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Abstract. Fix a smooth, complete algebraic curve X over an algebraically closed field

k of characteristic zero. To a reductive group G over k, we associate an algebraic stack
ParG of quantum parameters for the geometric Langlands theory. Then we construct a

family of (quasi-)twistings parametrized by ParG, whose module categories give rise to

twisted D-modules on BunG as well as quasi-coherent sheaves on the DG stack LocSysG.
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1. Introduction

1.1. The geometric Langlands conjecture.

1.1.1. The goal of the Langlands program can be broadly described as to establish a cor-
respondence between automorphic forms attached to a reductive group G and Galois repre-
sentations valued in the Langlands dual group Ǧ.

1.1.2. In the (global, unramified) geometric theory, we fix a smooth, connected, projective
curve X over an algebraically closed field k. For simplicity, let G be a reductive group
over k (where “reductive” is meant to imply “connected”). Then automorphic functions
correspond to certain sheaves on the stack BunG parametrizing G-bundles over X, and the
role of Galois representations is played by local systems on X valued in Ǧ, the Langlands
dual group defined over a coefficient field E.

If we further specialize to the case where k is of characteristic zero, then it is possible to
take E = k and study the de Rham Ǧ-local systems on X. The latter also form a moduli
stack over k, denoted by LocSysǦ.
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1.1.3. Unlike BunG, the stack LocSysǦ is not smooth. Furthermore, it is a DG algebraic
stack in general and the correct formulation of the geometric Langlands conjecture has to
take into account its DG nature.

After Arinkin and Gaitsgory [AG15], one conjectures an equivalence of DG categories:

LG : D-Mod(BunG)
∼−→ IndCohNilp(LocSysǦ). (1.1)

Here, the left-hand-side is the DG category of D-modules on BunG. The right-hand-side is
the DG category of ind-coherent sheaves on LocSysǦ whose singular support is contained
in the global nilpotent cone. This DG category is an enlargement of QCoh(LocSysǦ), and
the appearance of singular support is the geometric incarnation of Arthur parameters.

1.2. What do we mean by “quantum”?

1.2.1. The quantum geometric Langlands theory seeks to simultaneously deform both sides
of (1.1) in a way to make them look more symmetric. The main idea, due to Drinfeld and
expounded on by Stoyanovsky [St06] and Gaitsgory [Ga16b], is to consider the DG category
of twisted D-modules on BunG.

1.2.2. To explain this approach, let us temporarily assume that G is simple. Write LG,det

for the determinant line bundle over BunG. To every value c ∈ k one can associate the DG

category D-Modc(BunG) of D-modules over BunG twisted by the ( c−h
∨

2h∨ )th power of LG,det,
where h∨ denotes the dual Coxeter number of G.

Let r = 1, 2, or 3 be the maximal multiplicity of arrows in the Dynkin diagram of G. One
expects an equivalence of DG categories:

L(c)
G : D-Modc(BunG)

∼−→ D-Mod−
1
rc (BunǦ) (1.2)

The equivalence L(c)
G should vary continuously in c, and degenerate to (1.1) as c tends to

zero.1 For a survey on the conjecture (1.2), see [Sc14].

1.2.3. We remark that the conjecture (1.2) is made prior to the formulation of (1.1). For
the correct degeneration to IndCohNilp(LocSysǦ) to take place, one has to renormalize the
DG category D-Modc(BunǦ).

The renormalized DG categories D-Modcren(BunG) have apparently different nature de-
pending on the rationality and positivity of c, so fitting them in a quasi-coherent family is
not a trivial matter.

1.2.4. In the present article, we fulfill a more modest goal: we construct a family of non-
commutative algebras A over BunG, whose generic fiber (at c < ∞) is a ring of twisted
differential operators (TDOs) on BunG and whose special fiber (at c = ∞) is OLocSysG .
By taking the module category of A, we realize the degeneration of D-Modc(BunG) into
QCoh(LocSysG), without taking into account the renormalization mentioned above.

1.3. What’s in this article?

1.3.1. Let us admit right away that when G is simple, the space of quantum parameters
is just a copy of P1, and when the genus of the curve X is at least 2, the stack LocSysG
is classical. In this case, the P1-family of non-commutative algebras A has already been
constructed by Stoyanovsky [St06], making use of the line bundle LG,det.

1Indeed, the left-hand-side of (1.1) should more naturally be the DG category of L
− 1

2
G,det-twisted D-

modules, otherwise known as D-modules at the critical level. The two DG categories are equivalent by the
existence of the Pfaffian.
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1.3.2. In the present article, we construct the space of quantum parameters and an analo-
gous degeneration for a reductive group G. However, our construction proceeds along totally
different lines from [St06]. This departure in point of view is motivated by the following
considerations:

(a) In the study of the Langlands correspondence for G, an instrumental role is played by
its Levi subgroups M . The relationship between G and M is codified by the constant
term functors (and their adjoints, the Eisenstein series functors). Even for simple G,
the constant term functor carries D-Modc(BunG) to a twisted category of D-modules
on BunM which does not arise from the determinant line bundle (see [Ga16a, §3.3-3.4]
for example).

It is desirable, therefore, to include these additional twists into the space of quantum
parameters for M . Our construction achieves this in a natural way. For a reductive
group G, our space of quantum parameters consists of a pair (gκ, E), where gκ is a
generalized symmetric bilinear form on the Lie algebra g of G, and E is an additional
parameter which depends on the center of G as well as the curve X.

(b) The DG nature of LocSysG requires us to consider generalizations of TDOs whose un-
derlying O-modules are chain complexes. It is a priori unclear how to even define such
gadgets, since chain complexes interact poorly with explicit formulas. To circumvent
this, we make a geometric construction using the recent theory of derived formal moduli
problems developped by Lurie, Gaitsgory, and Rozenblyum.

More precisely, [GR14] introduces a theory of twistings which gives the derived gen-
eralization of a ring of TDOs. (We call the latter classical twistings). We introduce the
notion of a quasi-twisting which incorporates commutative degenerations of twistings.

1.3.3. Driven by these considerations, we give a construction of A which completely dis-
penses of the line bundle LG,det and contains more information as soon as the center of G
is nontrivial. The key steps in this construction are summarized by the following chart:2{

quantum
parameter (gκ, E)

}
 

{
Lie-∗ algebra

ĝ
(κ,E)
D over X

}
 

{
classical quasi-twisting

T̃
(κ,E)
G over BunG,∞x

}
 

{
quasi-twisting

T
(κ,E)
G over BunG

}
.

The family of algebras A ultimately arises as the universal enveloping algebra of T
(κ,E)
G ,

when we vary the quantum parameter. From our point-of-view, however, the family of

quasi-twistings T
(κ,E)
G is more fundamental than A, and will be the central object of study

in this article.

1.4. Organization of this article.

1.4.1. We start in §2 with the definition of ParG, the space of quantum parameters. It is a
fiber bundle over a compactification of Sym2(g∗)G, with fibers being vector stacks describing
the “additional parameters.”

The aforementioned compactification of Sym2(g∗)G is simply the space of G-invariant
Lagrangian subspaces of g⊕ g∗, where a G-invariant symmetric bilinear form embeds as its
graph. The level “at ∞” is understood as the Lagrangian subspace g∞ := 0⊕ g∗.

2For objects that depend on gκ (resp. (gκ, E)), we only retain the character κ (resp. (κ,E)) in the
notation.
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1.4.2. The main idea. Let us take a k-point in ParG, which is a Lagrangian subspace gκ ⊂
g ⊕ g∗ together with an additional parameter E (see §2.4.1 where it is defined). Using the
theory of Lie-∗ algebras developed in [BD04], we construct a central extension

0→ OBunG,∞x → L̂(κ,E) → Lκ → 0 (1.3)

of Lie algebroids over the scheme BunG,∞x parametrizing G-bundles trivialized over the
formal neighborhood Dx of a fixed closed point x ∈ X. We refer to central extensions of Lie
algebroids as classical quasi-twistings.

For gκ arising from a symmetric bilinear form, the reduced universal envelope of (1.3):

Ured(L̂(κ,E)) := U(L̂(κ,E))/(1− 1)

defines a TDO over BunG,∞x. At (gκ, E) = (g∞, 0), the algebra Ured(L̂(∞,0)) becomes
commutative, and identifies with the ring of functions on the ind-scheme LocSysG,∞x(X −
{x}) parametrizing a point (PT , η) ∈ BunG,∞x together with a connection ∇ over PT |X−{x}.

To obtain a central extension of Lie algebroids over BunG, we “descend” (1.3) along the

torsor BunG,∞x → BunG, and the algebra A(κ,E) is set to be its universal envelope. The
family of algebras A is obtained by letting the point (gκ, E) in ParG vary.

1.4.3. The main challenge. There is, however, a caveat in what it means to “descend” the
classical quasi-twisting (1.3). We need a procedure that simultaneously does the following:

(a) For gκ arising from a symmetric bilinear form, it performs the strong quotient of a TDO,
in the sense of [BB93];

(b) For gκ = g∞, it transforms (the ring of functions over) LocSysG,∞x(X − {x}) into the
DG stack LocSysG, a procedure usually understood as symplectic reduction.

It turns out that one needs to form what we call the quotient of a classical quasi-twisting.
In general (and in the way we will apply it), this notion belongs to the DG world, i.e., the
quotient of a classical quasi-twisting may cease to be classical.

1.4.4. A (non-classical) quasi-twisting over a finite type scheme Y is defined as a Ĝm-
gerbe in the ∞-category of formal moduli problems under Y . They make up the geometric
theory of central extensions of Lie algebroids over Y , and are studied in §3. The theory of
quasi-twistings is made possible by the machinery of formal groupoids and formal moduli
problems, as developed in [GR16].

The quotient of quasi-twistings fits into the general paradigm of taking the quotient of
an inf-scheme by a group inf-scheme. The latter procedure is rather elaborate, as it mixes
prestack quotient with formal groupoid quotient. This is the content of §4.

1.4.5. Finally, we need to deal with the technical annoyance that the theory of [GR16]
is built for prestacks locally (almost) of finite type, whereas BunG,∞x is of infinite type.
Hence the actual quotient process has to be performed in two steps, one classical and one
geometric, along the torsors:

Bun
(≤θ)
G,∞x → Bun

(≤θ)
G,nx → Bun

(≤θ)
G ,

where Bun
(≤θ)
G is a Harder-Narasimhan truncation of BunG and n is sufficiently large so that

Bun
(≤θ)
G,nx is a scheme (of finite type.) For this reason, we need to prove a number of results

communicating between the classical and derived worlds in §3 and §4. It is the author’s
hope that an extension of [GR16] to∞-dimensional algebraic geometry will render this trick
obsolete.
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1.4.6. The main results. In §5, we perform the main construction of the quasi-twisting T
(κ,E)
G

over BunG and check that it gives rise to the expected TDOs when gκ is the graph of a
bilinear form and E = 0.

Finally, in §6, we show that the DG category of modules over T
(∞,0)
G recovers QCoh(LocSysG);

in doing so, we also obtain a description of the underlying quasi-coherent sheaf of the TDO
at an arbitrary level. We end the article with remarks on the “meaning” of certain additional
parameters at level ∞.

1.5. Quantum vs. metaplectic parameters.

1.5.1. There is another approach of deforming the DG category D-Mod(BunG)3 under the
name “metaplectic geometric Langlands program” (see [GL16], for example.) We briefly
explain the relation between metaplectic and quantum parameters.

For simplicity, let us focus on the points (gκ, E) of ParG where gκ arises from a symmetric
bilinear form. Such quantum parameters form an open substack isomorphic to Sym2(g∗)G×
Ext1(zG ⊗ OX , ωX), and the quasi-twistings on BunG they produce are in fact twistings.

1.5.2. Metaplectic parameters give rise to gerbes, as opposed to twistings, on BunG. Having
chosen D-modules as our sheaf-theoretic context, a gerbe on a prestack Y refers to a map
from YdR to B2 Gm. Note that a gerbe on BunG is sufficient to form the DG category of
twisted D-modules, but the additional data included in a twisting equip this DG category
with a forgetful functor to QCoh(BunG).

Unlike the metapletic geometric Langlands program, which has incarnations in various
sheaf-theoretic contexts, the quantum geometric Langlands program is limited to the case
of D-modules. (However, it seems that the restriction char(k) = 0 is not necessary, in light
of the recent work of Travkin [Tr16].)

1.5.3. By analogy with the `-adic context, gerbes are supposed to be “topological” gadgets.
However, the existence of the exponential local system on A1 shows that the above definition
of a gerbe is too näıve. In order to retain only topological information, we ought to adjust
the definition of a gerbe slightly, as a (2-)torsor over the groupoid of regular singular local
systems. However, we will ignore this subtlety for now.

1.5.4. Let GrG denote the affine Grassmannian associated to G, regarded as a factoriza-
tion prestack over the Ran space of X. Conjecturally, the spaces of quantum, respectively
metaplectic, parameters have the following intrinsic meanings: they are the moduli spaces
of factorization twistings, respectively gerbes, on GrG. The corresponding objects on BunG
arise from their descent along the canonical map GrG → BunG.

Furthermore, there is a fiber sequence of Picard groupoids, relating factorization line
bundles, twistings, and gerbes on the affine Grassmannian:

Picfact(GrG)→ Twfact(GrG)→ Gefact(GrG). (1.4)

The three items of this fiber sequence stem from apparently different sources:

algebro-geometric differential-geometric topological

Picfact(GrG) Twfact(GrG) Gefact(GrG)

K-theoretic parameters quantum parameters metaplectic parameters

3or in the context of curves over Fp, the category of `-adic sheaves on BunG.
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1.5.5. Since the first preprint of the present paper appeared in 2017, several new devel-
opments have contributed to a better understanding of these parameters. Let us briefly
report on them. The first one is a precise relationship between the K-theoretic parame-
ters, first studied by Brylinski–Deligne [BD01], and factorization line bundles [Ga20][TZ19].
The second is a precise formulation of “topological” gerbes in the de Rham context and
the classification of factorization de Rham gerbes on GrG [Zh20]. In the `-adic context,
the analogous classification theorem now has two proofs (see [Zh20] and the new version of
[GL16].)

Finally, it is pointed out by an anonymous referee that the space of quantum parameters
defined in this paper can be further enlarged to include the “semi-classical” degeneration of
the geometric Langlands theory (from D-Modc(BunG), as well as QCoh(LocSysG) to the DG
category of quasi-coherent sheaves on the cotangent stack T∗ BunG.) The semi-classical limit
has featured in the works of Donagi–Pantev [DP12] (over C) and Bezrukavnikov–Braverman
[BB06] (in characteristic p).

Notations. Throughout this article, we work over an algebraically closed ground field k of
characteristic zero. We write X for a smooth, connected, projective curve and G a reductive
group over k (where “reductive” is meant to imply connected). The Lie algebra of G is
denoted by g. Notations particular to each section will be explained as they appear.

Acknowledgement. The author is deeply indebted to his Ph.D. advisor Dennis Gaitsgory.
Many ideas here arose during conversations with him—in fact, the idea of using quotient
by group inf-schemes is essentially his. The author also thanks Justin Campbell for many
helpful discussions.

The anonymous referees have carefully read a previous version of this paper and made
many valuable suggestions. The author expresses his deep gratitude to them.

2. The space of quantum parameters

In this section, we define the smooth algebraic stack ParG of quantum parameters for
the geometric Langlands theory. We will define a natural isomorphism ParG

∼−→ ParǦ, and
explain how ParG behaves when we change G into the Levi quotient M of a parabolic of G.

2.1. The base scheme of ParG.

2.1.1. The space of quantum parameters ParG will be an algebraic vector stack over a
smooth projective scheme. We begin by defining the base scheme of ParG, which will be a
compactification of the vector scheme of G-invariant symmetric bilinear on g. Its existence
is based on the following fact.

Lemma 2.1. Let (V, ω) be a symplectic vector space. The presheaf which sends an affine
scheme S to the set of Lagrangian subbundles of V ⊗ OS is representable by a connected,
smooth, projective scheme.

Proof. Let n := dim(V )/2 which is an integer. The presheaf of Lagrangian subbundles of
V ⊗OS is a subfunctor of that of n-dimensional subbundles of V ⊗OS . The latter presheaf is
represented by the Grassmannian Gr(n, V ). Hence the former is represented by a projective
scheme, to be denoted GrLag(V ). The smoothness of GrLag(V ) follows from a standard
calculation of its cotangent complex (details omitted).

To show that GrLag(V ) is connected, we observe that the symplectic group Sp(V ) acts
on GrLag(V ). For a fixed k-point L of GrLag(V ), the map Sp(V )→ GrLag(V ) induced from
acting on L is surjective on k-points. Since Sp(V ) is connected, so is GrLag(V ). �
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2.1.2. Consider the symplectic form on g⊕ g∗ defined by the pairing:

〈ξ ⊕ ϕ, ξ′ ⊕ ϕ′〉 := ϕ(ξ′)− ϕ′(ξ). (2.1)

Let GrLag(g ⊕ g∗) denote the scheme parametrizing Lagrangian subspaces of g ⊕ g∗. (It
represents the presheaf in Lemma 2.1.) The reductive group G acts on g⊕ g∗ via the direct
sum of the adjoint and coadjoint actions. This action preserves the symplectic form (2.1).
Hence, we obtain a G-action on GrLag(g ⊕ g∗). Thanks to the hypothesis char(k) = 0, the
group G is linearly reductive. Hence the G-fixed point scheme:

GrGLag(g⊕ g∗) ⊂ GrLag(g⊕ g∗)

remains smooth, by the classical theorem of Iversen [Iv72, Proposition 1.3]. We will denote

an S-point of GrGLag(g ⊕ g∗) by gκ, regarded as a Lagrangian subbundle of (g ⊕ g∗) ⊗ OS
stable under the G-action.

