mult∗ L
∼−→ L� L (2.10)

over LG ×
Ran(X)

LG that satisfies the cocycle condition on the triple product. If L is a factoriza-

tion line bundle, then being multiplicative amounts to an isomorphism (2.10) that is compatible
with the factorization structures on both sides.

We let Picfact,×(LG) (resp. Picfact,×
/L+G(LG)) denote the Picard groupoid of multiplicative

factorization line bundles on LG (resp. together with a trivialization as such over L+G). Clearly,
there is a descent functor:

Picfact,×
/L+G(LG)→ Picfact(GrG).

We now state part (b) of §2.2.1 as a lemma:

Lemma 2.1. (a) The functor ΦT factors through Picfact,×
/L+T (LT ), i.e., ΦT (E) has a canonical

multiplicative structure over LT , trivialized over L+T ;
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(b) Over a closed point x ∈ X, the restriction of the above multiplicative structure to the
abstract group T (Kx)6 agrees with that on the k×-torsor coming from the push-out of

0→ K2(Kx)→ E(Kx)→ T (Kx)→ 0 (2.11)

along the residue map K2(Kx)→ k×. The same holds over any field extension k ⊂ k′.

Remark 2.2. Part (b) makes sense since ΦT (E)
∣∣
t

for t ∈ T (Kx) agrees with the k×-torsor

induced from (2.11); this follows from the description of ΦT (E) on regular test schemes (§2.2.3).

Proof of Lemma 2.1. Recall that L := ΦT (E) is constructed as follows. The datum E can
be interpreted as a pointed morphism e : X × BT → B2 K2. Let K denote the full K-
theory spectrum, regarded as a Zariski sheaf on Schaff . Then e lifts (non-uniquely) to some
ẽ : X ×BT → K≥2 ([Ga18, §5.3.1]). Hence the data ({xI},PT , α) of an S-point of GrT (where
we may again assume PT to be Zariski-locally trivial) give us a section of K≥2 over S×X with
support on ΓxI . The line bundle Lẽ

∣∣
S

is then constructed using the map:

τ≤0π∗ι
!K≥2 → O×S [1] (2.12)

(c.f. (3.2.2) of loc.cit.). For two lifts ẽ and ẽ′, we need to produce a canonical isomorphism

Lẽ
∼−→ Lẽ′ . This is done as follows:

(a) for S the spectrum of an Artinian k-algebra, (2.12) factors through τ≤0π∗ι
!K2, so we obtain

a canonical isomorphism Lẽ
∣∣
S

∼−→ Lẽ′
∣∣
S

;

(b) there exists an isomorphism Lẽ
∼−→ Lẽ′ which restricts to the one in (a) for any S the

spectrum of an Artinian k-algebra (§5.3.4-6 of loc.cit.).

We now claim that Lẽ
∣∣
LT

acquires a canonical multiplicative structure. Indeed, ẽ induces a

morphism X × T → K≥2[−1] of group sheaves. Given S-points t, t′ of LT over the same point

xI ∈ Ran(X), we may view them both as maps
◦
DxI → X × T . There is a canonical homotopy

between ẽ(t)+ ẽ(t′) and ẽ(tt′) as maps
◦
DxI → K≥2[−1]. Under the map K≥2

∣∣ ◦
DxI

[−1]→ ι!K≥2

of sheaves over DxI , we obtain a canonical homotopy between the corresponding sections of
ι!K≥2; it gives rise to the desired multiplicative structure Lẽ

∣∣
t
⊗ Lẽ

∣∣
t′
∼−→ Lẽ

∣∣
tt′

under (2.12).

It remains to check that for two lifts ẽ and ẽ′, the canonical isomorphism Lẽ
∼−→ Lẽ′ is

compatible with the multiplicative structures on both sides. This amounts to checking that the
following diagram of line bundles over LT ×

Ran(X)
LT commutes:

mult∗ Lẽ //

��

Lẽ � Lẽ

��
mult∗ Lẽ′ // Lẽ′ � Lẽ′ .

It suffices to test the commutativity over S the spectrum of an Artinian k-algebra. Note again
that for such S, (2.12) factors through τ≤0π∗ι

!K2, so the construction of the multiplicative
structure does not require a lift of e. Therefore, we have equipped L with a canonical multi-
plicative structure over LT .

Part (b) of the lemma is immediate from the above construction, applied to S = Spec(k) (or
Spec(k′) for a field extension k ⊂ k′). �

2.3. Compatibility: torus case.

6i.e., the group of k-points of LxT .



14 JAMES TAO AND YIFEI ZHAO

2.3.1. Fix a torus T . Recall the equivalence of Proposition 1.4:

Picfact(GrT )
∼−→ θ(ΛT ). (2.13)

The goal of this subsection is to prove:

Lemma 2.3. The following diagram of Picard groupoids commutes functorially in T :

CExt(T,K2)
ΦT //

(2.3) $$

Picfact(GrT )

(2.13)zz
θ(ΛT )

(2.14)

Remark 2.4. Although Lemma 2.3 appears as the special case of Proposition 2.9 for G = T ,
its proof contains most of the technical difficulties.

2.3.2. Notations. Fix an object E of CExt(T,K2). We denote its image in θ+(ΛT ) under (2.2)

by (q,L
(λ)
+ , c+µ,ν), and its image under ΦT by L. The image of L in θ(ΛT ) will be denoted by

(q′,L(λ), cµ,ν). We ought to show:

(a) q = q′;
(b) there is a canonical system of isomorphisms:

L
(λ)
+

∼−→ L(λ) ⊗ ωq(λ)
X (2.15)

which respects c+µ,ν and cµ,ν .