2.1.3. Let Sym2(g∗)G denote the vector space of G-invariant symmetric bilinear forms on
g, regarded as a vector scheme. There is a morphism of schemes:

Sym2(g∗)G → GrGLag(g⊕ g∗) (2.2)

sending a form κ, viewed as a linear map κ : g→ g∗, to its graph gκ. The morphism (2.2) is
an open immersion, whose image consists of those subbundles gκ ⊂ (g⊕ g∗)⊗OS for which
the projection to g⊗ OS is an isomorphism.

2.1.4. We will use the following notations for special points of GrGLag(g⊕ g∗):

(a) g∞ denotes the k-point g∗ of GrGLag(g⊕ g∗);

(b) gcrit is the graph of the critical form crit := − 1
2 Kil, where Kil is the Killing form of g.

(c) for every S-point gκ of GrGLag(g ⊕ g∗), the notation gκ−crit denotes the Lagrangian
subbundle of (g⊕ g∗)⊗ OS defined by the property:

ξ ⊕ ϕ ∈ gκ ⇐⇒ ξ ⊕ (ϕ− crit(ξ)) ∈ gκ−crit.

Remark 2.2. Note that if κ ∈ Sym2(g∗)G, then gκ−crit is the graph of κ−crit, so the above
notation is unambiguous; we also have g∞−crit = g∞.

Remark 2.3. More generally, one may replace gκ−crit in the above construction by gκ+κ0

for any κ0 ∈ Sym2(g∗)G. This construction defines an action of Sym2(g∗)G on GrGLag(g⊕g∗)

that extends the addition on Sym2(g∗)G.

2.2. Decomposition into simple factors.

2.2.1. Let g = z⊕
∑
i gi be the decomposition of g into its center z and simple factors gi. In

this subsection, we study how GrGLag(g ⊕ g∗) interacts with this direct sum decomposition.
Combined with some knowledge of this space for a simple group, we will be able to describe
GrGLag(g⊕ g∗) much more explicitly. First, we begin with a lemma on the level of k-points.

Lemma 2.4. Any Lagrangian, G-invariant subspace L ↪→ g⊕ g∗ takes the form L = Lz ⊕∑
i Li where:

(a) Lz is a Lagrangian subspace of z⊕ z∗;
(b) each Li is a Lagrangian, G-invariant subspace of gi ⊕ g∗i .

Proof. The decomposition of g induces a decomposition g⊕g∗ = (z⊕z∗)⊕
∑
i(gi⊕g∗i ) where

the summands are mutually orthogonal with respect to the symplectic form (2.1). We may
also decompose L = Lz⊕

∑
j Lj , where Lz is the G-fixed subspace and each Lj is irreducible.

Obviously, the embedding L ↪→ g⊕ g∗ sends Lz into z⊕ z∗ as an isotropic subspace.



8 YIFEI ZHAO

We claim that each embedding Lj ↪→ g ⊕ g∗ factors through gi ⊕ g∗i for a unique i. In
other words, the composition Lj ↪→ g⊕g∗ � gi⊕g∗i must vanish for all but one i. Suppose,
to the contrary, we have i 6= i′ such that both

Lj → gi ⊕ g∗i , and Lj → gi′ ⊕ g∗i′

are nonzero. Without loss of generality, we may assume that the projections onto the first
factors Lj → gi, Lj → gi′ are nonzero. Hence we have

(a) Lj ∼= gi ∼= gi′ as G-representations; and
(b) the image of Lj under the projection g ⊕ g∗ � gi ⊕ gi′ is a G-invariant subspace with

nonzero projection onto both factors.

The second statement implies that this image is the entire space gi ⊕ gi′ , contradicting the
equality dim(Lj) = dim(gi) from the first statement. This prove the claim.

Now, suppose j 6= j′ and both embeddings Lj , Lj′ ↪→ g ⊕ g∗ factor through the same
gi ⊕ g∗i . This is obviously impossible since Lj ⊕ Lj′ ↪→ g ⊕ g∗ would factor through an

isomorphism Lj⊕Lj′
∼−→ gi⊕g∗i , so it is not isotropic. We conclude that there is a bijection

between the sets {Lj} and {gi ⊕ g∗i } such that each Lj ↪→ g ⊕ g∗ factors through the
corresponding item gi ⊕ g∗i .

Finally, since each Lj is an isotropic subspace of gi ⊕ g∗i , we have:

dim(g) = dim(Lz) +
∑
j

dim(Lj) ≤ dim(z) +
∑
i

dim(gi) = dim(g).

Hence the equality is achieved, and each Lj (resp. Lz) is a Lagrangian subspace of gi ⊕ g∗i
(resp. z⊕ z∗). �

Corollary 2.5. Let L be a Lagrangian, G-invariant subspace of g ⊕ g∗. Then there is a
(non-canonical) isomorphism L

∼−→ g of G-representations. �

Note that we have an obvious morphism:

GrLag(z⊕ z∗)×
∏
i

GrGLag(gi ⊕ g∗i )→ GrGLag(g⊕ g∗) (2.3)

sending a series of vector bundles zκ, {gκi } over S to their direct sum zκ ⊕
∑
i g
κ
i , which is a

subbundle of (g⊕ g∗)⊗ OS .

Corollary 2.6. The morphism (2.3) is an isomorphism.

Proof. Indeed, (2.3) is a proper morphism between smooth schemes. Lemma 2.4 shows that
it is bijective on k-points, so in particular quasi-finite, and therefore finite (by properness).
A finite morphism of degree 1 between smooth schemes is an isomorphism. �

2.2.2. To proceed furthermore, let us note that any G-invariant symmetric bilinear form κi
on gi defines an isomorphism A1 ∼−→ Sym2(g∗i )

G, sending c to the form cκi. This isomorphism
extends to a map:

P1 → GrGLag(gi ⊕ g∗i ), c gcκi . (2.4)

In fact, an argument analogous to the proof of Corollary 2.6 shows that (2.4) is an isomor-

phism. Combining with the isomorphism (2.3), we see that GrGLag(g⊕g∗) is non-canonically

isomorphic to the product of a Lagrangian Grassmannian with finitely many copies of P1,
one for each simple factor of g.

2.3. Reduction to Z(G).
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2.3.1. We will now work towards the definition of ParG, which is a vector stack over
GrGLag(g⊕ g∗). The fibers of this vector stack are the so-called additional parameters. They
will only come into play when the center Z(G) is nontrivial. In this subsection, we focus on

the central component of GrGLag(g⊕ g∗) with respect to the product decomposition (2.3).

2.3.2. Consider the projection map (whose existence owes to Corollary 2.6):

GrGLag(g⊕ g∗)→ GrLag(z⊕ z∗) (2.5)

Note that z is identified with the subspace of G-invariants of g. Although z∗ is more natu-
rally the space of G-coinvariants of g∗, we will identify it with the invariants (g∗)G via the
isomorphism (g∗)G ↪→ g∗ � z∗.

More intrinsically, the morphism (2.5) is defined on S-points by:

gκ  (gκ)G := gκ ∩ ((z⊕ z∗)⊗ OS).

where (z⊕ z∗)⊗ OS is regarded as a submodule of (g⊕ g∗)⊗ OS . In particular, (gκ)G may
be viewed as a submodule of gκ.

Remark 2.7. We refer to (gκ)G as the G-invariants of gκ. The same terminology is used in
the sequel when we replace G by a different group H and gκ by an H-invariant subspace of
V ⊕V ∗, where V is any H-representation for which the composition (V ∗)H ↪→ V ∗ � (V H)∗

is an isomorphism.

Remark 2.8. Since crit vanishes on z, the submodules (gκ−crit)G, (gκ)G ⊂ (z⊕ z∗)⊗OS are
equal for any gκ.

2.3.3. Since the embedding z ↪→ g canonically splits with kernel gs.s. := [g, g], there is a
surjection (g⊕ g∗)⊗OS � (z⊕ z∗)⊗OS . Under this surjection, the image of gκ is identified
with (gκ)G, and the composition (gκ)G ↪→ gκ � (gκ)G is the identity. In other words,

Lemma 2.9. The morphism (gκ)G ↪→ gκ canonically splits. �

We denote the complement of (gκ)G in gκ by gκs.s.. The decomposition:

gκ ∼= (gκ)G ⊕ gκs.s.

mimics the decomposition of g into its center and its semisimple part.

2.4. Definition of ParG.

2.4.1. We are now ready to define the stack ParG of quantum parameters. For an affine
shceme S, the groupoid Maps(S,ParG) consists of pairs (gκ, E), where gκ is an S-point of

GrGLag(g⊕ g∗), and E is an extension of OX-modules:

0→ ωX/S → E → (gκ)G � OX → 0. (2.6)

Here, X := S ×X, and ωX/S
∼= OS � ωX is the relative dualizing sheaf.

In other words, ParG is a fiber bundle over GrGLag(g⊕ g∗), whose fiber at a k-point gκ is

the vector stack Ext((gκ)G�OX , ωX) of extensions over X. We think of gκ as a generalized
symmetric bilinear form on g and E as an additional parameter.

Remark 2.10. The substack of ParG corresponding to the points (gκ, E) where gκ arises
from a bilinear form conjecturally parametrizes factorization twistings on the affine Grass-
mannian GrG, subject to a certain regularity condition (see §1.5). Hence, one may view
ParG as a (partial) compactification of the stack of factorization twistings. We hope to
address this conjecture in a forthcoming work.
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2.5. Langlands duality of ParG.

2.5.1. We now fix a maximal torus T ↪→ G. Let Ǧ denote the Langlands dual group of
(G,T ). Namely, it is a pinned reductive group over k whose root datum is dual to that of
(G,T ). In particular, Ǧ comes with a maximal torus Ť ⊂ Ǧ dual to T .

2.5.2. Let W := NG(T )/T denote the Weyl group of (G,T ). It acts on t⊕t∗ in the standard
way. There is a symplectic isomorphism:

t⊕ t∗
∼−→ ť⊕ ť∗, ξ ⊕ ϕ ϕ⊕ (−ξ) (2.7)

defined using the canonical identifications t∗
∼−→ ť and t

∼−→ ť∗. Furthermore, (2.7) intertwines

the W and W̌ actions (again, under the canonical identification W
∼−→ W̌ ).

Remark 2.11. The sign (2.7) is needed to match up the symplectic forms. On the other
hand, the conjectural quantum Langlands correspondence is an equivalence between a pos-
itively twisted category of D-modules on BunG and a negatively twisted category of D-
modules on BunǦ. This change of signs is reflected in the identification (2.7).

2.5.3. Let GrWLag(t ⊕ t∗) denote the scheme parametrizing W -invariant, Lagrangian sub-
spaces of t⊕ t∗. It is connected, smooth, and projective, thanks to Lemma 2.1 and the fact
that W is a finite group. The isomorphism (2.7) induces an isomorphism:

GrWLag(t⊕ t∗)
∼−→ GrW̌Lag (̌t⊕ ť∗). (2.8)

We denote the image of tκ under (2.8) by ťκ̌, and view it as the dual of the generalized
bilinear form tκ. Note that Sym2(t∗)W is not preserved under the duality (2.8).

2.5.4. We define a morphism (the “näıve reduction”)

GrGLag(g⊕ g∗)→ GrWLag(t⊕ t∗) (2.9)

by sending an S-point gκ to (gκ)T , the T -invariants of gκ. An argument similar to the one

in §2.3.2 shows that we have a well-defined map GrGLag(g ⊕ g∗) → GrLag(t ⊕ t∗); it is clear
that the image lies in the W -fixed locus.

Lemma 2.12. The morphism (2.9) is an isomorphism.

Proof. Indeed, a decomposition of g = z⊕
∑
i gi into simple factors induces a decomposition

t = z⊕
∑
i ti, where each ti is the maximal torus of the factor gi. Note that ti is irreducible as

a W -representation. An analogue of Corollary 2.6 asserts an isomorphism GrWLag(t⊕ t∗)
∼−→

GrLag(z⊕ z∗)×
∏
i GrWLag(ti ⊕ t∗i ), making the following diagram commute:

GrGLag(g⊕ g∗)
(2.9) //

∼��

GrWLag(t⊕ t∗)

∼��
GrLag(z⊕ z∗)×

∏
i GrGLag(gi ⊕ g∗i )

// GrLag(z⊕ z∗)×
∏
i GrWLag(ti ⊕ t∗i ).

Note that the bottom arrow is an isomorphism since the choice of a G-invariant, symmetric
bilinear form on gi (hence a W -invariant form on ti) identifies both GrGLag(gi ⊕ g∗i ) and

GrWLag(ti ⊕ t∗i ) with P1 (see §2.2.2). �

Remark 2.13. Using T , we may also rewrite (2.5) as the two-step procedure of first taking
T -invariants and then taking W -invariants:

(gκ)G
∼−→ ((gκ)T )W .

This isomorphism again follows from the description of fibers of gκ in Lemma 2.4.
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2.5.5. We will consider a slight variant of the isomorphism (2.9) which takes into account
the critical shift (the “critically-shifted reduction”):

GrGLag(g⊕ g∗)
∼−→ GrWLag(t⊕ t∗), gκ  (gκ−crit)T . (2.10)

There is an isomorphism between GrGLag(g⊕ g∗) and the corresponding space for Ǧ, making
the following diagram commute:

GrGLag(g⊕ g∗)
∼ //

(2.10)
��

GrǦLag(ǧ⊕ ǧ∗)

(2.10) for Ǧ��
GrWLag(t⊕ t∗)

(2.8)

∼
// GrW̌Lag (̌t⊕ ť∗)

We denote the image of gκ in GrǦLag(ǧ ⊕ ǧ∗) by ǧκ̌. The generalized bilinear forms gκ and

ǧκ̌ are supposed to be intertwined by the geometric Langlands correspondence. They have
a built-in critical shift.

2.5.6. Using the identification (gκ−crit)G ∼= (gκ)G (see Remark 2.8), we see that an exten-
sion E of (gκ)G � OX by ωX/S (see (2.6)) is equivalent to an extension Ě of (ǧκ̌) � OX by
ωX/S . Indeed, the following OS-modules are all isomorphic:

(gκ)G
∼−→ (gκ−crit)G ∼= (ǧκ̌−crit)Ǧ

∼←− (ǧκ̌)Ǧ,

where the middle isomorphism comes from the identification of (gκ−crit)T and (ǧκ̌−crit)Ť

under (2.8). This observation implies:

Lemma 2.14. There is a canonical isomorphism of algebraic stacks:

ParG
∼−→ ParǦ, (gκ, E) (gκ̌, Ě). (2.11)

We refer to (2.11) as the Langlands duality for the space of quantum parameters ParG.

Example 2.15. Suppose G is simple, and we fix a k-valued parameter (gκ, 0) of ParG
corresponding to some bilinear form κ on g. Then κ = λ · KilG for some λ ∈ k. Write
λ = (c− h∨)/2h∨ for some c ∈ k, where h∨ denotes the dual Coxeter number of G. Under
the isomorphism (2.11), (gκ, 0) corresponds to the parameter (ǧκ̌, 0).

Assume c 6= 0. Then we claim that ǧκ̌ arises from the bilinear form κ̌ defined by the
formulae:

κ̌ = λ̌ ·KilǦ, λ̌ = (− 1

rc
− h)/2h, (2.12)

where r = 1, 2 or 3 denotes the maximal multiplicity of arrows in the Dynkin diagram of
G.4 Indeed, to see that ǧκ̌ is given by the formulas (2.12), one first notes that (1/2h∨) ·KilG
is the “minimal” W -invariant bilinear form minG on t, defined by the property that the
short coroot has self-pairing 2. Hence, κ is equal to c ·minG + critG. Likewise, κ̌ is equal to
− 1
rc ·minǦ + critǦ. We then appeal to the fact that r is the ratio of the self-pairing of long

and short roots of G (under any W -invariant symmetric bilinear form).

2.6. Parabolics and anomalies.

4These are the numerics which appear in the typical formulation of the quantum Langlands correspon-
dence for simple groups, see [Sc14, §2] for example. Note that the critical shift is often omitted as the

determinant line bundle on BunG admits a square root.
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2.6.1. We now explain how to incorporate, via an additional parameter, the anomaly term
that appears in the study of constant term functors (see [Ga16a, §3.3-3.4]). In op.cit., the
anomaly term is introduced to compare the constant term functor on D-modules on BunG
with the BRST reduction functor on the representation category of Kac–Moody Lie algebra
associated to g. The upshot is that the correctly defined constant term functor does not go
from D-Modκ(BunG) to D-Modκ−crit(BunT ), but rather to the latter category twisted with
a specific line bundle on BunT (the Tate line bundle.)