2.3.3. Quadratic forms. We first show q = q′ by checking that their bilinear forms κ and κ′

agree. Fixing a closed point x ∈ X and any co-character µ ∈ ΛT , we will show that κ(−, µ)
and κ′(−, µ) define the same character T (k′) → Gm(k′) for every field extension k ⊂ k′; this
will imply that κ = κ′.7

We now further fix a uniformizer of the completed local ring t ∈ Ox. This provides an
isomorphism k[[t]]

∼−→ Ox, so we regard tµ as an element of T (Kx). Consider the central extension
(2.11) corresponding to x ∈ X. Pushing-out along the residue map K2(Kx) → k×, we obtain
central extension:

0→ k× → E′ → T (Kx)→ 0.

So the conjugation action of T (Ox) on the fiber of E(Kx)→ T (Kx) at tµ induces a map:

T (Ox)→ k×. (2.16)

We will calculate this map (and its variant for a field extension k ⊂ k′) in two ways.

Step 1. We first show that the map (2.16) is given by the composition:

T (Ox)
ev−→ T (k)

κ(−,µ)−−−−→ k×.

Indeed, recall from §2.1.3(a) that the composition Gm ⊗
Z
Gm

λ⊗µ−−−→ T ⊗
Z
T

comm−−−−→ K2 is the

κ(λ, µ)-multiple of the universal symbol. Thus the map:

Gm(Kx)⊗
Z
Gm(Kx)

λ⊗µ−−−→ T (Kx)⊗
Z
T (Kx)

comm−−−−→ K2(Kx)
res−−→ k×

7Indeed, for every λ ∈ ΛT , suppose z  zκ(λ,µ) and z  zκ
′(λ,µ) define the same map Gm(k′) → Gm(k′)

for all field extension k ⊂ k′. By suitably choosing k′, we can ensure that (k′)× contains an element of infinite

order. Thus κ(λ, µ) agrees with κ′(λ, µ).
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is the κ(λ, µ)-multiple of the Contou-Carrère symbol {f, g} := (ford(g)/gord(f))(0). Hence the
conjugation action of f ∈ Gm(Ox) (through λ) on E′ is given by e′  {f, t}κ(λ,µ)e′. Note that
{f, t} = f(0), as required.

For a field extension k ⊂ k′, the above computation holds without modification.

Step 2. We now calculate the map (2.16) alternatively as follows. Recall the canonical
multiplicative structure on L

∣∣
LT

from Lemma 2.1. It induces a strong L+T -equivariance struc-

ture on L (over GrT , c.f. [GL16, §7.3.4]) with respect to the trivial left L+T -action; in other

words, the twisted product L�̃L on the convolution Grassmannian G̃rT,X2 is identified with

the pullback of L(2) along the action map G̃rT,X2 → GrT,X2 , in a way that is compatible with
the factorization structure of L.

Furthermore, its value at GrµT,x is given by the conjugation action (2.16). We claim now that

the map (2.16) is given by

T (Ox)
ev−→ T (k)

κ′(−,µ)−−−−−→ k×.

Indeed, this follows from the fact that for a factorization line bundle L on GrT with associated
bilinear form κ′, every strong L+T -equivariance structure acts on tµ ∈ GrT,x through the

composition L+T
ev−→ T

κ′(−,µ)−−−−−→ Gm (c.f. [GL16, §7.4]).
Again for a field extension k ⊂ k′, the above computation holds without modification. This

finishes the proof that κ = κ′.

2.3.4. Isomorphisms of line bundles. We now construct the isomorphisms (2.15). The strategy

is to first identify L(λ) with the twist of L
(λ)
+ by some power of the tangent sheaf TX , and then

determine this power.

Step 1. Consider the diagonal embedding ∆ : X ↪→ X ×X. Define G(λ) as the K2-gerbe on
X × X classifying a pr∗2 E-torsor PE , together with an isomorphism (PE)T

∼−→ O(λ∆). Then
G(λ) comes equipped with a neutralization γ over X ×X −∆. The line bundle L(λ) arises from
(G(λ), γ) by taking the residue along pr1 (c.f. §2.2.2).

Let X × A1 ↪→ X → A1 be the deformation of the diagonal embedding to the normal cone,
constructed as the blow-up of X ×X ×A1 along the diagonally embedded subscheme X ×{0},
where we then remove the strict transform of X ×X × {0}. It has the following features:

(a) X × {t} ↪→ X
∣∣
t

identifies with X ↪→ X ×X for t 6= 0;

(b) X×{0} ↪→ X
∣∣
0

identifies with the embedding of X as the zero section inside the total space
of the tangent sheaf TX .

(c) there is a canonical map X
pr1,pr2−−−−→ X × X which is identity for t 6= 0, and the canonical

projection TX
p,p−−→ X ×X at t = 0.

Consider Z := X × A1 as a divisor inside X. We define G̃(λ) as the K2-gerbe classifying a

pr∗2 E-torsor P̃E over X, together with an isomorphism (P̃E)T
∼−→ O(λZ). Note that G̃(λ) is

equipped with a neutralization over X − Z, so we may take the residue along pr1 to obtain a

line bundle L̃(λ) over X × A1.
Tautologically, L̃(λ)

∣∣
X×{t} identifies with L(λ) for t 6= 0. On the other hand, every line

bundle on X × A1 canonically identifies with the pullback of a line bundle from X. Thus, we

obtain an isomorphism L̃(λ)
∣∣
X×{t}

∼−→ L̃(λ)
∣∣
X×{0}. This shows that L(λ) arises from the residue

of (G
(λ)
TX
, γTX ) along p : TX → X, where:

(a) G
(λ)
TX

is the K2-gerbe on TX classifying a p∗E-torsor PE , together with an isomorphism

(PE)T
∼−→ O(λ{0}), where {0} denotes the zero section X ↪→ TX ; and
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(b) γTX is the tautological neutralization of G
(λ)
TX

over TX − {0}.

Step 2. In the above description, suppose we replaced p : TX → X by the trivial line bundle
A1
X → X; then the line bundle arising from taking the residue of the analogously defined pair

(G
(λ)

A1
X
, γA1

X
) would identify with L

(λ)
+ . Indeed, this follows from comparing the construction of

§2.2.2 with that of §2.1.3(b).
We now explain an alternative way to arrive at L(λ) via twisting the line bundle A1

X → X

in the above construction. Consider the Gm-action on A1
X by scaling. The pair (G

(λ)

A1
X
, γA1

X
)

admits a Gm-equivariance structure. Hence L
(λ)
+ (the total space of L

(λ)
+ ) is equipped with a

fiberwise Gm-action. Since G
(λ)
TX

identifies with the twisted product G0�̃G(λ)

A1
X

on the total space

T×X
Gm
× A1

X (where G0 denotes the trivial gerbe), we find L(λ) ∼−→ T×X
Gm
× L

(λ)
+ . In other words,

suppose the fiberwise Gm-action on L
(λ)
+ is given by some character q1(λ) ∈ Z, then there is a

canonical isomorphism:

L(λ) ∼−→ T
q1(λ)
X ⊗ L

(λ)
+ . (2.17)

Step 3. We now calculate the character q1(λ).8 It suffices to do so at a closed point

x ∈ X. The line L
(λ)
+

∣∣
x∈X admits a simple description as follows (c.f. §2.1.3). Evaluating E at

Gm,x := Spec(k[t, t−1]), we obtain an exact sequence:

0→ K2(k[t, t−1])→ E(k[t, t−1])→ T (kx[t, t−1])→ 0, (2.18)

and consequently a K2(k[t, t−1])-torsor E(z) at every point z ∈ T (k[t, t−1]). The line L
(λ)
+

∣∣
x∈X

is the k×-torsor induced from E(tλ) along the residue map K2(k[t, t−1])→ k×.

To unburden the notation, we again use L
(λ)
+ to denote this line; the Gm(k)-action on it also

admits a simple description. Take a ∈ Gm(k), the action by aq1(λ):

· aq1(λ) : L
(λ)
+

∣∣
x∈X

∼−→ L
(λ)
+

∣∣
x∈X (2.19)

is given as follows.

(a) Consider the scaling map k[t, t−1] → k[t, t−1], t  t · a. It induces a group automorphism

E(k[t, t−1])
a∗−→ E(k[t, t−1]), covering the analogously defined automorphism on T (k[t, t−1]).

In particular, we obtain a map a∗ : E(tλ)→ E(tλaλ) (incompatible with the K2(k[t, t−1])-
torsor structures.)

After inducing to k×-torsors, we obtain a map compatible with the k×-torsor structures:

a∗ : L
(λ)
+ → L+(tλaλ) := E(tλaλ)k× ,

since a∗ : K2(k[t, t−1])→ K2(k[t, t−1]) induces the identity on k×.
(b) On the other hand, every element in T (k[t]) admits a lift to E(k[t]), up to an element from

K2(k[t]) (as follows from R1 p∗K2 = 0 for p : A1
S → S, c.f. [BD01, §3.1]) Hence we have

another map E(tλ)→ E(tλaλ), defined as right-multiplying by any lift of aλ ∈ T (k[t]).
Inducing along K2(k[t, t−1])→ k×, we again obtain a map of k×-torsors:

Raλ : L
(λ)
+ → L+(tλaλ).

Note that this map is independent of the choice of the lift.
(c) The automorphism (2.19) identifies with the composition R−1

aλ
◦ a∗.

8Caution: we do not yet know that q1(λ) depends quadratically on λ.
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Step 4. We shall now deduce two identities:

q1(2λ)− κ(λ, λ) = 2 · q1(λ) (2.20)

4 · q1(λ) = q1(2λ) (2.21)

The combination of these identities will show that q1(λ) = 1
2κ(λ, λ) = q(λ). Then the desired

isomorphism follows from (2.17).

Proof of (2.20). This follows from the mutiplicative structure on E(k[t, t−1]). Indeed, consider
the following commutative diagrams:

L
(2λ)
+

a∗ //

∼=��

L+(t2λa2λ)

∼=
��

L
(λ)
+ ⊗ L(λ)

+

a∗⊗a∗// L+(tλaλ)⊗ L+(tλaλ)

L
(2λ)
+

aκ(λ,λ)·R
a2λ //

∼=��

L+(t2λa2λ)

∼=
��

L
(λ)
+ ⊗ L(λ)

+

R
aλ
⊗R

aλ// L+(tλaλ)⊗ L+(tλaλ)

where vertical arrows witness the multiplicativity of L
(λ)
+ . The first diagram commutes because

a∗ defines a group homomorphism on E(k[t, t−1]). The second diagram commutes (note the
factor aκ(λ,λ)) because it calculates the commutator comm(aλ, tλ) ∈ K2(k[t, t−1]), whose residue
identifies with aκ(λ,λ).

Now, tracing through the horizontal arrows gives rise to the identity aq1(2λ)−κ(λ,λ) = a2·q1(λ)

in k×. Since the same calculation is valid for any field extension k ⊂ k′, we obtain (2.20). �

Proof of (2.21). This follows from the functoriality of E(k[t, t−1]) with respect to the double
covering map sq(t) = t2 on k[t, t−1]. Note that sq∗ : E(k[t, t−1]) → E(k[t, t−1]) induces a
quadratic map of k×-torsors9:

sq∗ : L
(λ)
+ → L

(2λ)
+ .