The observation relevant for us is that this line bundle on BunT can be viewed as being
attached to a quantum parameter for the reductive group T , in the form of an additional
parameter in the sense of §2.4.1. Thus, the constant term morphism ParG → ParT we shall
presently build takes (gκ, E) to ((gκ−crit)T , EG→T ), where the second term EG→T accounts
for the anomaly term.

2.6.2. In this subsection, we fix two additional pieces of structure:

(a) a Borel subgroup B ⊂ G containing T ;
(b) a theta characteristic on the curve X, i.e., a line bundle θ together with an isomorphism

θ⊗2 ∼−→ ωX .

The term standard parabolic refers to a parabolic subgroup P ⊂ G containing B.

2.6.3. Let P be a standard parabolic. Denote by M its Levi quotient, which is a reductive
group. The canonical map from T to M realizes T as a maximal torus of M . The Weyl
group WM of (M,T ) can be identified with a subgroup of W .

Since z ∼= tW and zM ∼= tWM , there is a canonical embedding z ↪→ zM . We claim that
this embedding is canonically split. Indeed, this is because the composition Z0(G) ↪→ G�
G/[G,G] is an isogeny, so it gives rise to the projection zM → z. It follows that we have a
canonical map from the WM -invariants of t⊕ t∗ to its W -invariants:

zM ⊕ z∗M → zG ⊕ z∗G. (2.13)

In particular, given any Lagrangian, W -invariant subbundle tκ ⊂ (t ⊕ t∗) ⊗ OS , we have a
morphism of OS-modules:

(tκ)WM → (tκ)W . (2.14)

This morphism is compatible with (2.13) in the sense they intertwine the inclusion of (tκ)WM

into zM ⊕ z∗M (resp. of (tκ)W into zG ⊕ z∗G.)

2.6.4. There is a reduction morphism (“critically-shifted reduction” for M):

GrGLag(g⊕ g∗)→ GrMLag(m⊕m∗), (2.15)

defined by the composition:

GrGLag(g⊕ g∗)
∼−→ GrWLag(t⊕ t∗) ↪→ GrWM

Lag (t⊕ t∗)
∼←− GrMLag(m⊕m∗)

where the isomorphisms are supplied by the critically-shifted reductions (2.10) for G, re-
spectively M . In other words, the image of gκ under (2.15) is an S-point mκ such that
(mκ−crit)T and (gκ−crit)T are canonically isomorphic as subbundles of (t ⊕ t∗) ⊗ OS .5 The
morphism (2.15) includes (2.10) as a special case.

5Here, mκ−crit is defined with reference to the critical form on m (as opposed to g).
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2.6.5. Let Z0(M) denote the neutral component of the center of M . Write 2ρ̌M for the
character of Z0(M) determined by the representation det(nP ), where nP is the Lie algebra

of the unipotent part of P . Let Ž0(M) denote the dual torus of Z0(M). We use ωρ̌MX to

denote the Ž0(M)-bundle on X induced from θ under 2ρ̌M (regarded as a cocharacter of

Ž0(M)). Then the Atiyah bundle of ωρ̌MX fits into an exact sequence:

0→ z∗M ⊗ OX → At(ωρ̌MX )→ TX → 0.

Its monoidal dual gives rise to an extension of OX-modules for every S (recall the notation
X := S ×X):

0→ ωX/S → OS �At(ωρ̌MX )∗ → (zM ⊗ OS)� OX → 0. (2.16)

For each S-point mκ of GrMLag(m⊕m∗), we let E+
G→M denote the extension of (mκ)M induced

from (2.16) along the canonical map, pulled back along X→ S:

(mκ)M ↪→ (zM ⊕ z∗M )⊗ OS � zM ⊗ OS .

The additional parameter E+
G→M is the anomaly term at level mκ.

2.6.6. The reduction morphism for quantum parameters is defined by (”constant term
morphism” for the space of quantum parameters):

CTP : ParG → ParM , (gκ, E) (mκ, EG→M ) (2.17)

where mκ is the image of gκ under (2.15), and EG→M is the Baer sum of the following two
extensions of (mκ)M :

(a) an extension induced from E (which is an extension of (gκ)G) via the map:

(mκ)M
∼−→ (mκ−crit)M → (gκ−crit)G

∼−→ (gκ)G,

where the map in the middle comes from (2.14) for tκ := (mκ−crit)T ∼= (gκ−crit)T ;
(b) the anomaly term E+

G→M at level mκ.

Remark 2.16. The image of (g∞, E) under CTP agrees with (m∞, E). In other words, the
anomaly term E+

G→M vanishes at level ∞.
In particular, we see that CTP is incompatible with Langlands duality for quantum pa-

rameters, i.e., if we let M̌ be the Langlands dual of M viewed as the Levi quotient of a
parabolic subgroup P̌ ⊂ Ǧ, the following diagram does not commute:

ParG
(2.11)//

CTP ��

ParǦ
CTP̌��

ParM
(2.11)// ParM̌

It is not clear how this phenomenon is reflected in the conjectural quantum geometric Lang-
lands correspondence. However, it seems related to the fact that the compatibility of the
Langlands duality functor and the constant term functor involves an autoequivalence of the
target category D-Modκ̌(BunM̌ ) (for ǧκ̌ = ǧ∞, see [AG15, Conjecture 13.2.9].)

Remark 2.17. For P = B and M = T , the character 2ρ̌ is the sum of positive roots, and
splittings of (2.16) form a t∗ ⊗ ωX -torsor Conn(ωρ̌X), which is also known as the space of
Miura opers (see [FG06]).

2.7. Structures on gκ.

2.7.1. We finish this section with a description of some structures on the vector bundle gκ

functorially attached to an S-point of GrGLag(g⊕ g∗).
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2.7.2. There is an OS-bilinear Lie bracket:

[−,−] : gκ ⊗
OS

gκ → gκ (2.18)

defined by the formula (on the ambient bundle (g⊕ g∗)⊗ OS):

[(ξ ⊕ ϕ)⊗ 1, (ξ′ ⊕ ϕ′)⊗ 1] := ([ξ, ξ′]⊕ Coadξ(ϕ
′))⊗ 1.

One checks immediately that the image lies in gκ and the required identities hold. Note
that (2.18) factors through the embedding gκs.s. ↪→ gκ.

2.7.3. There is an OS-bilinear symmetric pairing:

(−,−) : gκ ⊗
OS

gκ → OS (2.19)

defined by the formula:

((ξ ⊕ ϕ)⊗ 1, (ξ′ ⊕ ϕ′)⊗ 1) := ϕ′(ξ) · 1.

The pairing (2.19) gives rise to a canonical central extension of the loop algebra gκ((t)):

0→ OS → ĝκ → gκ((t))→ 0

whose cocycle is given by the residue pairing Res(−, d−). This is the prototype of a gener-
alized Kac-Moody extension. We will return to it in §5 (in the setting of Lie-∗ algebras).

Example 2.18. For the k-point g∞ of GrGLag(g ⊕ g∗), the Lie bracket (2.18) is zero. The

pairing (2.19) is also zero. Hence ĝ∞ is the abelian Lie algebra OS ⊕ g∞((t)).

2.7.4. Fixing an S-point (gκ, E) of ParG, there is an extension of OX-modules:

0→ ωX/S → ĝ(κ,E) → gκ � OX → 0. (2.20)

induced from (2.6) along gκ ⊗ OS → (gκ)G ⊗ OX . In other words, ĝ(κ,E) is the direct sum

of E and gκs.s. � OX , corresponding to the decomposition gκ
∼−→ ĝκ ⊕ gκs.s..

Quasi-twistings and their quotients

3. Quasi-twistings

In this section, we make sense of a central extension of Lie algebroids in the DG setting;
such objects are called quasi-twistings. A dynamic theory of Lie algebroids in such generality
has been built by Gaitsgory and Rozenblyum [GR16], and our results in §3 and §4 are no
more than a modest extension of their theory.

Notations. We work over a fixed affine scheme S smooth6 over k. Some of the notions
in this section involve the interplay between classical and derived algebraic geometry. For
the latter, we use the theory of ∞-category as developped in [Lu09], [Lu12] and the theory
of derived algebraic geometry modeled on commutative DG algebras, using [GR16] as our
main reference.

6Most of the materials in §3 and §4 should extend to any base affine scheme S over k. The reason we
choose not to work in this generality is because the theory of ind-coherent sheaves in [GR16] is built in
an absolute setting whereas we would need a notion of ind-coherent sheaves for an S-scheme Y which is

“quasi-coherent along S.” Since our ultimate goal is to construct a quasi-coherent sheaf of categories (which
are fppf-local objects, see [Ga14, Appendix A]) on the smooth algebraic stack ParG, it is enough to limit
our attention to smooth test schemes S → ParG.



QUANTUM PARAMETERS OF THE GEOMETRIC LANGLANDS THEORY 15

By a scheme, we shall mean a classical scheme (as opposed to a DG scheme). On the
other hand, a prestack means a presheaf on affine DG schemes valued in∞-groupoids. More
specialized notations involving derived formal moduli problems will be explained in §3.3.

3.1. The classical notion.

3.1.1. Let Y be a scheme over S. A Lie algebroid over Y (relative to S) is an OY -module
L together with an OS-linear Lie bracket [−,−] and an OY -module map σ : L→ TY/S such
that the following properties are satisfied:

(a) [l1, f · l2] = σ(l1)(f) · l2 + f [l1, l2];
(b) σ intertwines [−,−] with the canonical Lie bracket on TY/S .

The morphism σ is called the anchor map of L. The category of Lie algebroids over Y
is denoted by LieAlgd/S(Y ). A Picard algebroid is a central extension of the tangent Lie

algebroid TY/S by OY ; they are equivalent to a ring of twisted differential operators (TDOs)
over Y (see [BB93]).

Definition 3.1. A classical quasi-twisting Tcl over Y (relative to S) is a central extension:

0→ OY → L̂→ L→ 0 (3.1)

of Lie algebroids.

We say that Tcl is based at the Lie algebroid L. Classical quasi-twistings with a fixed
base L form a k-linear, strictly commutative Picard groupoid under the operation of Baer
sum. We denote it by QTwcl

/S(Y/L). The following is obvious:

Lemma 3.2. A classical quasi-twisting Tcl is a Picard algebroid if and only if the anchor
map of L is an isomorphism. �

3.1.2. Given a classical quasi-twisting Tcl, the (reduced) universal envelope of Tcl is defined
to be the OY -algebra:

U(Tcl) := U(L̂)/(1− 1),

where U(L̂) is the universal enveloping algebra of L̂, and 1 denotes the image of the unit in
OY . A module over Tcl is a U(Tcl)-module, or equivalently, a module over the Lie algebroid

L̂ on which 1 acts by the identity.

3.2. Some ∞-dimensional geometry.

3.2.1. Suppose Y is a scheme over S but not locally of finite type. The above notion of
Lie algebroids is not very amenable to study. We will occasionally encounter some ∞-type
schemes, for which we need the notion of a Lie algebroid “on Tate module”.

Let R be a (discrete) ring over k. The notion of Tate R-modules is developed in [Dr06].
We briefly recall the definitions.

3.2.2. An elementary Tate R-module is a topological R-module isomorphic to P ⊕ Q∗,
where P and Q are discrete, projective R-modules.7 A Tate R-module is topological R-
module isomorphic to a direct summand of some elementary Tate R-module. There are two
important types of submodules of a Tate R-module M :

(a) a lattice is an open submodule L+ with the property that L+/U is finitely generated
for any open submodule U ↪→ L+.

7The topology on Q∗ is generated by opens of the form U⊥ where U is a finite generated R-submodule
of Q.
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(b) a co-lattice is a submodule L− such that for some lattice L+, both L+∩L− and M/(L++
L−) are finitely generated.

Example 3.3. Clearly, every profinite R-module is an elementary Tate R-module. The
Laurent series ring R((t)) is also an elementary Tate module (but not profinite).

3.2.3. Given a map of (discrete) rings R → R′, the pullback of a Tate R-module M is
defined by

M⊗̂
R
R′ := lim

←−
(M/U)⊗

R
R′

where U ranges over open submodules of M .
Tate R-modules are local objects for the flat topology (see [Dr06, Theorem 3.3].) In

particular, we may define a Tate OY -module F over a scheme Y (or more generally, an
algebraic stack) as a compatible system of Tate OZ-modules F

∣∣
Z

for every affine scheme Z
mapping to Y .

3.2.4. Let Y be a scheme over S. Then Y is placid if Zariski locally there is a presentation
Y
∼−→ lim
←−

Yi, where each Yi is a scheme of finite type, and the connecting morphisms Yj → Yi

are smooth surjections. We call a placid scheme Y pro-smooth, if we can furthermore choose
each Yi to be smooth.

If Y is a pro-smooth placid scheme, then the tangent sheaf TY/S is naturally a Tate
OY -module. Indeed, locally on Y there is an isomorphism:

TY/S
∼−→ lim
←−

π∗i TYi/S ,

where πi : Y → Yi is the canonical map.

3.2.5. Suppose Y is a pro-smooth placid scheme. We define a Lie algebroid on Tate module
over Y as a Tate OY -module L together with a continuous OY -linear map σ : L → TY/S ,
such that as a plain OY -module, L has the structure of a Lie algebroid with σ as its anchor
map.

Example 3.4. The tangent sheaf TY/S has the structure of a Lie algebroid on Tate module.

A classical quasi-twisting on Tate modules Tcl over Y is a central extension (3.1) of Lie
algebroids on Tate modules where all the morphisms are continuous.

Remark 3.5. The above notion is very näıve, as it does not indicate how the Lie bracket
interacts with the topology on L. However, it suffices for our purpose since in the construc-

tion of T
(κ,E)
G in §5, the first quotient step will reduce the classical quasi-twisting on Tate

modules T̃
(κ,E)
G into a discrete, classical quasi-twisting over Bun

(≤θ)
G,nx.

Remark 3.6. We will frequently refer to a classical quasi-twisting on Tate modules simply
as a classical quasi-twisting, as the Tate structures should be clear from the context.

3.3. Formal groupoids.

3.3.1. In this subsection, we review the theory of derived formal moduli problems. Let
Vect denote the derived ∞-category of chain complexes of k-vector spaces. It has a natural
symmetric monoidal structure which commutes with colimits in both variables. As such,
it may be viewed as a commutative algebra object in the ∞-category of presentable stable
∞-categories equipped with the Lurie tensor product.

By a DG category, we mean a module object over Vect in this symmetric monoidal ∞-
category. We use the notation DGCatcont to denote the∞-category of DG categories (whose
functors are continuous, i.e., colimit-preserving.) The ∞-category DGCatcont inherits a
symmetric monoidal structure.
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3.3.2. We use the notation PStklaft-def /S to mean the ∞-category of prestacks locally al-
most of finite type (“laft”) over S which admit deformation theory (see [GR16, III.1]). A
simplicial object R• of PStklaft-def /S is called a groupoid (relative to S) if the following
conditions are satisfied:

(a) for every n ≥ 2, the map Rn → R1×
Y
· · ·×

Y
R1 induced by products of the maps [1]→ [n]

sending 0 i, 1 i+ 1, is an isomorphism;
(b) the map R2 → R1 ×

Y
R1 induced by the product of the maps [1]→ [2] sending

0 0, 1 1 and 0 0, 1 2

is an isomorphism.

Furthermore, R• is a formal groupoid if all morphisms in R• are nil-isomorphisms, i.e.,
they induce isomorphisms on the reduced prestacks. We denote the ∞-category of formal
groupoids (relative to S) by FGpd/S . There is a functor

FGpd/S → PStklaft-def /S , R•  R0, (3.2)

whose fiber at Y is denoted by FGpd/S(Y) and is referred to as the ∞-category of formal
groupoids actin on Y.

Example 3.7. Completion along the main diagonals Y→ Y×
S
· · ·×

S
Y organizes into a formal

groupoid R• := (Y•)
Ŷ

acting on Y. This is the final object of FGpd/S(Y) and is called the
infinitesimal groupoid acting on Y.

3.3.3. The functor (3.2) is a Cartesian fibration of ∞-categories. The Cartesian arrows in
FGpd/S are maps R• → T• such that the induced morphism

R• → T• ×
(Z•)

Ẑ

(Y•)
Ŷ
, where Y := R0 and Z := T0

is an isomorphism.

3.4. Formal moduli problems.

3.4.1. Let FMod/S denote the ∞-category of morphisms Y → Y[ in PStklaft-def /S which

are nil-isomorphisms.8 In particular, FMod/S is a full subcategory of the functor category

Fun(∆1,PStklaft-def /S). Its objects are called formal moduli problems (relative to S). We
have a functor

FMod/S → PStklaft-def /S , (Y→ Y[) Y, (3.3)

whose fiber at Y ∈ PStklaft-def /S is by definition the ∞-category of formal moduli problems
under Y, and is denoted by FMod/S(Y).

3.4.2. The functor (3.3) is a Cartesian fibration of ∞-categories, whose Cartesian arrows
are commutative diagrams on the left whose induced square on the right is Cartesian:

Y //

��

Z

��
Y[ // Z[

Y[ //

��

Z[

��
YdR

// ZdR

8Caution: our notation FMod/S is different from [GR16, IV.1, §1], where the analogous notation means

formal moduli problems over a fixed laft prestack.
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Applying straightening to (3.3), we obtain a pullback functor for every morphism f : Y→ Z

in PStklaft-def /S :

f !
FMod : FMod/S(Z)→ FMod/S(Y), f !

FModZ
[ := Z[ ×

ZdR

YdR.

3.4.3. The Čech nerve construction defines a functor Ω : FMod/S → FGpd/S of ∞-

categories over PStklaft-def /S . The main result in [GR16, §IV.1] (which has its origin in
Lurie’s theory of formal moduli problems) can be summarized as follows:

Theorem 3.8 (Lurie-Gaitsgory-Rozenblyum). The functor Ω is an equivalence.

Proof. Indeed, [GR16, §IV.1, Theorem 2.3.2] shows that Ω is an equivalence when restricted
to the fiber at each Y ∈ PStklaft-def /S . The above formulation follows because Ω also
preserves Cartesian arrows (and we appeal to [Lu09, Corollary 2.4.4.4]). �

We denote the functor inverse to Ω by B : FGpd/S → FMod/S . Their restrictions to the
fiber at Y ∈ PStklaft-def /S are denoted by ΩY and BY.

Example 3.9 (de Rham prestack). Let YdR/S denote the fiber product YdR ×
SdR

S which is

the terminal object of FMod/S(Y). Then YdR/S corresponds to the infinitesimal groupoid

(Y)•
Ŷ

(Example 3.7) under the equivalence FGpd/S(Y)
∼−→ FMod/S(Y).

In particular, given any group object H ∈ PStklaft-def /S , there is a canonical short exact
sequence of group prestacks:

1→ H{1̂} → H → HdR/S → 1 (3.4)

Corollary 3.10. The prestack BY(R•) is identified with the quotient of R• in PStklaft-def /S.

Proof. We need to show that BY(R•) identifies with colim
∆op

R•, where the colimit is taken in

PStklaft-def /S . This follows from the fact that Maps(BY(R•),Z) identifies with the mapping
space from Y → BY(R•) to Z → Z in FMod/S , which by Theorem 3.8 identifies with
Maps(R•,Z). �

3.4.4. However, we point out that the quotient of R• in PStklaft-def /S may not agree with
that in PStk/S , which is one of the main technical complications for us.

Example 3.11. Let S = pt and we omit the subscript /S from the notations. The Čech
nerve of the object pt → A1

{0̂} in FMod is the formal groupoid R• := pt×
A1
· · · ×

A1
pt. The

quotient colim
∆op

R• taken in PStk does not agree with A1
{0̂}. Indeed, since colimits in PStk

are computed pointwise, we have an equivalence:

Maps(Spec(k[ε]/(ε2)), colim
∆op

R•) ∼= colim
∆op

Maps(Spec(k[ε]/(ε2)),R•). (3.5)

On the other hand, morphisms from a classical scheme to a DG scheme factors through its
classical subscheme. Since the classical subscheme of each Rn is a point, the colimit (3.5)
yields a point (as an ∞-groupoid). However, the formal scheme A1

{0̂} receives nontrivial

maps from Spec(k[ε]/(ε2)).
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3.4.5. We note one case where BY(R•) agrees with the quotient in PStk/S .

Lemma 3.12. Suppose the morphisms R1 //// Y are formally smooth. Then the canonical
map colim

∆op
R• → BY(R•), where the colimit is taken in PStk/S, is an isomorphism.

Recall that a morphism X → Y of prestacks is called formally smooth if for every affine
DG scheme T over Y, and a nilpotent embedding T ↪→ T ′, the map

Maps(T ′,Y)→ Maps(T,Y)

is surjective on π0 (see [GR16, III.1, §7.3].) Let T∗X/Y
∣∣
x

denote the cotangent complex at

a T -point x : T → X. It is proved in op.cit. that if X → Y admits (relative) deformation
theory, then formal smoothness is equivalent to

Maps(T∗X/Y
∣∣
x
,F) ∈ Vect≤0, (3.6)

where F ∈ QCoh(T )♥ and T is any affine DG scheme with a morphism x : T → X.9

Proof of Lemma 3.12. The authors of [GR16] give the following description of BY(R•). Let
U be an affine DG scheme. Then Maps(U,BY(R•)) is the space of the following data:

(a) a formal moduli problem Ũ over U ;

(b) a morphism from the Čech nerve of Ũ → U to R•, such that the following diagram is
Cartesian for each of the vertical arrows:

Ũ ×
U
Ũ //

����

R1

����
Ũ // R0

On the other hand, Maps(U, colim
∆op

R•) classifies the above data satisfying the condition that

Ũ → U admits a section. Now, since Ũ → U is a nil-isomorphism, we obtain a section over

U red. A lift of this section to U exists if the morphism Ũ → U is formally smooth.

Now, let T be affine DG scheme equipped with a map ũ : T → Ũ . The Cartesian
diagrams:

Ũ ×
U
Ũ //

��

Ũ

��
Ũ // U

Ũ ×
U
Ũ //

��

R1

��
Ũ // Y

show that T∗
Ũ/U

∣∣
ũ

is isomorphic to T∗
Ũ×
U
Ũ/Ũ

∣∣
(ũ,ũ)

, which is in turn isomorphic to T∗R1/Y

∣∣
r1

where r1 is the composition T
(ũ,ũ)−−−→ Ũ ×

U
Ũ → R1. Hence the formal smoothness of R1 over

Y implies that of Ũ over U . �

3.4.6. In particular, let h be a (classical) Lie algebra over OS , such that exp(h) acts on

some Y ∈ PStklaft-def /S . Then the groupoid Y×
S

exp(h) //// Y is formally smooth, so its

quotient may be formed in PStk/S . We have two particular instances of this example:

(a) Taking Y = pt, we see that B exp(h) is the prestack quotient pt / exp(h);
(b) Let H be a group scheme. Then the prestack quotient H/ exp(h) identifies with HdR/S .

9We use the notation QCoh(Y ) to denote the DG category of complexes of OY -modules. In contrast, the
abelian category of OY -modules is denoted by QCoh(Y )♥, understood as the heart of a natural t-structure

on QCoh(Y ).
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3.5. Modules over a formal moduli problem.

3.5.1. Recall that for an affine DG scheme Y almost of finite type over S, the DG category
IndCoh(Y ) is the ind-completion of the full subcategory Coh(Y ) ↪→ QCoh(Y ). There is a
symmetric monoidal functor:

ΥY/S : QCoh(Y )→ IndCoh(Y ), F  F ⊗ ωY/S , (3.7)

which is an equivalence of DG categories if Y → S is smooth ([GR16, II.3]). The basic
functoriality of ind-coherent sheaves is the (derived) !-pullback functor. It is well-defined
for any morphism f : X → Y of affine DG schemes almost of finite type over S and (3.7)
intertwines it with the (derived) pullback functor f∗ on quasi-coherent sheaves.

3.5.2. For a laft prestack Y, the DG category IndCoh(Y) is defined as the limit of IndCoh(T )
over all affine DG schemes T equipped with a map to Y (with transition functors given by
!-pullback). The formalism of Kan extension allows us to regard IndCoh(−) as a functor:

IndCoh : PStklaft /S → DGCatcont .

In particular, a morphism f : X→ Y of laft prestacks gives rise to the functor of !-pullback:
f ! : IndCoh(Y)→ IndCoh(X).

3.5.3. Note that if f : X → Y is an inf-schematic nil-isomorphism, then the functor f ! is
conservative ([GR16, III.3, Proposition 3.1.2]). It furthermore has a left adjoint f IndCoh

∗ and
the pair (f IndCoh

∗ , f !) is monadic. One deduces from this a descent property (see Proposition
3.3.3 of op.cit.):

Proposition 3.13. Let X•Y be the Čech nerve of an inf-schematic nil-isomorphism f : X→
Y. Then the canonical functor:

IndCoh(Y)→ Tot(IndCoh(X•Y)) (3.8)

is an equivalence. �

3.5.4. The DG category of modules over an object Y[ ∈ FMod/S(Y) is defined as IndCoh(Y[).

Note that IndCoh(Y[) is a module object over QCoh(S). By the above discussion, there is
a conservative functor oblv : IndCoh(Y[) → IndCoh(Y) given by !-pullback along Y → Y[.
Furthermore, Proposition 3.13 provides an equivalence of categories:

IndCoh(Y[)
∼−→ Tot(IndCoh(R•)). (3.9)

whenever Y[ = BY(R•).

3.5.5. Given Y[ ∈ (PStklaft-def)Y//S , we can associate the relative tangent complex TY/Y[

which is in general an object of IndCoh(Y). (Informally, since the cotangent complex natu-
rally lives in the pro-category of quasi-coherent sheaves, the tangent complex is naturally an
ind-coherent sheaf, see [GR16, III.1, §4.4] for details.) The following result is [GR16, IV.4,
Theorem 9.1.5]:

Theorem 3.14. Suppose Y is a finite type scheme over S. We have a fully faithful functor:

LieAlgd/S(Y ) ↪→ FGpd/S(Y ), (3.10)

whose essential image consists of those formal groupoids R• such that TY/BY (R•) lies in the

essential image of QCoh(Y )♥ under ΥY/S. �
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Composing (3.10) with BY , we obtain a fully faithful functor

LieAlgd/S(Y ) ↪→ FMod/S(Y ), (3.11)

whose essential image consists of those formal moduli problems Y[ ∈ FMod/S(Y ) such that

TY/Y[ lies in ΥY (QCoh(Y )♥). Furthermore, given a smooth morphism π : Y ′ → Y of finite
type schemes over S, the following diagram commutes:

LieAlgd/S(Y )
π!

LieAlgd //

(3.11)

��

LieAlgd/S(Y ′)

(3.11)

��
FMod/S(Y )

π!
FMod // FMod/S(Y ′)

(3.12)

where π!
LieAlgd is the pullback of Lie algebroids (as defined in [BB93]), and π!

FMod is the
functor described in §3.4.1.

In what follows, we will frequently use the fact that π!
LieAlgd(L) has underlying OY ′ -

module given by π∗L ×
π∗TY/S

TY ′/S .

Notation 3.15. We shall refer to the image Y[ of a Lie algebroid L under (3.11) as the
formal moduli problem associated to L, and denote it by Y[ := LF.

Note that when Y → S is smooth, IndCoh(Y[) is identified with the DG category of com-
plexes of (quasi-coherent) L-modules.

3.6. Quasi-twistings.

3.6.1. Let Y ∈ PStklaft-def /S . We use Ĝm to denote the formal completion of Gm at identity.
It is a group formal scheme.

Definition 3.16. A quasi-twisting T over Y consists of the following data:

(a) an object Y[ ∈ FMod/S(Y);

(b) a Ĝm-gerbe Ŷ[ over Y[;

(c) a trivialization of the pullback of Ŷ[ along Y→ Y[.

We say that T is based at the formal moduli problem Y[.

Remark 3.17. For an abelian group prestack A over S, the notion of an A-gerbe here is
taken in the näıve sense: the prestack B2A classifies A-gerbes (on an affine S-scheme) that
are globally nonempty, and an A-gerbe on a prestack Y is an object of

GeA(Y) := lim
T→Y

Maps(T,B2A),

where T ranges through affine S-schemes mapping to Y. (Informally, an A-gerbe is a torsor

for the classifying prestack BA.) We will later show that using étale locally trivial Ĝm-gerbes
in the definition of a quasi-twisting produces the same class of objects.

Remark 3.18. Alternatively, one can think of a quasi-twisting T as consisting of two formal

moduli problems Ŷ[ → Y[ under Y, equipped with the structure of a Ĝm-gerbe.

3.6.2. The ∞-groupoid of quasi-twistings T based at Y[ can be defined as a fiber of ∞-
groupoids:

QTw/S(Y/Y[) := Fib(GeĜm(Y[)→ GeĜm(Y)).

More generally, we use QTwA
/S(Y/Y[) to denote an analogously defined category, with the

abelian group prestack A acting as the structure group instead of Ĝm.
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3.6.3. We now show that quasi-twistings can be defined using different structure groups.
The same results about twistings are obtained in [GR14].

Lemma 3.19. The functor of inducing an A-gerbe from an A{1̂}-gerbe gives rise to an

equivalence of categories QTw
A{1̂}
/S (Y/Y[)

∼−→ QTwA
/S(Y/Y[).

Proof. In light of the exact sequence (3.4), an inverse functor exists if the induced AdR/S-

gerbe of any object in QTwA
/S(Y/Y[) is canonically trivialized. Indeed, let Ŷ[AdR/S

be the

AdR/S-gerbe over Y[ induced from some A-gerbe Ŷ[A. Clearly, there is an identification

between Ŷ[AdR/S
and the formal completion of Ŷ[A inside Y[, i.e., Ŷ[AdR

∼−→ (Ŷ[A)dR/S ×
YdR/S

Y[

(c.f. Example 3.9).

Therefore, a section of the AdR/S-gerbe Ŷ[AdR/S
amounts to filling in the dotted arrow

Ŷ[AdR/S
//

��

(Ŷ[A)dR/S

��
Y[ //

99

YdR/S

making the lower-right triangle commute. However, the structure of a quasi-twisting on Ŷ[A
supplies a section Y → Ŷ[A over Y[. Hence we obtain a map Y[ → YdR/S → (Ŷ[A)dR/S over
YdR/S . �

It follows from Lemma 3.19 that the following functors are equivalences:

QTwGm
/S (Y/Y[)

∼←− QTw/S(Y/Y[)
∼−→ QTwĜa

/S (Y/Y[)
∼−→ QTwGa

/S (Y/Y[). (3.13)

Let QTwét
/S(Y/Y[) denote the∞-groupoid of étale locally trivial Ĝm-gerbes over Y[, equipped

with a section over Y.

Corollary 3.20. The tautological functor QTw/S(Y/Y[)→ QTwét
/S(Y/Y[) is an equivalence.

Proof. We use the Ga-incarnation of quasi-twistings, as well as their counterparts defined
by étale locally trivial gerbes (see Lemma 3.19). For an affine S-scheme T , there holds

H1
ét(T,Ga) = 0, H2

ét(T,Ga) = 0.

Let B2
ét Ga denote the étale sheafification of B2 Ga. Thus, it classifies étale locally trivial

Ga-gerbes. The above vanishing statements show that the canonical map B2 Ga → B2
ét Ga

is an isomorphism. It follows that the corresponding notions of quasi-twistings are also
equivalent. �

3.7. Modules over a quasi-twisting.

3.7.1. We continue to assume that Y ∈ PStklaft-def /S and T is a quasi-twisting over Y. Our
goal now is to define T-Mod as a DG category tensored over QCoh(S) (i.e., it is a module
object over QCoh(S), see §3.3.1.) We first proceed more generally and define ind-coherent

sheaves “twisted” by a Ĝm-gerbe.
The discussion below applies also to Gm-gerbes, where alternative definitions of the

twisted category exist (for example, the category denoted Db(Ỹ)1 of [BB06, §2.1].) In fact,

these notions agree after inducing a Ĝm-gerbe along the map of structure groups Ĝm → Gm.

We choose to present the construction in terms of Ĝm-gerbes since our theory uses only nil-
isomorphisms.
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3.7.2. Let Z ∈ PStklaft-def /S , and Ẑ be a Ĝm-gerbe over Z. Consider the canonical action of

BGm on Vect, which induces an action of B Ĝm. (See [Be13, §1-2] for notions pertaining to
group actions on DG categories. Informally, the BGm-action on Vect is given by tensoring a
vector space with a line.) Formally, Vect can be regarded as a co-module object in DGCatcont

over the co-algebra (IndCoh(B Ĝm),m!), where m is the multiplication map on B Ĝm. The
co-action

Vect→ Vect⊗ IndCoh(B Ĝm)
∼−→ IndCoh(B Ĝm)

is specified by χ ∈ IndCoh(B Ĝm), the character sheaf induced from the map B Ĝm → BGm.

Note that IndCoh(Ẑ) admits a B Ĝm-action, so the product IndCoh(Ẑ) ⊗ Vect is again

acted on by B Ĝm. The corresponding co-simplicial system {IndCoh(Ẑ× B Ĝ×nm )}[n]∈∆ has
the following first few terms:

· · · IndCoh(Ẑ× B Ĝ×2
m )oo oo

oooo IndCoh(Ẑ× B Ĝm)

(act×1)!

oo

(1×m)!

oo

pr!
12⊗χ
oo IndCoh(Ẑ).

act!
oo

pr!
1⊗χ
oo (3.14)

We define the DG category IndCoh(Z)
Ẑ

of Ẑ-twisted ind-coherent sheaves on Z as the
totalization of the above co-simplicial system. One sees immediately that IndCoh(Z)

Ẑ
is

tensored over QCoh(S).

3.7.3. Since the functors associated to each face map [n]→ [m] all admit left adjoints, we
obtain:

IndCoh(Z)
Ẑ

= lim
[n]∈∆

IndCoh(Ẑ× B Ĝ×nm )
∼−→ colim

[n]∈∆op
IndCoh(Ẑ× B Ĝ×nm ),

where we use the left adjoints to form the colimit. Here, the colimit is taken in DGCatcont.
(The forgetful functor from DGCatcont to plain∞-categories does not commute with colim-
its.)

Remark 3.21. Note that any (global) trivialization of the gerbe Ẑ → Z gives rise to an

equivalence IndCoh(Z)
Ẑ

∼−→ IndCoh(Z).