On the other hand, we have the following commutative diagrams:

L
(λ)
+

sq∗��

(a2)∗ // L+(tλa2λ)

sq∗
��

L
(2λ)
+

a∗ // L+(t2λa2λ)

L
(λ)
+

sq∗��

R
a2λ // L+(tλa2λ)

sq∗
��

L
(2λ)
+

R
a2λ // L+(t2λa2λ)

The first diagram commutes tautologically. The second diagram commutes because a2λ belongs
to the subgroup T (k) ↪→ T (k[t, t−1]), and we may first lift a2λ to E(k) so that its image in
E(k[t, t−1]) is fixed by the automorphism sq∗. Tracing through the horizontal maps and using
the quadraticity of vertical maps, we find a4·q1(λ) = aq1(2λ) in k×. Again because the same
calculation is valid for any field extension k ⊂ k′, we obtain (2.21). �

�(Lemma 2.3)

2.4. Compatibility: general case.

9i.e., the k×-action on the two lines intertwines k× → k×, a a2.
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2.4.1. We now return to the general case of a reductive group G. Appealing to the equivalence
(2.13), we obtain a functor:

Picfact(GrG)
res−−→ Picfact(GrT )

∼−→ θ(ΛT )→ Q(ΛT ,Z). (2.22)

Proposition 2.5. Suppose G is semisimple and simply connected. Then (2.22) defines an

equivalence: Picfact(GrG)
∼−→ Q(ΛT ,Z)W .

In this subsection, we will first prove Proposition 2.5, and then use it to deduce the general
compatibility result between Gaitsgory functor ΦG and the Brylinski–Deligne classification.

2.4.2. We use the notation Pice(GrG) to denote the Picard groupoid of line bundles on GrG
together with a rigidification at the unit section e : Ran(X) ↪→ GrG; the notation Pice(GrG,XI )
carries an analogous meaning. Since factorization line bundles on Ran(X) are canonically trivial

(c.f. Lemma 1.3), we have a forgetful functor Picfact(GrG)→ Pice(GrG).

2.4.3. We first prove Proposition 2.5 in the case where G is simple and simply connected. We
note that in this case, the abelian group Q(ΛT ,Z)W is isomorphic to Z, where a generator is
given by the minimal W -invariant quadratic form qmin, uniquely specified by the property that
q(α) = 1 for any short coroot α.

We fix a point x ∈ X. The calculation of Picard schemes Pice(GrG,XI ) in [Zh16, §3.4] proves
that there are isomorphisms:

Picfact(GrG)
∼−→ Pice(GrG)

∼−→ Pice(GrG,x), (2.23)

given by pulling back along GrG,x ↪→ GrG. On the other hand, the result of G. Faltings [Fa03]
shows that Pice(GrG,x) is also isomorphic to Z (in particular, it is discrete), and the generator
of Pice(GrG,x) is a certain line bundle Lmin satisfying the following property:

(*) Let Ldet be the determinant line bundle on GrG,x, whose fiber at an S-point (PG,PG
∣∣ ◦
Dx

∼−→
P0
G) is the relative determinant of the lattices gPG , gP0

G
⊂ g(Kx). Then there is an isomor-

phism (Lmin)⊗2ȟ ∼−→ Ldet.

In order to show that (2.22) is an isomorphism onto Q(ΛT ,Z)W , it suffices to show that for

some nonzero integer d, the image of (Lmin)⊗d (regarded as an element in Picfact(GrG) via
(2.23)) equals d · q. We will prove this statement for d = 2ȟ by calculating the image of Ldet.

Note that Ldet has a natural factorization structure (c.f. [GL16, §5.2.1]). By tracing through
the functors in (2.22), we see that its image is the quadratic form qdet whose associated bilinear
form κdet equals:

κdet(λ, µ) =
∑
α̌∈Φ

〈λ, α̌〉〈µ, α̌〉 = Kil(λ, µ),

where Kil stands for the Killing form. On the other hand, ȟ is defined so that Kil = 2ȟ · κmin.
Thus qdet = 2ȟ · qmin as desired.

2.4.4. In order to handle the general case, we first note a cohomological vanishing result that
will also be useful later. We continue to fix a k-point x ∈ X. Recall that for a dominant

cocharacter λ ∈ Λ+
G, we have the affine Schubert variety Gr≤λG,x ↪→ GrG,x such that GrG,x is

isomorphic to the infinite union colim
λ∈Λ+

T

Gr≤λG,x. When G is semisimple and simply connected, each

Gr≤λG,x is integral.

Lemma 2.6. Suppose G is semisimple and simply connected. Then for any λ ∈ Λ+
G, we have

Hi(Gr≤λG,x,O) = 0 for i ≥ 1.
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Proof. Let I denote the Iwahori subgroup of L+
xG and FlG,x := LxG/I be the affine flag variety.

The I-orbits of FlG,x are parametrized by the affine Weyl group W aff . Let FlwG,x denote the orbit

corresponding to w ∈ W aff and Fl≤wG,x its closure. We note that the projection FlG,x → GrG,x
is a flat-locally trivial fiber bundle with typical fiber G/B. Furthermore, for any λ ∈ Λ+

G, there
is a Cartesian square:

Fl≤wG,x
� � //

��

FlG,x

��
Gr≤λG,x

� � // GrG,x

where w is the longest element in the double coset of λ, after we identify Λ+
G with W\W aff/W .