Remark 3.22. In [GL16, §1.7], a definition of a twisted presheaf of DG categories is given.
We relate their definition to ours. For the presheaf over Z:

IndCoh/Z : (DGSchaff
/Z)op 3 S  IndCoh(S)

and a Ĝm-gerbe Ẑ, the twisted sheaf of DG categories (IndCoh/Z)
Ẑ

is defined by

(a) specifying its values on the category Split(Ẑ) of affine DG schemes S → Z equipped

with a lift to Ẑ, using the canonical Maps(S,B Ĝm)-action on IndCoh(S); and then

(b) applying h-descent10 along the basis Split(Ẑ) → DGSchaff
/Z to obtain a sheaf (in the

h-topology) over DGSchaff
/Z, denoted by (IndCoh/Z)

Ẑ
.

Thus we may calculate the global section Γ(Z, (IndCoh/Z)
Ẑ

) by the covering Ẑ → Z. The

resulting co-simplicial system is identified with (3.14). Hence the definition of Ẑ-twisted
ind-coherent sheaves in [GL16, §1.7] (adjusted to the h-topology) agrees with ours.

10The authors of [GL16] work with the étale topology instead.
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3.7.4. Let T be a quasi-twisting over Y, represented by the Ĝm-gerbe Ŷ[ → Y[. We denote

by Ŷ the Ĝm-gerbe over Y pulled back along Y → Y[; it is equipped with a canonical
trivialization.

We define the DG category of T-modules by: T-Mod := IndCoh(Y[)
Ŷ[

. There is a canon-
ical functor:

oblvT : T-Mod→ IndCoh(Y)
Ŷ

∼−→ IndCoh(Y),

since Ŷ[ is trivialized over Y, and Remark 3.21 identifies the corresponding twisted category
with IndCoh(Y).

Proposition 3.23. The functor oblvT admits a left adjoint indT, and the pair of functors
(indT,oblvT) is monadic.

Proof. The functor oblvT is by definition the totalization of the !-pullback functors:

(π(n))! : IndCoh(Ŷ[ × B Ĝ×nm )→ IndCoh(Ŷ× B Ĝ×nm ),

where π(n) denotes the morphism Ŷ × B Ĝ×nm → Ŷ[ × B Ĝ×nm . Each (π(n))! admits a left

adjoint π
(n)
∗,IndCoh. Furthermore, the diagram induced from an arbitrary face map:

IndCoh(Ŷ× B Ĝ×nm ) //

π
(n)
∗,IndCoh��

IndCoh(Ŷ× B Ĝ×mm )

π
(m)
∗,IndCoh��

IndCoh(Ŷ[ × B Ĝ×nm ) // IndCoh(Ŷ[ × B Ĝ×mm )

which a priori commutes up to a natural transformation, actually commutes. Hence oblvT

admits a left adjoint indT := Tot(π
(n)
∗,IndCoh). We now prove:

(a) oblvT is conservative; this is because all other arrows in the following commutative
diagram:

IndCoh(Y[)
Ŷ[

ev0

��

oblvT// IndCoh(Y)
Ŷ

ev0

��
IndCoh(Y[)

(π(0))!

// IndCoh(Y)

are conservative, hence so is oblvT.
(b) oblvT preserves colimits; this is obvious as we work in DGCatcont.

It follows that that the pair (indT,oblvT) is monadic, by the Barr-Beck-Lurie theorem. �

3.7.5. Using Proposition 3.23, we may regard U(T) := oblvT ◦ indT as an algebra object in
End(IndCoh(Y)), and the DG category T-Mod identifies with that of U(T)-module objects
in IndCoh(Y). We call U(T) the universal envelope of T.

3.8. Comparison with the classical notion.

3.8.1. Suppose Y is a (classical) scheme of finite type over S. Let L be a classical Lie
algebroid over Y and Y[ ∈ FMod/S(Y ) be the formal moduli problem associated to L,
under the embedding (3.11). The goal of this subsection is to show that quasi-twistings
based at Y[ are equivalent to classical quasi-twistings based at L.
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3.8.2. Given a formal moduli problem Ŷ[ → Y[ such that T
Y/Ŷ[

∈ ΥY (QCoh(Y )♥), one can

functorially assign a classical Lie algebroid L̂ equipped with a map L̂→ L. Furthermore, a

morphism Ŷ[ × B Ĝm → Ŷ[ in FMod/S(Y ) induces a map

L̂⊕ OY → L̂, (l, f) l + f1 (3.15)

where 1 is the image of (0, f) in L̂. If the morphism Ŷ[ × B Ĝm → Ŷ[ realizes Ŷ[ as a

Ĝm-gerbe over Y[, then we see that OY → L̂, f  f1 is the kernel of the canonical map

L̂ → L. The fact that (3.15) preserves Lie bracket then implies OY is central inside L̂. In

other words, the map L̂→ L is a central extension of classical Lie algebroids.

3.8.3. Now, given any object in QTw/S(Y/Y[), we claim that the corresponding formal

moduli problem Ŷ[ satisfies the property that T
Y/Ŷ[

lies in ΥY (QCoh(Y )♥). Indeed, we

have a canonical triangle in IndCoh(Y ):

ωY ∼= T
Ŷ[/Y[

∣∣
Y
→ T

Y/Ŷ[
→ TY/Y[

and the outer terms lie in the essential image of QCoh(Y )♥. Hence the previous discussion
shows that we have a functor:

QTw/S(Y/Y[)→ QTwcl
/S(Y/L). (3.16)

Proposition 3.24. The functor (3.16) is an equivalence of categories.

In particular, the ∞-category QTw/S(Y/Y[) is an ordinary category.

Proof. We explicitly construct the functor inverse to (3.16). Namely, given a central exten-

sion L̂ of L, we need to equip its corresponding formal moduli problem Ŷ[ with the structure

of a Ĝm-gerbe over Y[. As before, the action map Ŷ[×B Ĝm → Ŷ[ arises from the morphism
of classical Lie algebroids over Y :

L̂⊕ OY → L̂, (l, f) l + f1.

The morphism induced by action and projection Ŷ[ × B Ĝm → Ŷ[ ×
Y[

Ŷ[ is an isomorphism

since the same holds for the corresponding map of classical Lie algebroids:

L̂⊕ OY → L̂×
L
L̂, (l, f) (l + f1, l).

It remains to show that Ŷ[ → Y[ admits a section over any affine DG scheme T mapping
to Y[. We shall deduce the existence of this section from the following claim:

Claim 3.25. The morphism Ŷ[ → Y[ is formally smooth.

Indeed, let T be any affine DG scheme with a morphism ŷ : T → Ŷ[. By the criterion
of formal smoothness (3.6), we ought to show Maps(T∗

Ŷ[/Y[

∣∣
ŷ
,F) ∈ Vect≤0 for all F ∈

QCoh(T )♥. The Cartesian square:

T
(ŷ,ŷ)// Ŷ[ ×

Y[
Ŷ[

��

// Ŷ[

��
Ŷ[ // Y[

together with the isomorphism above gives:

T∗
Ŷ[/Y[

∣∣
ŷ

∼−→ T∗
Ŷ[×

Y[
Ŷ[/Ŷ[

∣∣
(ŷ,ŷ)

∼−→ T∗
Ŷ[×B Ĝm/Ŷ[

∣∣
(ŷ,1)

∼−→ OT [−1].
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One deduces from this the required degree estimate.

Using the claim, we will construct a section of Ŷ[ → Y[ over T → Y[ as follows. First
consider the fiber product T ×

Y[
Y, which is equipped with a nil-isomorphism to T . We obtain

a solid commutative diagram:

T red //

""

T ×
Y[

Y

��

// Y //

��

Ŷ[

��
T //

77

Y[

Formal smoothness now implies the existence of the dotted arrow. �

Remark 3.26. By letting L = TY/S be the tangent Lie algebroid, we obtain from Proposi-
tion 3.24 the fact that Picard algebroids identify with twistings on classical schemes locally
of finite type. The same result is established in [GR14, §6.5] using a computation involving
de Rham cohomology.

4. How to take quotient of a Lie algebroid?

This section is devoted to the study of quotients of Lie algebroids, in both classical and
DG settings. The set-up involves an H-torsor Y → Z and a Lie algebroid L over Y . With
additional data on L, there exists a quotient Lie algebroid over Z. The quotient procedure
we shall describe takes as input a map η : k⊗OY → L, where k is an arbitrary Lie algebra. It
generalizes two existing notions—weak and strong quotients—both considered by Beilinson
and Bernstein [BB93]. For technical reasons involving ∞-type schemes, we shall construct
two quotient functors:

(a) Q
(k,H)
inj , which is a classical procedure that works in the case where η is injective;

(b) Q(H,H[), which is its geometric counterpart for Y locally of finite type,

and we check that they agree in overlapping cases. A geometric procedure that works in full
generality should exist as soon as the theory in [GR16] is extended to ∞-type situations.

Throughout this section, we work over an affine scheme S smooth over k.

4.1. (k, H)-Lie algebroids.

4.1.1. We describe the necessary data for taking quotients of Lie algebroids.

Definition 4.1. A classical action pair (k, H) consists of a flat affine group scheme H over
S, an OS-linear Lie algebra k acted on by H, as well as a morphism of Lie algebras:

k→ h := Lie(H) (4.1)

with the following properties:

(a) (4.1) is H-equivariant, where h is equipped with the adjoint H-action;
(b) the k-action on itself induced from (4.1) is the adjoint action.

Remark 4.2. This datum is superficially similar to that of a Harish-Chandra pair, but they
serve very different purposes.

Example 4.3. Fix an S-point gκ of GrGLag(g⊕ g∗) (see §2). Then we have a classical action
pair (gκ[[t]], S×G[[t]]), where the morphism (4.1) is induced from the projection gκ → g⊗OS .
All classical action pairs considered in this paper are variants of (gκ[[t]], S×G[[t]]). Note that
the group scheme S ×G[[t]] is not of finite type.
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4.1.2. The notion of a morphism (k0, H0)→ (k, H) of classical action pairs is obvious. We
say that (k0, H0) is a normal subpair if k0 ↪→ k is an ideal, H0 ↪→ H is a normal subgroup,
the H-action stabilizes k0, and H0 acts trivially on k/k0. This definition means precisely
that a normal subpair fits into an exact sequence (in the obvious sense):

1→ (k0, H0)→ (k, H)→ (k0, H0)→ 1. (4.2)

4.1.3. Let Y be a classical scheme over S equipped with an H-action. Recall that every
H-equivariant OY -module F admits an h-action by derivations. Specializing to OY itself, we
obtain a canonical map:

h⊗ OY → TY/S . (4.3)

On the other hand, the OY -module TY/S admits a canonical H-equivariance structure, given
by pushforward of tangent vectors.

Definition 4.4. A (k, H)-Lie algebroid on Y consists of a Lie algebroid L ∈ LieAlgd/S(Y ),
anH-equivariance structure on the underlying OY -module of L, and a morphism η : k⊗OY →
L of H-equivariant OY -modules, subject to the following conditions:

(a) the H-equivariance structure on L is compatible with its Lie bracket;
(b) the anchor map σ of L intertwines the H-equivariance structures on L and TY/S ;
(c) the following diagram is commutative:

L
σ
&&

k⊗ OY

η
77

(4.1) &&

TY/S

h⊗ OY
(4.3)

99

(4.4)

(d) η is compatible with the Lie bracket on L in the following sense: given ξ ∈ k⊗ OY and
l ∈ L, there holds:

[η(ξ), l] = ξh · l ∈ L (4.5)

where ξh is the image of ξ in h⊗OY along (4.1), and ξh · l denotes the action of ξh on l
coming from the equivariance structure.

We will frequently write a (k, H)-Lie algebroid as (L, η), in order to emphasize the depen-

dence on η. The category of (k, H)-Lie algebroids on Y is denoted by LieAlgd
(k,H)
/S (Y ). Given

another scheme Y ′ over S acted on by H and an H-equivariant morphism Y ′ → Y , one can
form the pullback of a (k, H)-Lie algebroid in a way compatible with the forgetful functor
to plain Lie algebroids.

4.2. Quotient of Lie algebroids.

4.2.1. We describe how to form the quotient of a (k, H)-Lie algebroid when the morphism

η is injective. Denote the category of such (k, H)-Lie algebroid by LieAlgd
(k,H)
inj /S(Y ).

4.2.2. Suppose Z is a scheme over S and Y is an H-torsor over Z. Since H is affine and
flat, the projection π : Y → Z is an affine, faithfully flat cover (in particular, fpqc). We will
define a quotient functor:

Q
(k,H)
inj : LieAlgd

(k,H)
inj /S(Y )→ LieAlgd/S(Z) (4.6)

on each (L, η) ∈ LieAlgd
(k,H)
inj (Y/S) by the following procedure:
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(a) (OZ-module and anchor map) We have a morphism of H-equivariant OY -modules:

L/(k⊗ OY )→ TY/S/(h⊗ OY )
∼−→ π∗TZ/S

by (4.4). Let L0 denote the fpqc descent of L/(k ⊗ OY ) to Z, so we obtain a map of

OZ-modules σ0 : L0 → TZ/S . The image of (L, η) under Q
(k,H)
inj is supposed to have

underlying OZ-module L0 and anchor map σ0.
(b) (Lie bracket) Since π is affine, it suffices to define an OS-linear Lie bracket on π−1L0.

Consider the embedding:

π−1L0 ↪→ π∗L0
∼−→ L/(k⊗ OY ).

The Lie bracket on L will induce one on π−1L0 if [k⊗OY , π
−1L0] = 0 in L. The latter

identity is guaranteed by (4.5).

We omit checking that this procedure gives rise to a well-defined functor Q
(k,H)
inj .

4.2.3. Given a flat morphism of schemes f : Z ′ → Z, we set Y ′ := Z ′ ×
Z
Y which is an

H-torsor over Z ′. The map f̃ : Y ′ → Y is H-equivariant, and the pullback of (L, η) ∈
LieAlgd

(k,H)
inj /S(Y ) along f̃ lies in LieAlgd

(k,H)
inj /S(Y ′). Furthermore, Q

(k,H)
inj is compatible with

pullbacks along f and f̃ .

Remark 4.5. Since Lie algebroids are smooth local objects (see [BB93]) and Q
(k,H)
inj is

compatible with flat pullbacks, we may generalize Q
(k,H)
inj to the case where Z := Y/H is

representable by an algebraic stack (i.e., smooth locally a scheme).

Remark 4.6. The special case where the classical action pair is given by (h, H) with (4.1)
being the identity map, has been studied in [BB93] under the name strong quotient. Note
that when H acts freely on Y , the map η is automatically injective.

Example 4.7. Another instance of the functor (4.6) is the weak quotient. This is the case
where k = 0. The only data needed in defining a (0, H)-Lie algebroid are a Lie algebroid
L ∈ LieAlgd/S(Y ), together with an H-equivariance structure on the underlying OY -module
of L, subject to the first two conditions in §4.4.

Suppose Y/H is representable by an algebraic stack. Then the resulting quotient Q
(0,H)
inj (L)

has underlying OY/H -module the descent of (the OY -module) L along Y → Y/H.

4.2.4. We now characterize the object Q
(k,H)
inj (L) ∈ LieAlgd/S(Z) by a universal property.

Consider an arbitrary Lie algebroid M ∈ LieAlgd/S(Z). We can equip π!
LieAlgdM with the

structure of a (k, H)-Lie algebroid as follows:

(a) regarding π!
LieAlgdM as the OY -module π∗M ×

π∗TZ/S

TY/S , the H-equivariance structure

is a combination of the natural H-equivariance structures on π∗M and TY/S ;

(b) the morphism η : k⊗OY → π!
LieAlgd(M) is a combination of the zero map k⊗OY → π∗M

and the composition k⊗ OY → h⊗ OY → TY/S .

Note that π!
LieAlgdM ∈ LieAlgd

(k,H)
/S (Y ) does not belong to LieAlgd

(k,H)
inj /S(Y ) in general.

Proposition 4.8. There is a natural bijection:

MapsLieAlgd/S(Z)(Q
(k,H)
inj (L),M)

∼−→ Maps
LieAlgd

(k,H)

/S
(Y )

(L, π!
LieAlgdM) (4.7)
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Proof. A morphism Q
(k,H)
inj (L)→M is equivalent to an H-equivariant map φ : L/k⊗OY →

π∗M preserving the Lie bracket on H-invariant sections. We claim that such datum is

equivalent to a morphism φ̃ : L→ π!
LieAlgdM of (k, H)-Lie algebroids.

Indeed, given φ, the map φ̃ is uniquely determined by the properties that the following
diagrams commute:

L
φ̃ //

��

π!
LieAlgdM

��
L/k⊗ OY

φ // π∗M

L
φ̃ //

σ $$

π!
LieAlgdM

��
TY/S .

Furthermore, φ̃ preserves the Lie bracket on L, because L is generated over OY by H-
invariant sections and on such sections, the Lie bracket factors through L/k ⊗ OY and

is preserved by φ. Conversely, given φ̃, the map φ is uniquely determined by the first
commutative diagram above. �

4.2.5. Suppose we are given an exact sequence (4.2) of classical action pairs, and an object

(L, η) ∈ LieAlgd
(k,H)
inj /S(Y ). Assume also that Y/H is representable by an algebraic stack.