Since k
∼−→ R Γ(G/B,O), we reduce the proof to showing k

∼−→ R Γ(Fl≤wG,x,O).
We now make an argument similar to that for finite dimensional Schubert varieties. Namely,

for each simple (affine) reflection s ∈ W aff , we let Ps := I ∪ (IsI) denote the corresponding
minimal parahoric subgroup. Suppose w = s1 · · · sl is an reduced expression. Then we have an
affine Bott–Samelson resolution:

F̃l
≤w
G := Ps1

I
× Ps2

I
× · · ·

I
× Psl/I → Fl≤wG , (2.24)

where the I-superscripts indicate quotients by anti-diagonal actions. Since each Ps/I is iso-

morphic to P1, the scheme F̃l
≤w
G is an iterated P1-bundle. Thus, we reduce to showing that

O
F̃l
≤w
G

has vanishing higher direct image along (2.24), and this follows from the same proof as

the usual Bott–Samelson resolution, c.f. [Br04, Theorem 2.2.3]. �

Remark 2.7. Lemma 2.6 can be seen as an affine version of the Borel–Weil–Bott theorem and
is likely to be known, but the authors could not find a reference.

2.4.5. We now prove Proposition 2.5 in the general case. Suppose G has simple factors
{Gj}j∈J . It suffices to prove that pulling back along the factors GrGj ↪→ GrG defines an
equivalence of Picard groupoids:

Picfact(GrG)
∼−→
∏
j∈J

Picfact(GrGj ). (2.25)

Note that this morphism fits into a commutative diagram of Picard groupoids:

Picfact(GrG)

(2.25)��

// Pice(GrG)
(b) //

(c)
��

Pice(GrG,x)

(a)
��∏

j∈J Picfact(GrGj )
∼ // ∏

j∈J Pice(GrGj )
∼ // ∏

j∈J Pice(GrGj ,x)

where the lower row consists of equivalences, c.f. (2.23). We note that the cohomological
vanishing Lemma 2.6 for i = 1 implies that (a) is an equivalence.10 That (b) is an equivalence
follows from [Zh16, Lemma 3.4.2] and the proof of [Zh16, Lemma 3.4.3]. Together, these facts
imply that (c) is an equivalence.

10Recall: suppose X,Y ∈ Sch/k are connected schemes of finite type with base points, and X is integral,

projective with H1(X,OX) = 0. Then Pice(X)×Pice(Y )
∼−→ Pice(X × Y ) (see [Ha13, Exercise III.12.6]).
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2.4.6. Finally, we argue that the left square is Cartesian, which would imply that (2.25) is
an equivalence. Concretely, this means that given a rigidified line bundle L over GrG (which
passes to �j∈JLj over

∏
j∈J GrGj via the equivalence (c)), the datum needed to upgrade it to

a factorization structure on L:

ϕ : L(2)
∣∣
X2−∆

∼−→ L(1) � L(1)

is equivalent to that of factorization structures ϕj on each Lj . We note that the collection
{ϕj}j∈J defines a factorization structure �j∈Jϕj on L and conversely a factorization structure ϕ
on L defines ϕj by restriction to the jth unit section X2 ×

X2
· · · ×

X2
GrGj ,X2 ×

X2
· · · ×

X2
X2 ↪→ GrG,X2 .

Thus it remains to show:

Claim 2.8. Any L ∈ Pice(GrG) has at most one factorization structure compatible with its
rigidification.

Indeed, any two such factorization structures differ by an automorphism β of L(2)
∣∣
X2−∆

that

restricts to identity along the unit section. Since GrG,X2

∣∣
X2−∆

is an ind-integral ind-scheme

over X2 − ∆, it suffices to show that β becomes the identity after restricting to the fibers at
k-points of X2 −∆. The latter follows from the discreteness of Pice(GrG,x×GrG,y), which in
turn follows from that of Pice(GrG,x) and Lemma 2.6. �(Proposition 2.5)

2.4.7. For a semisimple and simply connected group G, we obtain a map:

Q(ΛT ,Z)W → θ(ΛT )

by first lifting an element of Q(ΛT ,Z)W to Picfact(GrG) using the isomorphism of Proposition
2.5, and then mapping to θ(ΛT ). By Lemma 2.3, the above functor identifies with (2.5).

2.4.8. Recall the Picard groupoid θG(ΛT ) of §2.1. We will define a functor:

ΨG : Picfact(GrG)→ θG(ΛT ) (2.26)

Given L ∈ Picfact(GrG), we will construct a theta datum (q,L(λ), cλ,µ) for ΛT as well as an
isomorphism ϕ of two corresponding theta data for ΛT̃der

.

Indeed, (q,L(λ), cλ,µ) is the image of L under the first two maps of (2.22). On the other
hand, L restricts to a factorization line bundle on GrG̃der

; under the same two maps, we obtain a

theta datum (q
∣∣
ΛT̃der

, L̃(λ), c̃λ,µ). By §2.4.1, this is the theta datum associated to q
∣∣
ΛT̃der

under

(2.5). Therefore, we obtain ϕ from the commutativity datum of the diagram:

Picfact(GrG)
res //

��

Picfact(GrT )
∼ //

��

θ(ΛT )

��
Picfact(GrG̃der

)
res // Picfact(GrT̃der

)
∼ // θ(ΛT̃der

).

2.4.9. We now state the main compatibility result, generalizing Lemma 2.3:

Proposition 2.9. The following diagram of Picard groupoids is canonically commutative:

CExt(G,K2)
ΦG //

ΦBD ##

Picfact(GrG)

ΨG||
θG(ΛT )

(2.27)
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Proof. Given a central extension of G by K2, we have to construct an isomorphism between two
elements of θ(ΛT ) and check that it respects the isomorphism denoted by ϕ. The isomorphism
comes from the commutativity datum of Lemma 2.3, and the required compatibility follows

from its functoriality with respect to the map of tori T̃der → T . �

Let us describe the functoriality of the commutativity datum in Proposition 2.9. Given a
morphism α : (G′, T ′) → (G,T ) between pairs of a reductive group together with a chosen
maximal torus, there is a pullback functor

α∗ : θG(ΛT )→ θG′(ΛT ′).

The morphisms ΦBD and ΨG are canonically compatible with this pullback. For each E ∈
CExt(G,K2) whose pullback to CExt(G′,K2) is denoted by E′, one deduces from the func-
toriality in Lemma 2.3 that the following diagram commutes:

ΦBD(E′)

∼=��

∼ // ΨG′ΦG′(E
′)

∼=��
α∗ΦBD(E)

∼ // α∗ΨGΦG(E).

Here, the horizontal arrows are the commutativity data exhibited in Proposition 2.9.

3. The main theorem

This section is devoted to the proof that Gaitsgory’s functor ΦG is an equivalence of cate-
gories. We assume char(k) - NG so that the functor ΦG is well-defined.

3.1. Statement and reduction.

3.1.1. Let us first state the main theorem of the paper.

Theorem 3.1. Suppose char(k) - NG. Then the functor ΦG (2.7) is an equivalence of Picard
groupoids.

Using the commutativity of (2.27) and the fact that ΦBD is an equivalence, we have already
obtained some special cases of Theorem 3.1:

(a) the case G = T is a torus follows from Proposition 1.4, as θG(ΛT ) becomes θ(ΛT );
(b) the case G semisimple, simply connected follows from Proposition 2.5, as θG(ΛT ) becomes

the (discrete) abelian group Q(ΛT ,Z)W .

3.1.2. We now perform a reduction of Theorem 3.1 to the case where Gder is simply connected.
Choose an exact sequence of groups:

1→ T2 → G̃→ G→ 1, (3.1)

where T2 is a torus, and G̃ is a reductive group whose derived subgroup is simply connected.
The sequence (3.1) is called a z-extension, c.f. [MS82, Proposition 3.1]. Consider the simplicial

system G̃ × T •2 , where the nth simplex is given by G̃ × T×n2 and the boundary maps are mul-

tiplications. Since T2 is central in G̃, these multiplication maps define morphisms of algebraic
groups. As a consequence, we obtain a simplicial system of prestacks GrG̃×T•2

over Ran(X).

Appealing to [Ga18, Corollary 5.2.7], the Picard groupoid Picfact(GrG) identifies with the limit

of the co-simplicial system Picfact(GrG̃×T•2
).
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Remark 3.2. The cited result follows from h-descent of line bundles for derived schemes.
The proof given there uses h-descent of ind-coherent sheaves, which has been established by
Gaitsgory [Ga11, Theorem 8.2.2] in the context where char(k) = 0 (see also [GR17, Chapter 4,
Proposition 7.2.2] for a more detailed account).

However, invoking ind-coherent sheaves is unnecessary for this application: h-descent of
line bundles is also a consequence of a theorem of Halpern-Leistner–Preygel [HLP14, Theorem
3.3.1], which is valid for derived schemes over any Noetherian base scheme.

Lemma 3.3. The canonical map of Picard groupoids is an equivalence:

CExt(G,K2)
∼−→ lim CExt(G̃× T •2 ,K2).

Proof. We argue that the Picard groupoid of (not necessarily central) extensions Ext(G,K2)

maps isomorphically to lim Ext(G̃ × T •2 ,K2); the result would follow since a K2-extension of

G is central if and only if its pullback to each G̃× T •2 is central.
Since Ext(G,K2) identifies with homomorphisms from G to B K2, it suffices to show that

G identifies with colim(G̃ × T •2 ) in the category of Zariski sheaves of groups (in spaces). This
in turn follows from:

(a) the forgetful functor from Zariski sheaves of groups to plain Zariski sheaves is conservative
and commutes with geometric realizations;

(b) G identifies with colim(G̃×T •2 ) in the category of plain Zariski sheaves, since every T2-torsor
is Zariski-locally trivial (Hilbert 90). �

In other words, Theorem 3.1 for G follows from the same result for each G̃× T •2 . In proving
Theorem 3.1, we may thus assume that Gder is simply connected.

3.2. Proof of Theorem 3.1 for Gder simply connected.

3.2.1. We now prove Theorem 3.1 in the case that Gder is simply connected. Let T1 := G/Gder.

Then the fiber of θG(ΛT ) → Q(ΛTder
,Z)W identifies with θ(ΛT1

). Let Picfact
qder=0(GrG) be the

full subgroupoid of Picfact(GrG), consisting of objects whose images vanish under the following
composition:

Picfact(GrG)→ Picfact(GrGder
)

(2.22)−−−−→ Q(ΛTder
,Z).

We then have a commutative diagram of Picard groupoids:

CExt(G; K2)

ΦBD

∼=

vv

ΦG

��
Picfact

qder=0(GrG) �
� //

��

Picfact(GrG)

ΨG
��

θ(ΛT1)
� � // θG(ΛT ) // Q(ΛTder

,Z)W .

Here, ΨG is the functor (2.26). Inspecting this diagram, we see that it suffices to show that the
first vertical map:

Picfact
qder=0(GrG)→ θ(ΛT1

) (3.2)

is an equivalence.
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3.2.2. Consider the projection p : GrG → GrT1
. It defines a pullback functor

p∗ : Picfact(GrT1
)→ Picfact

qder=0(GrG) (3.3)

such that the composition:

Picfact(GrT1
)

p∗−→ Picfact
qder=0(GrG)

(3.2)−−−→ θ(ΛT1
)

canonically identifies with the equivalence (2.13). It therefore suffices to show that (3.3) is an
equivalence.