Note that:

(a) Y/H0 admits an H0-action, realizing it as an H0-torsor over Y/H (in particular, Y/H0

is also representable by an algebraic stack);

(b) there is an induced (k0, H0)-Lie algebroid structure on Q
(k0,H0)
inj (L), for which the struc-

ture map

η0 : k0 ⊗ OY/H0 → Q
(k0,H0)
inj (L)

is again injective, i.e., (Q
(k0,H0)
inj (L), η0) ∈ LieAlgd

(k0,H0)
inj /S (Y/H0).

We have a version of the second isomorphism theorem:

Proposition 4.9. There is a natural isomorphism:

Q
(k0,H0)
inj ◦Q

(k0,H0)
inj (L)

∼−→ Q
(k,H)
inj (L).

Proof. As OY/H0 -modules, the cokernel of η0 identifies with the descent of L/k⊗ OY along

Y → Y/H0 since the latter map is faithfully flat. Hence the underlying OY/H -module of

Q
(k0,H0)
inj ◦Q(k0,H0)

inj (L) agrees with that of Q
(k,H)
inj (L). Identifications of the anchor maps and

the Lie brackets are immediate. �

4.2.6. Suppose we have a classical quasi-twisting (3.1) over Y , where both Lie algebroids

L̂ and L have the structure of (k, H)-algebroids, and L̂ → L is a morphism of such. In

particular, the structure map η̂ : k⊗OY → L̂ is a lift of η. Hence, if (L, η) ∈ LieAlgd
(k,H)
inj /S(Y ),

then so does (L̂, η̂). For fixed (L, η), we denote the category of classical quasi-twistings with

this additional structure by QTw
(k,H)
/S (Y/L).

Assuming that Z := Y/H is represented by an algebraic stack. Then the quotient Lie
algebroids again form a central extension:

0→ OY/H → Q
(k,H)
inj (L̂)→ Q

(k,H)
inj (L)→ 0.

Therefore, we may regard Q
(k,H)
inj as a functor:

Q
(k,H)
inj : QTw

(k,H)
/S (Y/L)→ QTw/S(Z/Q

(k,H)
inj (L)).
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Remark 4.10. When Y is placid and k is a topological Lie algebra over OS , we can adapt the
above definitions to make sense of a Tate (k, H)-Lie algebroid L (c.f. §3.2.5). In particular,
η will be a map out of the completed tensor product k⊗̂OY → L.

We do not discuss how to keep track of the topology in the (analogously defined) quotient

Q
(k,H)
inj (L), since all quotients considered in this paper have the properties that Y/H is locally

of finite type and Q
(k,H)
inj (L) should be discrete.

4.3. (H,H[)-formal moduli problems.

4.3.1. We now study the geometric version of quotient of Lie algebroids. Recall the ∞-
category FMod/S of §3.3.

Definition 4.11. We call a group object (H,H[) in FMod/S a geometric action pair if H
is a group scheme locally of finite type.

Explicitly, a geometric action pair consists of a group scheme H, a group prestack H[ ∈
PStklaft-def /S , and a nil-isomorphism H → H[ that respects the group structure.

4.3.2. We will functorially construct a geometric action pair from any classical action pair
(k, H), where H is locally of finite type. Indeed, there is a morphism exp(k) → H coming
from the composition exp(k) → exp(h) → H. Furthermore, the H-action on exp(k) equips
the prestack quotient H[ := H/ exp(k) with a group structure, such that H → H[ is a
group morphism. Note that Lemma 3.12 identifies H[ with BH(H × exp(k)•); in particular,
H[ ∈ PStklaft-def /S , so (H,H[) is a geometric action pair.

Lemma 4.12. The category of classical action pairs is identified with the full subcate-
gory of geometric action pairs (H,H[), for which the tangent complex TH/H[ belongs to

ΥH(QCoh(H)♥).

Proof. We explicitly construct the inverse functor. Given a geometric action pair (H,H[)
for which TH/H[ ∈ ΥH(QCoh(H)♥), we can functorially associate a classical Lie algebroid
L over H. The following Cartesian diagrams:

H ×
S
H //

m
��

H[ ×
S
H

act
��

H // H[

H ×
S
H //

m
��

H ×
S
H[

act
��

H // H[

equip the underlying OH -module of L with right, respectively left, H-equivariance structures.
Hence we may realize L as k ⊗ OH where k is an OS-module equipped with an H-action.
The Lie bracket on k comes from the Lie algebroid bracket on L. We omit checking that
these data make (k, H) into a classical action pair. �

4.3.3. For a geometric action pair (H,H[), we define FMod
(H,H[)
/S to be the ∞-category of

objects in FMod/S equipped with an (H,H[)-action. Explicitly, an object of FMod
(H,H[)
/S

consists of the following data:

(a) Y,Y[ ∈ PStklaft-def /S together with a nil-isomorphism Y→ Y[;

(b) an H-action on Y, and an H[-action on Y[, such that the morphism Y→ Y[ intertwines
them.
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Note that there is a functor

FMod
(H,H[)
/S → PStkHlaft-def /S , (Y,Y[) Y (4.8)

where PStkHlaft-def /S denotes the ∞-category of objects in PStklaft-def /S equipped with an

H-action. The fiber of (4.8) at Y is denoted by FMod
(H,H[)
/S (Y). Informally, FMod

(H,H[)
/S (Y)

is the ∞-category of formal moduli problems Y[ equipped with an H[-action that extends
the H-action on Y.

4.3.4. Suppose (k, H) and (H,H[) are as in §4.3.2, and let Y be a scheme locally of finite
type over S, equiped with an H-action. We will construct a functor:

LieAlgd
(k,H)
/S (Y )→ FMod

(H,H[)
/S (Y ) (4.9)

which enhances the association of formal moduli problems to Lie algebroids, in the sense
that the following diagram commutes:

LieAlgd
(k,H)
/S (Y )

(4.9)//

oblv
��

FMod
(H,H[)
/S (Y )

oblv
��

LieAlgd/S(Y )
(3.11) // FMod/S(Y )

To proceed, suppose (L, η) ∈ LieAlgd
(k,H)
/S (Y ). We need to construct an H[-action act[

on the formal moduli problem Y[ corresponding to L, together with a map of simplicial
prestacks:

· · ·
//////// Y ×S

H ×
S
H

act×1 //
1×m

//

pr12

//

��

Y ×
S
H

act //
pr1

//

��

Y

��
· · ·

//////// Y
[ ×
S
H[ ×

S
H[

act[×1//
1×m

//

pr12

// Y
[ ×
S
H[

act[ //
pr1

// Y[.

(4.10)

Since each formal moduli problem Y[×
S

(H[)• arises from the Lie algebroid pr∗Y L⊕ pr∗H(k⊗

OH)⊕• over Y ×
S
H•, we only need to

(a) produce a morphism

α : pr∗Y L⊕ pr∗H(k⊗ OH)→ act!
LieAlgd L (4.11)

between Lie algebroids over Y ×
S
H (which would rise to act[, in a way compatible with

the morphism act)
(b) check that the following diagram:

pr∗Y L⊕ pr∗H(k⊗ OH)⊕2 can //

act!
LieAlgd(α)×1

��

(1×m)!
LieAlgd(pr∗Y L⊕ pr∗H(k⊗ OH))

(1×m)∗LieAlgd(α)
��

act!
LieAlgd(L)⊕ pr∗H(k⊗ OH)

∼��

(1×m)!
LieAlgd act!

LieAlgd(L)

∼��
(act×1)!

LieAlgd(pr∗Y L⊕ pr∗H(k⊗ OH))
α // (act×1)!

LieAlgd act!
LieAlgd(L)

(4.12)
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of Lie algebroids over Y ×
S
H ×

S
H is commutative. (This would affirm the commutativ-

ity of (4.10) up to 2-simplices, but the higher commutativity constraints are satisfied
automatically since the corresponding ∞-categories are classical.)

4.3.5. Note that as an OY×
S
H -module, we have an isomorphism:

act!
LieAlgd(L)

∼−→ act∗ L ×
act∗ TY/S

TY×
S
H/S .

The required map α is the sum of the following components:

(a) the map pr∗Y L → act!
LieAlgd(L) induced from the H-equivariance structure on L and

the composition

pr∗Y L
pr∗Y σ−−−→ pr∗Y TY/S ↪→ TY×

S
H/S ,

where σ is the anchor map of L;
(b) the map k⊗ OH → act!

LieAlgd(L) induced from

k
η−→ H0(Y,L)

act∗−−−→ H0(Y ×
S
H, act∗ L),

and the composition
k⊗ OH → h⊗ OH ↪→ TY×

S
H/S . (4.13)

The following Lemma shows that the functor (4.9) is well-defined.

Lemma 4.13. The map α is a morphism of Lie algebroids, and the diagram (4.12) com-
mutes.

Proof. It is obvious that α is compatible with the anchor maps. To show that α preserves
the Lie bracket, we check it for sections of pr∗Y L⊕ pr∗H(k⊗ OH) of the following types:

(a) l1, l2 ∈ pr−1
Y L; this follows from the assumptions that the equivariance structure θ :

pr∗Y L → act∗ L is compatible with the Lie bracket, and σ is a map of H-equivariant
sheaves;

(b) ξ1, ξ2 ∈ k; this is clear;
(c) l ∈ pr−1

Y L and ξ ∈ k; this is a slightly more involved calculation, which we now perform.

Write θ(l) =
∑
i fi ⊗ li, where fi ∈ OY×H and li ∈ act−1 L. We need to show the vanishing

of the following element in act∗ L ×
act∗ TY/S

TY×
S
H/S :

[α(l), α(ξ)] = [
∑
i

(fi ⊗ li)× σ(l), (1⊗ η(ξ))× σ′(ξ)] (4.14)

where σ′ denotes the composition (4.13). Note that the TY×
S
H/S-component of (4.14) van-

ishes tautologically, so we just need to show the vanishing of its act∗ L-component. The
latter is given (using (4.5)) by∑

i

fi ⊗ [li, η(ξ)]−
∑
i

σ′(ξ)(fi)⊗ li = −
∑
i

(fi ⊗ (ξh · li) + (ξh · fi)⊗ li) (4.15)

where in the second summand, ξh acts on fi ∈ OY×
S
H/S by derivation on the OH-component.

Consider the right H-action on Y ×
S
H, given by (y, h), h′  (y, hh′); if we equip act∗ L with

the following H-equivariance structure:

act∗ L
∣∣
(y,h)

∼−→ L
∣∣
yh

θ(yh,h′)−−−−−→ L
∣∣
yhh′

∼−→ act∗ L
∣∣
(y,hh′)

,
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then (4.15) is the (negative of the) induced action of ξh on the section
∑
i fi ⊗ li = θ(l) in

act∗ L. Note that pr∗Y L can also be endowed with an H-equivariance structure:

pr∗ L
∣∣
(y,h)

∼−→ L
∣∣
y

∼−→ pr∗ L
∣∣
(y,hh′)

such that θ is a map of H-equivariant OY×
S
H -modules. Hence the element ξh · θ(l) identifies

with θ(ξh · l). On the other hand, l ∈ pr−1 L so ξh · l = 0, from which we deduce the required
vanishing of (4.15). Checking the commutativity of (4.12) is not difficult, and we leave it
to the reader. �

4.3.6. We now characterize the image of the functor (4.9).

Proposition 4.14. The functor (4.9) is an equivalence onto the full subcategory:

FMod
(H,H[)
/S (Y )cl ↪→ FMod

(H,H[)
/S (Y )

that consists of objects Y[ such that TY/Y[ lies in ΥY (QCoh(Y )♥).

Proof. Indeed, such a formal moduli problems Y[ arises from some Lie algebroid L via the
functor (3.11). Given the additional data of an (H,H[)-action, we consider the following
commutative diagrams:

Y ×
S
H

act //

��

Y

��
Y[ ×

S
H

i // Y[ ×
S
H[ act[ // Y[

Y ×
S
H

act //

��

Y

��
Y ×

S
H[ j // Y[ ×

S
H[ act[ // Y[

(4.16)

From these diagrams, we obtain two maps between tangent complexes:

TY×
S
H/Y[×

S
H

act[∗ ◦i∗−−−−−→ TY×
S
H/Y[ → TY/Y[

∣∣
Y×
S
H
,

which gives rise to a morphism θ : pr∗Y L→ act∗ L; and

TY×
S
H/Y×

S
H[

act[∗ ◦j∗−−−−−→ TY×
S
H/Y[ → TY/Y[

∣∣
Y×
S
H
, (4.17)

which gives rise to a map η̃ : pr∗H(k ⊗ OH) → act∗ L; restricting to Y ×
S
{1}, we obtain a

map η : k ⊗ OY → L. The functor FMod
(H,H[)
/S (Y )cl → LieAlgd

(k,H)
/S (Y ) inverse to (4.9) is

defined by sending Y[ to the Lie algebroid L, equipped with the (k, H)-structure specified
by the above maps θ and η. �

4.3.7. We give an alternative description of the map α that will be used in the proof of
Proposition 4.18. Consider the commutative diagram:

Y
can //

��

Y/H

��
Y ×

S
(H[/H)

j̃ // Y[ ×
S

(H[/H)
ãct

[

// Y[/H

(4.18)

which is the “quotient” by H of the right diagram in (4.16). It produces the following map
between tangent complexes:

TY/(Y×
S

(H[/H))

ãct
[
∗◦j̃∗−−−−−→ TY/(Y[/H) → T(Y/H)/(Y[/H)

∣∣
Y

∼−→ TY/Y[ . (4.19)
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We claim that (4.19) identifies with the restriction of (4.17) to Y ×
S
{1}. Indeed, this

follows from the fact that (4.17) is the pullback of (4.19) along prY : Y ×
S
H → Y , and the

composition Y ×
S
{1} ↪→ Y ×

S
H

prY−−→ Y is the identity.

4.4. Quotient of formal moduli problems.

4.4.1. Let (H,H[) be a geometric action pair (see Definition 4.11). Suppose (Y,Y[) ∈
FMod

(H,H[)
/S . The quotient of (Y,Y[) by (H,H[) is defined as the quotient in the∞-category

FMod/S . In other words, it is the geometric realization of the simplicial object (Y,Y[) ×
(H,H[)• in FMod

(H,H[)
/S characterizing the (H,H[)-action on (Y,Y[).

Proposition 4.15. The quotient of (Y,Y[) by (H,H[) exists.

Proof. We construct the quotient in the∞-category Fun(∆1,PStklaft-def /S), and then check
that the result belongs to the full subcategory FMod/S . Quotient in the above functor
category is computed pointwise as follows:

(a) at the vertex [0], we have the prestack quotient Y/H; it is an object of PStklaft-def /S

because H is a group scheme locally of finite type;
(b) at the vertex [1], we assert that the quotient of Y[ by H[ exists in PStklaft-def /S ; indeed,

it is given by BY[/H(Y[
H
×
S
H[/H) where Y[

H
×
S
H[/H denotes the Hecke groupoid11 acting

on the prestack quotient Y[/H:

· · ·
//////// Y
[
H
×
S
H[

H
×
S
H[/H

act[×1//
1×m

//

pr12

// Y
[
H
×
S
H[/H

act[ //
pr1

// Y[/H,

and BY[/H is the functor from §3.4.3.

Finally, the morphism Y/H → BY[/H(Y[
H
×
S
H[/H) is a nil-isomorphism since it is the com-

position of nil-isomorphisms Y/H → Y[/H → BY[/H(Y[
H
×
S
H[/H). �

Regarding Y as a fixed prestack acted on by H, we denote the resulting quotient functor by

Q(H,H[) : FMod
(H,H[)
/S (Y)→ FMod/S(Y/H), Y[  BY[/H(Y[

H
×
S
H[/H). (4.20)

4.4.2. Tautologically, the quotient (Y/H,BY[/H(Y[
H
×
S
H[/H)), equipped with the map from

(Y,Y[), satisfies the universal property:

MapsFMod/S
((Y/H,BY[/H(Y[

H
×
S
H[/H)), (Z,Z[))

∼−→ Maps
FMod

(H,H[)

/S

((Y,Y[), (Z,Z[)),

11Suppose C is an∞-category with finite products. Let H → K be a map of group objects in C. Suppose
any object in C with an H-action admits a quotient. Then given an object Y ∈ C with a K-action, there

exists a Hecke groupoid Y
H
×K/H acting on Y/H whose quotient, if exists, agrees with Y/K.
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where in the second expression, (Z,Z[) is equipped with the trivial (H,H[)-action. Special-

izing to Z = Y/H, we see that the object Q(H,H[)(Y[) ∈ FMod/S(Y/H) is characterized by
the universal property:

MapsFMod/S(Y/H)(Q
(H,H[)(Y[),Z[)

∼−→ Maps
FMod

(H,H[)

/S
(Y)

(Y[, π!
FMod(Z[)) (4.21)

where in the second expression, π!
FModZ

[ ∼= Z[ ×
(Y/H)dR

YdR is acted on by H[ through the

canonical homomorphism H[ → HdR on the YdR factor.

Remark 4.16. Recall the (k, H)-Lie algebroid structure on π!
LieAlgd(M), where (k, H) is

any classical action pair and M is a Lie algebroid on the quotient Y/H (see §4.2.4). If
H[ = H/ exp(k) as in §4.3.2, then the (H,H[)-formal moduli problem π!

FMod(Z[) is precisely
the one associated to π!

LieAlgd(M) under the functor (4.9).

4.4.3. Let (H0, (H0)[) → (H,H[) be a morphism of geometric action pairs. We say that
(H0, (H0)[) is a normal subpair of (H,H[) if there is a morphism (H,H[)→ (H0, (H0)[) of
geometric action pairs whose kernel identifies with (H0, (H0)[). In particular, the (H,H[)-
action on itself extends to (H0, (H0)[).

Given a normal subpair (H0, (H0)[) of (H,H[), we recover (H0, (H0)[) by the isomor-
phisms:

H0
∼−→ H/H0, H[

0
∼−→ Q(H0,(H0)[)(H[).

Let Y[ ∈ FMod
(H,H[)
/S (Y). Then the prestack Q(H0,(H0)[)(Y[) is naturally an object of

FMod
(H0,H

[
0)

/S (Y/H0), and we have a second isomorphism theorem:

Proposition 4.17. There is a natural isomorphism:

Q(H0,H
[
0) ◦Q(H0,(H0)[)(Y[)

∼−→ Q(H,H[)(Y[).

Proof. Both sides are the quotient of (Y,Y[) by (H,H[) in the ∞-category FMod/S . �

4.4.4. Suppose we have a quasi-twisting Ŷ[ ∈ QTw/S(Y/Y[), such that (Y, Ŷ[) is also an

(H,H[)-formal moduli problem, and the morphism Ŷ[ → Y[ preserves this structure. We
call quasi-twistings with these additional data (H,H[)-quasi-twistings (based at Y[) and

denote the category of them by QTw
(H,H[)
/S (Y/Y[). The quotient Q(H,H[)(Ŷ[) inherits the

structure of a quasi-twisting on Y/H based at Q(H,H[)(Y[). Indeed,

(a) applying Q(H,H[) to the action groupoid Ŷ[ × B Ĝ•m, we obtain a B Ĝm-action on

Q(H,H[)(Ŷ[), which gives rise to a Ĝm-gerbe structure;

(b) the section Y/H → Q(H,H[)(Ŷ[) is given by the composition:

Y/H → Ŷ[/H → Q(H,H[)(Ŷ[).

Therefore, we may view Q(H,H[) as a functor:

Q(H,H[) : QTw
(H,H[)

/Y[
(Y/S)→ QTw

/Q(H,H[)(Y[)
((Y/H)/S).

4.5. Comparison of Q
(k,H)
inj and Q(H,H[).
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4.5.1. Suppose (k, H) and (H,H[) are as in §4.3.2, and let Y be a scheme locally of finite
type over S equipped with an H-action. We shall show that the two quotient functors
constructed above are compatible.

Proposition 4.18. The following diagram is commutative:

LieAlgd
(k,H)
inj /S(Y )

� � (4.9) //

Q
(k,H)
inj

��

FMod
(H,H[)
/S (Y )

Q(H,H[)

��
LieAlgd/S(Y/H) �

� (3.11) // FMod/S(Y/H).

Proof. Suppose (L, η) ∈ LieAlgd
(k,H)
inj /S(Y ), i.e., L is a (k, H)-Lie algebroid over Y such that

the map η : k ⊗ OY → L is injective. Let Y[ be the corresponding formal moduli problem

under Y , equipped with the H[-action defined by the functor (4.9). Thus Q(H,H[)(Y[)
satisfies the universal property (4.21) for Z[ ∈ FMod/S(Y/H).

On the other hand, Q
(k,H)
inj (L) satisfies the universal property (4.7). Since the essential

image of (3.11) consists of objects Z[ ∈ FMod/S(Y/H) such that T(Y/H)/Z[ belongs to

ΥY/H(QCoh(Y/H)♥), it suffices to show that Q(H,H[)(Y[) has this property. The result
thus follows from the lemma below and the fact that Y → Y/H is faithfully flat. �

Lemma 4.19. Suppose (Y,Y[) is the (H,H[)-formal moduli problem corresponding to the
(k, H)-Lie algebroid (L, η) under the functor (4.9). Then there is a canonical isomorphism
between T

(Y/H)/Q(H,H[)(Y[)

∣∣
Y

and Cofib(η).

Proof. We will use the expression of Q(H,H[)(Y[) as quotient of the Hecke groupoid Y[
H
×
S

H[/H (see (4.20)). Consider the following commutative diagram, which extends the com-
mutative diagram (4.18):

Y //

id×{1}
��

��

Y/H

��
Y ×

S
H[/H

j̃ //

pr

��

Y[ ×
S
H[/H

ãct
[

//

pr
��

Y[/H

��
Y // Y[

77

// Q(H,H[)(Y[)

where the two lower squares, as well as the dotted quadrilateral, are Cartesian. From this
diagram, we obtain the following commutative diagram of objects in QCoh(Y ):

T(Y×
S
H[/H)/Y

∣∣
Y

[−1]
∼ //

∼=
��

T
(Y[/H)/Q(H,H[)(Y[)

∣∣
Y

[−1] //

��

T(Y/H)/(Y[/H)

∣∣
Y

//

∼=
��

T
(Y/H)/Q(H,H[)(Y[)

∣∣
Y

��
TY/(Y×

S
H[/H)

(4.19) //

ãct
[
∗◦j̃∗ // TY/(Y[/H)

// T(Y/H)/(Y[/H)

∣∣
Y

//

∼=
��

TY/(Y/H)[1]

TY/Y[

Furthermore, the two horizontal dotted triangles are exact. Note that the composition (4.19)
identifies with η, so the upper horizontal triangle allows us to identify T

(Y/H)/Q(H,H[)(Y[)

∣∣
Y

with Cofib(η). �
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4.6. Example: inert quasi-twistings.

4.6.1. We now specialize to Lie algebroids arising from abelian Lie algebras. They give
rise to what we call “inert quasi-twistings.” In the geometric Langlands theory, they arise
naturally as degeneration of (non-inert) quasi-twistings as the quantum parameter κ tends
to ∞. (The details of this application will appear in §6).

4.6.2. Recall that over any Y ∈ PStklaft-def /S , there is a functor

triv : IndCoh(Y)→ Lie(IndCoh(Y))

that associates to an ind-coherent sheaf F the abelian Lie algebra on F. (The notation
Lie(IndCoh(Y)) means Lie algebra objects in the symmetric monoidal category IndCoh(Y).)
More precisely, triv is the right inverse to the forgetful functor. Because the latter is con-
servative and preserves limits, triv also preserves limits.

4.6.3. We also have a pair of adjunction:

diagY : Lie(IndCoh(Y)) // FMod(Y) : ker-anchoo

where diagY preserves fiber products.12 It follows that the composition diagY ◦ triv preserves
fiber products. We call Y[ := diagY ◦ triv(F) the inert formal moduli problem on F.

Remark 4.20. Let Y be a scheme (not necessarily locally of finite type) over S. The
classical analogue of the above construction associates to an OY -module F the Lie algebroid
on F with zero Lie bracket and anchor map. If Y → S is locally of finite type, then the
image of F under (3.11) agrees with diagY ◦ triv(ΥY/S(F)).

4.6.4. For the remainder of this section, we suppose Y → S is smooth. Then the identifi-
cation ΥY/S : QCoh(Y )

∼−→ IndCoh(Y ) allows us to view the universal enveloping algebra13

of an object Y[ ∈ FMod/S(Y ) as an algebra in QCoh(Y ). If Y[ = diagY ◦ triv(ΥY (F)), then
it is given by SymOY

(F).

4.6.5. Suppose F ∈ QCoh(Y )≤0. Let V(F) := Spec
Y

SymOY
(F). It is a prestack over Y

fibered in vector DG schemes. We have an equivalence of DG categories:

IndCoh(Y[)
∼−→ QCoh(V(F)), (4.22)

where oblv : IndCoh(Y[) → IndCoh(Y ) passes to the pushforward functor on QCoh (see
[GR16, IV.4 §4.1.3, IV.2 (7.12), and IV.3 Proposition 5.1.2]).

4.6.6. Suppose, furthermore, that we have a quasi-twisting Ŷ[ ∈ QTw/S(Y/Y[) that arises

from a triangle OY → F̂ → F in QCoh(Y )≤0 under the composition diagY ◦ triv ◦ΥY/S . We

call Ŷ[ the inert quasi-twisting on the triangle OY → F̂ → F.

12One sees this by identifying Lie(IndCoh(Y)) with FMod(Y)/Y, where Y is regarded as a formal moduli

problem under itself by the identity map. Under this identification, diagY becomes the tautological forgetful

functor; see [GR16, IV.4].
13This is defined as a monad on IndCoh(Y ) in [GR16, IV.4.4].
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4.6.7. Since Spec
Y

SymOY
(OY ) is identified with Y ×A1, the map OY → F̂ gives rise to a

morphism of DG schemes:

Spec
Y

SymOY
(F̂)→ Y × A1. (4.23)

We let V(F̂)λ=1 be the fiber of (4.23) at {1} ↪→ A1. Note that the analogously defined fiber

V(F̂)λ=0 identifies with V(F). There is a canonical equivalence of DG categories:

Ŷ[-Mod
∼−→ QCoh(V(F̂)λ=1). (4.24)

Remark 4.21. From our point of view, the DG category QCoh(LocSysG) is realized by
modules over some quasi-twisting on BunG. The DG stack LocSysG only appears a posteriori
through (4.24).

4.6.8. We now discuss how quotient interacts with inert quasi-twistings. Denote by pt the
S-scheme S itself. Suppose (k, H) is a classical action pair with zero map k → h. Then we
have

H[ := H/ exp(k)
∼−→ H n (pt / exp(k)),

where the formation of the semidirect product is formed by the H-action on pt / exp(k).
Note that the normal subpair (pt,pt / exp(k)) of (H,H[) has quotient (H,H), since

Q(pt,pt / exp(k))(H[)
∼−→ BH[(H

[ × (pt / exp(k))•)
∼−→ H;

see §4.4.3.

4.6.9. We now assume that k is also abelian. Suppose the smooth scheme Y admits an
H-action, and Y[ is the inert formal moduli problem on some H-equivariant sheaf F ∈
QCoh(Y )♥.

Suppose we have an H-equivariant map η : k ⊗ OY → F, giving rise to an H[-action on
Y[ (see §4.3.4). Let Q := Cofib(η); it is an H-equivariant complex of OY -modules, hence
descends to an object Qdesc ∈ QCoh(Y/H).

Proposition 4.22. The quotient Q(H,H[)(Y[) identifies with the inert formal moduli problem
on Qdesc ∈ QCoh(Y/H).

Proof. By Proposition 4.17, we have

Q(H,H[)(Y[)
∼−→ Q(H,H) ◦Q(pt,pt / exp(k))(Y[)

∼−→ Q(pt,pt / exp(k))(Y[)/H.

Note that descent of OY -modules corresponds to quotient by H on the inert formal moduli
problem. Hence we only need to identify Q(pt,pt / exp(k))(Y[) as the inert formal moduli
problem on Q.

Consider the Čech nerve of F → Q in QCoh(Y ), which identifies with the groupoid
F ⊕ (k⊗ OY )⊕•. Since the composition diagY ◦ triv preserves fiber products, we see that

diagY ◦ triv(F ⊕ (k⊗ OY )⊕•)
∼−→ Y[ × (pt / exp(k))•

identifies with the Čech nerve of the map Y[ → diagY ◦ triv(Q). The result follows since this
is also the Čech nerve of Y[ → Q(pt,pt / exp(k))(Y[). �

Remark 4.23. When Y is any scheme over S (not necessarily locally of finite type) but η

is injective, we also have an identification of Q
(k,H)
inj (F) with the Lie algebroid on Qdesc with

zero Lie bracket and anchor map. This follows immediately from the definition of Q
(k,H)
inj (F).
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Geometrically, the datum of η gives rise to a map φ : V(F)→ Y ×
S
k∗, and V(Q) identifies

with its fiber at {0} ↪→ k∗. Hence we have isomorphisms of DG stacks:

V(Qdesc)
∼−→ V(Q)/H

∼−→ φ−1(0)/H. (4.25)

4.6.10. Suppose we have an exact sequence of H-equivariant OY -modules:

0→ OY → F̂ → F → 0.

Let Ŷ[ ∈ QTw/Y[(Y/S) be the corresponding inert quasi-twisting. Assume that η lifts to

an H-equivariant map η̂ : k ⊗ OY → F̂. Then Proposition 4.22 shows that the quotient
quasi-twisting arises from a triangle in QCoh(Y/H):

OY/H → Q̂desc → Qdesc

where Q̂desc is the descent of Q̂ := Cofib(η̂) to Y/H.
In particular, we have isomorphisms of DG stacks:

V(Q̂desc)λ=1
∼−→ V(Q̂)λ=1/H

∼−→ φ̂−1
λ=1(0)/H (4.26)

where φ̂λ=1 is the composition

V(F̂)λ=1 ↪→ V(F̂)
V(η̂)−−−→ Y ×

S
k∗.

Remark 4.24. In light of (4.25) and (4.26), one may think of Q(H,H[) on inert quasi-

twistings as an analogue of symplectic reduction where φ and φ̂λ=1 play the role of the
moment map.

The universal quasi-twisting

5. Construction of T
(κ,E)
G

Let S be an affine scheme smooth over k. To an S-point (gκ, E) of ParG, we shall

functorially attach a quasi-twisting T
(κ,E)
G over S × BunG (relative to S).

We proceed by first constructing a Lie-∗ algebra ĝ
(κ,E)
D over S × X, then twisting its

pullback to S × BunG,∞x×X by the tautological G-bundle P̃G. Via taking sections over
◦
Dx, we produce a classical quasi-twisting T̃

(κ,E)
G over S × BunG,∞x. Then we show that

T̃
(κ,E)
G admits an action by the pair (gκ(Ox),L+

xG), so we may form the quotient T
(κ,E)
G :=

Q(gκ(Ox),L+
xG)(T̃

(κ,E)
G ). This last step requires both quotient functors constructed in §4 and

their compatibility.
We then verify that for a simple group G and gκ arising from the bilinear form κ = λ ·Kil,

the quasi-twisting T
(κ,0)
G identifies with the twisting given by λ-power of the determinant

line bundle LG,det over BunG.

5.1. Recollection on Lie-∗ algebras.

5.1.1. Let X → S be a smooth curve relative to S with connected fibers.14 The diagonal
morphism ∆ : X → X ×

S
X is a closed immersion. Denote by DX/S-Modr the category of

OX-modules equipped with a right action of the relative differential operators DX/S .

14For our applications, we will take X := S ×X.
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5.1.2. A Lie-∗ algebra on X (relative to S) is an object B ∈ DX/S-Modr, equipped with

a DX×
S
X/S-linear morphism15 [−,−] : B�2 → ∆!(B) such that the following properties are

satisfied:

(a) (anti-symmetry) for all sections a, b of B, there holds

σ̃12([a� b]) = −[b� a],

where σ̃12 is the transposition morphism over X×
S
X given by:

σ−1
12 ∆!(B)→ ∆!(B); where σ12(x, y) = (y, x).

(b) (Jacobi identity) for all sections a, b, and c of B, there holds

[[a� b]� c] + σ̃123([[b� c]� a]) + σ̃2
123([[c� a]� b]) = 0,

where σ̃123 denotes the morphism over X×
S
X×

S
X given by:

σ−1
123(∆x=y=z)!(B)→ (∆x=y=z)!(B); where σ123(x, y, z) = (y, z, x).

Denote by Lie∗(X/S) the category of Lie-∗ algebras on X relative to S. Clearly, for any
morphism S′ → S with X′ := X ×

S
S′, we have a functor Lie∗(X/S) → Lie∗(X′/S′) acting

as pulling back a DX/S-module, and equipping it with the induced Lie-∗ algebra structure.

5.1.3. Lie-∗ algebras are étale local objects. More precisely, let Ét/X be the small étale site

of X. Given B ∈ Lie∗(U/S) where U ∈ Ét/X and a morphism Ũ→ U, we may associate an

object B
∣∣
Ũ
∈ Lie∗(Ũ/S). This procedure defines a functor in groupoids:

Ét
op

/X → Gpd, U Lie∗(U/S). (5.1)

The étale local nature of Lie-∗ algebras refers to the fact that (5.1) satisfies descent.

5.1.4. Let G be a presheaf of group schemes on Ét/X, and B ∈ Lie∗(X/S). A G-action on
L consists of the following data:

– for each U ∈ Ét/X, an action of GU as endomorphisms of B
∣∣
U
∈ Lie∗(U/S);

furthermore, this action is required to be functorial in U.
Suppose P is an étale G-torsor over X, and B ∈ Lie∗(X/S) admits a G-action. Then we

can form the P-twisted Lie-∗ algebra BP ∈ Lie∗(X/S) using the descent property of (5.1).

5.2. De Rham cohomology over the disc.

5.2.1. Let x ∈ X be a closed point. Write X := S × X and x : S → X for the S-point
determined by x. LetDx be the completion of X at x and D̊x be its open subscheme Dx−{x}.