3.2.3. We note that (3.3) factors through the full subcategory

Picfact
\ (GrG) ↪→ Picfact

qder=0(GrG) (3.4)

of factorization line bundles on GrG which are trivial along fibers of p over k-points. In the rest
of this subsection, we shall show that

(a) the containment (3.4) is an equivalence.
(b) pullback along p defines an equivalence

Picfact(GrT1
)→ Picfact

\ (GrG). (3.5)

The combination of these two statements will imply Theorem 3.1.

3.2.4. In order to prove the above statements, we first study the geometric properties of the
projection p.

Lemma 3.4. The map p realizes GrG as an étale locally trivial GrGder
-bundle over GrT1 .

In other words, for every affine scheme S → GrT1
, there is an étale cover S̃ → S and an

isomorphism GrG ×
GrT1

S̃
∼−→ GrGder

×
Ran(X)

S̃.

Proof of Lemma 3.4. We first show that G → T1 splits. Indeed, the maximal (split) torus
T ⊂ G surjects onto T1, so it suffices to show that the kernel T ∩Gder is connected. The latter
follows since T ∩Gder is a maximal torus of Gder.

Given an S-point S
γ−→ GrT1

, we denote by S
γ0−→ GrT1

the “neutral point” corresponding

to γ, i.e., the composition S
γ−→ GrT1

π−→ Ran(X) ↪→ GrT1
. Since GrG ×

GrT1 ,γ0
S identifies with

GrG̃der
×

Ran(X)
S, it suffices to produce an isomorphism:

GrG ×
GrT1 ,γ

S̃
∼−→ GrG ×

GrT1 ,γ0
S̃ (3.6)

after passing to some étale cover S̃ → S.

We choose S̃ → S such that the elements γ, γ0 ∈ Maps/Ran(X)(S̃,GrT1) differ by the action of

some α ∈ Maps/Ran(X)(S̃,LT1) (this is possible, for example, by lifting S → GrT1
to S̃ → LT1).

The above discussion shows that we have a splitting of the canonical projection LG → LT1.

Hence α can be lifted to an element α̃ ∈ Maps/Ran(X)(S̃,LG). The equivariance property of p
shows that the following diagram commutes:

GrG ×
Ran(X)

S̃
actα̃ //

��

GrG ×
Ran(X)

S̃

��
GrT1 ×

Ran(X)
S̃

actα // GrT1 ×
Ran(X)

S̃
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Since actα transforms the section γ : S̃ → GrT1
×

Ran(X)
S̃ to γ0, we obtain the required isomor-

phism (3.6) as actα̃ ×
actα

idS̃ . �

3.2.5. Proof of (a). We now show that every L ∈ Picfact
qder=0(GrG) is fiberwise trivial along the

projection p : GrG → GrT1
. Since the question concerns only points on GrT1

, it suffices to show
that the base change of L to the subscheme X(λ1,··· ,λ|I|) ↪→ GrT1,XI

11 is fiberwise trivial.

We write P(λI) for the étale sheaf of relative Picard group of GrG,XI ×
GrT1,XI

X(λ1,··· ,λ|I|)

over X(λ1,··· ,λ|I|), i.e., it associates to every étale map V → X(λ1,··· ,λ|I|) the abelian group

Pic(GrG,Xn ×
GrT1,Xn

V )/Pic(V ). Thus L defines a global section l(λ
I) of P(λI) for every n-tuple

λI . The goal is to show that all l(λ
I) vanish.

3.2.6. Recall the computation of the étale sheaf of relative Picard groups Pic(GrGder,XI /X
I)

in [Zh16, §3.4]. It fits into an exact sequence of sheaves of abelian groups over XI :

0→ Pic(GrGder,XI /X
I)→ �i∈IAX →

⊕
|J|=|I|−1

(∆I�J)∗ �j∈J AX .

Here, A denotes the abelian group Z× rank(Gder), andAX is its associated constant sheaf of groups

over X. Lemma 3.4 shows that the sheaf P(λI) is étale locally isomorphic to Pic(GrGder,XI /X
I)

under the identification X(λ1,··· ,λ|I|) ∼−→ XI . We note a simple Lemma:

Lemma 3.5. Let Y be a connected, Noetherian scheme and F be an étale sheaf on Y . Suppose
furthermore that F is étale locally isomorphic to a subsheaf of a constant sheaf. Then a section
s ∈ Γ(Y,F) vanishes if and only if it does so over some étale open V → Y .

Proof. One can pick finitely many étale maps Vi → Y (i ∈ I) so that:

(a) each Vi is connected;
(b) F

∣∣
Vi

is isomorphic to a subsheaf of a constant sheaf;

(c) the images Ui of Vi collectively cover Y .

We induct on the cardinality of I over all connected, Noetherian schemes admitting such a
cover; the base case I = ∅ is trivial. The image U of V → Y must intersect some Ui. The

condition (b) implies that the restriction si ∈ Γ(Ui,F) vanishes. Now, let
◦
Y :=

⋃
j 6=i Ui. It is

not necessarily connected. However, the fact that Y is connected shows that Ui intersects every

connected component of
◦
Y . We apply the induction hypothesis to each connected component

of
◦
Y to conclude that s vanishes. �

3.2.7. Our proof that each l(λ
I) vanishes now proceeds as follows:

Step 1: l(0) = 0. Indeed, since line bundles on GrGder,X are classified by the quadratic form
qder, we see that L is trivialized when pulled back along GrGder,X → GrG,X . On the other hand,

GrGder,X appears as the fiber of p along the unit map X ↪→ GrT1
. Hence l(0) = 0.

Step 2: l(λ) = 0 for all λ ∈ ΛT1
. Consider the section l(λ,−λ) of P(λ,−λ). It is represented

by some line bundle L(λ,−λ) over GrG,X2 ×
GrT1,X2

X(λ,−λ). We know from Step 1 that the re-

striction of L(λ,−λ) to the diagonal comes from the base X(0) ↪→ X(λ,−λ). Hence, over an étale

11Recall that for an I-family of co-characters λ(I) = (λ1, · · · , λ|I|), there is a closed immersion XI ↪→
GrT1,XI

whose image we call X(λ1,··· ,λ|I|).
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neighborhood of X(0), the section l(λ,−λ) has to vanish by the identification of P(λ,−λ) with
Pic(GrGder,X2 /X2). We then apply Lemma 3.5 to conclude that l(λ,−λ) vanishes.

Now, under the identification of P(λ,−λ) with P(λ) � P(−λ) away from the diagonal, the
section l(λ,−λ) passes to l(λ)� l(−λ). The fact that l(λ,−λ) = 0 now implies that l(λ) (and l(−λ))
vanishes.

Step 3: l(λ
I) = 0 for all I-tuple λI . When the cardinality of I is at least 2, we may use the

factorization property of l(λ
I) to see that l(λ

I) vanishes away from the union of the diagonals

in X(λ1,··· ,λ|I|). Hence by Lemma 3.5 again we have l(λ
I) = 0.

This finishes the proof that (3.4) is an equivalence.

3.2.8. Proof of (b). We first recall some standard results.

Lemma 3.6. Suppose G̃ is semisimple and simply connected. Then the morphism GrG̃ →
Ran(X) has the property that for every affine scheme S → Ran(X), we have a presentation

GrG̃ ×
Ran(X)

S
∼−→ colim

i
Yi

where each Yi is a scheme of finite type over S, satisfying:

(a) Yi is proper and faithfully flat over S;
(b) The fiber (Yi)s at every k-point s ∈ S is connected and H1((Yi)s,O) ∼= 0.

Proof. Since each S → Ran(X) factors through some XI , it suffices to produce such a presen-
tation for GrG̃,XI . For each I-tuple λ of elements of Λ+

G, we may consider the Schubert variety

Gr
≤λ
G̃,XI

which is proper, surjective over XI . The flatness is proved in [Zh09, §1.2] for I = {1, 2}
and the general case is similar. The property (b) of its fibers is a special case of Lemma 2.6. �

Remark 3.7. Lemma 3.6(b) fails for non-semisimple groups, since GrG may not be ind-reduced.
We do not know whether the flatness in part (a) holds more generally.

3.2.9. Suppose p : X → Y is a morphism of finite type schemes over k12 such that

(a) p is proper and faithfully flat;
(b) its fiber Xy at every k-point y ∈ Y is connected and H1(Xy,O) = 0.

Lemma 3.8. Let L be a line bundle on X. Under the above hypotheses on p : X → Y , the
following are equivalent:

(a) L is trivial along the fibers of p;
(b) p∗L is a line bundle over Y , and the canonical map p∗p∗L→ L is an isomorphism.

Proof. We use the formulation of the “cohomology and base change” theorem in [Va, 28.1.6].
The fiberwise triviality of L, together with the vanishing of H1(Xy,OXy ), shows that the canon-
ical map:

R1 p∗L
∣∣
y
→ H1(Xy,L

∣∣
Xy

) (3.7)

is surjective, for any k-point y ∈ Y . Hence part (i) of loc.cit. applies and we see that that
(3.7) is an isomorphism. Since R1 p∗L is coherent, it must vanish. In particular, part (ii) of
loc.cit. applies and shows that the canonical map p∗L

∣∣
y
→ H0(Xy,L

∣∣
Xy

) is surjective. Another

application of part (i) then shows that p∗L is locally free near y of rank h0(Xy,L
∣∣
Xy

) =

h0(Xy,O) = 1, i.e., it is a line bundle. The isomorphism p∗p∗L
∼−→ L is then obvious. �

12Recall that k is assumed to be algebraically closed.
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3.2.10. Suppose p : X→ Y is ind-schematic morphism, represented by morphisms pi : Xi → Y
of schemes satisfying the hypothesis of §3.2.9. Then p∗ : Pic(Y ) → Pic(X) has a partially
defined right adjoint:

p∗L := lim
i

(pi)∗Li, while representing L by the inverse system Li ∈ Pic(Xi)

which is well defined on the full subcategory of Pic(X) consisting of line bundles which are

trivial along the fibers of p, and we furthermore have an isomorphism p∗p∗L
∼−→ L. For any line

bundle M from the base Y , it is also clear that M
∼−→ p∗p

∗M. Hence p∗ defines an equivalence
from Pic(Y ) to the full subcategory of Pic(X) consisting of fiberwise trivial line bundles.

3.2.11. The above discussion, together with Lemma 3.4 and 3.6, shows that p∗ defines an
equivalence Pic(GrT1)

∼−→ Pic\(GrG). To see that this upgrades to an equivalence of factor-
ization line bundles, we simply note that the map GrG ×

Ran(X)
GrG → GrT1 ×

Ran(X)
GrT1 again

satisfies the hypothesis of §3.2.10 after base change to a scheme. This finishes the proof that
(3.5) is an equivalence. �(Theorem 3.1)
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