As S is assumed affine, we have Dx
∼−→ Spec(OS⊗̂Ox) and

◦
Dx

∼−→ Spec(OS⊗̂Kx), where Ox
denotes the completed local ring at x, and Kx the localization of Ox at its uniformizer.

15We use � to denote tensoring over OS .
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5.2.2. Following [BD04, §2.1.13, 2.1.16], there is a right-exact functor ΓdR(Dx,−) carrying
DX/S-modules to topological OS-modules. (It is the functor of zeroth de Rham cohomology,

denoted by ĥx in op.cit.) Let ΓdR(D̊x,−) denote the functor ΓdR(Dx, j∗j
∗−) where j :

X − {x} ↪→ X is the open immersion. According to [BD04, Lemma 2.1.14], the functors

ΓdR(Dx,−), ΓdR(
◦
Dx,−) carry coherent DX/S-modules to Tate OS-modules.

Lemma 5.1. There are canonical isomorphisms:

ΓdR(Dx, ωX/S) ∼= 0, ΓdR(D̊x, ωX/S) ∼= OS .

Proof. The Spencer complex defines a resolution of ωX/S by the complex DX/S → ωX/S ⊗
DX/S . Applying ΓdR(Dx,−), this complex becomes d : OS⊗̂Ox → OS⊗̂ωx (see [BD04,
§2.1.13, Examples (i)]). The vanishing of ΓdR(Dx, ωX/S) thus follows. The calculation

of ΓdR(D̊x, ωX/S) follows from the canonical triangle i!i
!(ωX/S) → ωX/S → j∗j

∗ωX/S (for

i : S ↪→ X denoting the closed immersion x) and the isomorphism i!(ωX/S) ∼= OS [−1]. �

5.2.3. Given a Lie-∗ algebra B, the object ΓdR(
◦
Dx,B) acquires the structure of a Lie

algebra in QCohTate(S), whose (continuous) Lie bracket is given by the composition:

[−,−] : ΓdR(
◦
Dx,B)�2 ∼−→ΓdR(

◦
Dx ×

S

◦
Dx,B

�2)

→ ΓdR(
◦
Dx ×

S

◦
Dx,∆!(B))

∼−→ ΓdR(
◦
Dx,B).

The map ΓdR(Dx,B)→ ΓdR(
◦
Dx,B) realizes ΓdR(Dx,B) as a Lie subalgebra if B is OX-flat.

5.3. The Kac-Moody Lie-∗ algebra.

5.3.1. Suppose now that S is equipped with a morphism S → ParG, represented by (gκ, E)
(see §2). We will construct a central extension of Lie-∗ algebras over X := S ×X:

0→ ωX/S → ĝ
(κ,E)
D → gκD → 0, (5.2)

together with G-actions on ĝ
(κ,E)
D and gκD, where G is the presheaf of group schemes GU :=

Maps(U, G) on Ét/X. The construction will be functorial in S.

Remark 5.2. The central extension (5.2), together with the G-action, is called the (gener-

alized) Kac-Moody central extension of Lie-∗ algebras, and we refer to ĝ
(κ,E)
D as the (gener-

alized) Kac-Moody Lie-∗ algebra.

5.3.2. The Lie-∗ algebra gκD has underlying DX/S-module gκ � DX/S . Its Lie-∗ algebra
structure is defined using the Lie bracket (2.18) on gκ:

[−,−] : (gκD)�2 → ∆!(g
κ
D), (µ⊗ 1)� (µ′ ⊗ 1) [µ, µ′]⊗ 1D,

where 1D is the canonical symmetric section of ∆!(DX/S). Note that the Lie-∗ bracket

[−,−] factors through the embedding gκs.s. �DX/S ↪→ gκD.16

We construct a G-action on gκD as follows: for every U ∈ Ét/X, there is an adjoint-coadjoint
action of the group scheme Maps(U, G) on gκ ⊗ OU:

gU · (ξ ⊕ ϕ) = AdgU(ξ)⊕ CoadgU(ϕ). (5.3)

16See §2.3.2 for the notation gκs.s..
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where ξ ⊕ ϕ denotes a section of gκ ⊗ OU, regarded as a subbundle of (g ⊗ OU) ⊕ (g∗ ⊗
OU). The action (5.3) extends to an action of Maps(U, G) on gκ ⊗

OU

DU/S by Lie-∗ algebra

endomorphisms.

5.3.3. The underlying DX/S-modules of (5.2) are defined by first inducing a sequence of
DX/S-modules from (2.20):

0→ ωX/S ⊗
OX

DX/S → ĝκ ⊗
OX

DX/S → gκ �DX/S → 0 (5.4)

and then taking the push-out along the action map ωX/S ⊗
OX

DX/S → ωX/S .

In particular, the extension ĝ
(κ,E)
D → gκD splits over gκs.s. �DX/S , and we have a decom-

position

ĝ
(κ,E)
D

∼−→ ED ⊕ (gκs.s. �DX/S). (5.5)

where ED is the push-out of E ⊗
OX

DX/S along ωX/S ⊗
OX

DX/S → ωX/S .

5.3.4. The Lie-∗ algebra structure on ĝ
(κ,E)
D is defined by the composition:

(ĝ
(κ,E)
D )�2 → (gκD)�2 → ∆!(ωX/S)⊕∆!(g

κ
s.s. �DX/S)→ ∆!(ĝ

(κ,E)
D )

where the middle map is defined using the bilinear form (2.19) and the Lie bracket (2.18)
on gκ:

(µ⊗ 1)� (µ′ ⊗ 1) (µ, µ′)1′ω + [µ, µ′]⊗ 1D;

the notation 1′ω denotes the canonical anti-symmetric section of ∆!(ωX/S).

5.3.5. We now construct the G-action on ĝ
(κ,E)
D . Let U ∈ Ét/X and gU be a point of

Maps(U, G). The corresponding endomorphism gU : ĝ
(κ,E)
D → ĝ

(κ,E)
D is defined by the sum

of the following maps (using the decomposition (5.5)):

(a) identity on ED;
(b) adjoint-coadjoint action on gκs.s. �DU/S by formula (5.3);
(c) the composition:

ĝ
(κ,E)
D

∣∣
U
→ gκD

∣∣
U

∼−→ (gκ � OU) ⊗
OU

DX/S
res(gU)−−−−→ ωU/S ↪→ ĝ

(κ,E)
D

∣∣
U

(5.6)

where the map res(gU) is defined by the formula:

(ξ ⊕ ϕ)⊗ 1 ϕ(g−1
U dgU), ξ ⊕ ϕ ∈ gκ � OU.

Here, d : OU → ωU/S is the exterior derivative, so g−1
U dgU is a section of g � ωU/S , on

which ϕ rightfully acts.

It is clear from the construction that ĝ
(κ,E)
D → gκD is G-equivariant.

Remark 5.3. If gκ arises from a symmetric bilinear form κ (see §2), then we have an

isomorphism ĝ
(κ,0)
D

∼−→ B(g, κ) where B(g, κ) is the Kac-Moody Lie-∗ algebra at level κ in

the ordinary sense (see [Ga98]). On the other hand, the Lie-∗ algebra ĝ
(∞,0)
D is given by

ωX/S ⊕ g∗D with zero Lie-∗ bracket (but a nontrivial G-action).
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5.3.6. Let us bring in the closed point x ∈ X, which induces a section x : S → X. Applying

ΓdR(
◦
Dx,−) to the sequence (5.2) and using Lemma 5.1, we obtain a central extension of Lie

algebras in QCohTate(S):

0→ OS → ĝ(κ,E) → gκ(Kx)→ 0, (5.7)

where the notation gκ(Ox) (resp. gκ(Kx)) denotes the Tate OS-module gκ⊗̂Ox (resp. local-
ization at the uniformizer of Ox.)

The Lie bracket on ĝ(κ,E) is given by the composition:

(ĝ(κ,E))�2 → (gκ(Kx))�2 → OS ⊕ gκs.s.(Kx)→ ĝ(κ,E),

where the middle map is defined by

(µ⊗ f)� (µ′ ⊗ f ′) (µ, µ′) · Res((df)f ′) + [µ, µ′]⊗ ff ′.

Lemma 5.4. The central extension (5.7) canonically splits over gκ(Ox).

Proof. The result follows from applying ΓdR(Dx,−) to the sequence (5.2) and observing
that ΓdR(Dx, ωX/S) vanishes (Lemma 5.1). �

Let LxG (resp. L+
xG) denote the loop (resp. arc) group of G at x. There is an action of

LxG on ĝ(κ,E) defined analogously to §5.3.5, with the composition (5.6) replaced by:

ĝ(κ,E) → gκ(Kx)
res(g)−−−→ OS ↪→ ĝ(κ,E)

where the map res(g) (g is a point of LxG) is defined by the formula:

(ξ ⊕ ϕ)⊗ f  Res(f · ϕ(g−1dg)).

Since the Lie algebra of LxG identifies with g(Kx), this LxG-action induces a g(Kx)-action
on ĝ(κ,E) by OS-linear endomorphisms.

Lemma 5.5. The Lie bracket on ĝ(κ,E) agrees with the composition:

(ĝ(κ,E))�2 (pr,id)−−−−→ g(Kx)� ĝ(κ,E) act−−→ ĝ(κ,E).

Proof. This is a straightforward computation. �

5.4. The classical quasi-twisting T̃
(κ,E)
G over BunG,∞x.

5.4.1. Let BunG,∞x denote the stack classifying pairs (PG, α) where PG is a G-bundle on

X and α : PG
∣∣
Dx

∼−→ P0
G is a trivialization over Dx. The (right) L+

xG-action on BunG,∞x
by changing α realizes BunG,∞x as a L+

xG-bundle over BunG, locally trivial in the étale
topology. In particular, BunG,∞x is placid; see §3.2.

5.4.2. The Beauville-Laszlo theorem shows that BunG,∞x also classifies pairs (PG,Σ, α),

where PG,Σ is a G-bundle on Σ := X − {x} and α : PG,Σ
∣∣ ◦
Dx

∼−→ P0
G is a trivialization over

◦
Dx. This alternative description shows that the L+

xG-action on BunG,∞x extends to an
LxG-action.
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5.4.3. Fix an S-point (gκ, E) of ParG. We apply the construction of §5.3 to the relative
curve

X̃ := S × BunG,∞x×X over S̃ := S × BunG,∞x,

and obtain a central extension in Lie∗(X̃/S̃):

0→ ωX̃/S̃ → ĝ
(κ,E)
D → gκD → 0. (5.8)

In other words, (5.8) is the image of Kac-Moody extension (5.2) under the base change

functor −� OBunG,∞x : Lie∗(X/S)→ Lie∗(X̃/S̃).

Let x̃ : S̃ ↪→ X̃ (resp. x : S ↪→ X) denote the section given by x ∈ X. Let P̃G be the

tautological G-bundle over X̃ equipped with the trivialization α over Dx̃. Since ĝ
(κ,E)
D and

gκD are equipped with G-actions, we can form the P̃G-twist of (5.8):

0→ ωX̃/S̃ → (ĝ
(κ,E)
D )P̃G → (gκD)P̃G → 0. (5.9)

Remark 5.6. (a) Since gκD is the DX̃/S̃-module induced from gκ � OBunG,∞x×X and the

G-action comes from one on gκ �OBunG,∞x×X , we see that (gκD)P̃G is the DX̃/S̃-module

induced from gκ
P̃G

.

(b) the datum of α gives an isomorphism between (5.8) and (5.9) when restricted to Dx̃.

5.4.4. We apply the functors ΓdR(Σ,−) and ΓdR(
◦
Dx̃,−) to (5.9). Using the two observa-

tions above, we obtain a morphism between two triangles in QCohTate(S̃):

ΓdR(Σ, ωX̃/S̃) //

��

ΓdR(Σ, (ĝ
(κ,E)
D )P̃G) //

��

Γ(Σ, gκ
P̃G

)

γ
��

γ̂

uu

ΓdR(
◦
Dx̃, ωX̃/S̃) // ΓdR(

◦
Dx̃, ĝ

(κ,E)
D ) // gκ(Kx)�̂OBunG,∞x

(5.10)

where gκ(Kx) is (as before) an object of QCohTate(S).

Since ωX̃/S̃ has top de Rham cohomology (along X̃ → S̃) isomorphic to OS̃, one may

conclude that the first vertical map in (5.10) vanishes by comparing the canonical triangles

associated to open immersions Σ ⊂ X and D̊x̃ ⊂ Dx̃.17 Hence we obtain a splitting γ̂ as
depicted. Note that γ (hence γ̂) is injective, so we may define two Tate OS̃-modules by
cokernels without running into DG issues:

L̂(κ,E) := Coker(γ̂), Lκ := Coker(γ).

Since ΓdR(
◦
Dx̃, ωX̃/S̃) is canonically isomorphic to OS̃ (Lemma 5.1), we arrive at an exact

sequence of Tate OS̃-modules:

0→ OS̃ → L̂(κ,E) → Lκ → 0. (5.11)

Notation 5.7. In what follows, we will show that (5.11) has the structure of a classical

quasi-twisting (on Tate modules) over S̃ (relative to S; see §3.2.5), to be denote by T̃
(κ,E)
G .

17This vanishing is also reflected in the classical fact that the sum of residues of a meromorphic form is
zero.
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5.4.5. We (temporarily) use the notation ĝ
(κ,E)
D,X to denote the Kac-Moody Lie-∗ algebra

over X, constructed using the recipe in §5.3 for the relative curve X→ S.

The isomorphism ĝ
(κ,E)
D

∼−→ ĝ
(κ,E)
D,X �OBunG,∞x gives rise to an isomorphism in QCohTate(S̃):

ΓdR(
◦
Dx̃, ĝ

(κ,E)
D )

∼−→ ΓdR(
◦
Dx, ĝ

(κ,E)
D,X )�̂OBunG,∞x

∼= ĝ(κ,E)�̂OBunG,∞x (5.12)

Observe that the G(Kx)-action on BunG,∞x gives rise to a g(Kx)-action18 on OBunG,∞x by

derivations. Hence, the Lie (algebroid) bracket on ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ) can be defined using the

OS-linear Lie bracket on ĝ(κ,E) (see §5.3.6):

[µ� f, µ′ � f ′] := [µ, µ′] + µ(f ′) · µ′ − µ′(f) · µ.

where µ denotes the image of µ ∈ ĝ(κ,E) along ĝ(κ,E) → gκ(Kx) → g(Kx)�̂OS , which acts

on OS̃ by OS-linear derivations. The anchor map σ̂ of ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ) is defined by the

composition:

ΓdR(
◦
Dx̃, ĝ

(κ,E)
D )

(5.12)−−−−→ ĝ(κ,E)�̂OBunG,∞x → g(Kx)�̂OS̃ → TS̃/S . (5.13)

We have thus equipped ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ) with the structure of a Lie algebroid. The fol-

lowing lemma, whose proof is deferred to §5.4.6, extends this Lie algebroid structure to its

quotient L̂(κ,E):

Lemma 5.8. The morphism γ̂ realizes Γ(Σ, gκ
P̃G

) as an ideal of ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ).

In an analogous way, we turn gκ(Kx)�̂OBunG,∞x into an object of LieAlgd(S̃/S), and the

map ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ) → gκ(Kx)�̂OBunG,∞x in (5.10) is a morphism of such. Lemma 5.8

shows that γ also realizes Γ(Σ, gκ
P̃G

) as an ideal of gκ(Kx)�̂OBunG,∞x . Hence the cokernels

(5.11) is a central extension of Lie algebroids.

5.4.6. Proof of Lemma 5.8. We first give an alternative description of the Lie bracket on

ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ). Indeed, from the identification in (5.12) and the g(Kx)-action on ĝ(κ,E) (see

§5.3.6), we obtain an action of g(Kx)�̂OS̃ on ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ) by OS-linear derivations. It

follows from Lemma 5.5 that the Lie bracket on ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ) agrees with the composition:

ΓdR(
◦
Dx̃, ĝ

(κ,E)
D )�2 (pr,id)−−−−→ (g(Kx)�̂OS̃)� ΓdR(

◦
Dx̃, ĝ

(κ,E)
D )

act−−→ ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ), (5.14)

where pr denotes the composition of the first two maps in (5.13).
Therefore, it suffices to show that the Tate OS̃-submodule:

ΓdR(Σ, (ĝ
(κ,E)
D )P̃G) ↪→ ΓdR(

◦
Dx̃, ĝ

(κ,E)
D ) (5.15)

is invariant under the aforementioned g(Kx)�̂OS̃-action. Note that by construction, this

action arises from the S × LxG-equivariance structure on ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ). The following

claim is immediate:

Claim 5.9. There is also an S×LxG-equivariance structure on ΓdR(Σ, (ĝ
(κ,E)
D )P̃G), defined

at every T -point (s,PG,Σ, α, g) of S × BunG,∞x×LxG (for T ∈ Schaff
/k ) by:

18Unlike the Tate OS-module gκ(Kx), the notation g(Kx) is reserved for the Tate vector space g ⊗ Kx
(similar for the notation g(Ox).)
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(a) first identifying the fiber of ΓdR(Σ, (ĝ
(κ,E)
D )P̃G) at both of the T -points

(s,PG,Σ, α), and (s,PG,Σ, g · α), g ∈ Maps(T,LxG),

with ΓdR(Σ, (ĝ
(κ,E)
D )PG,Σ);19

(b) relating the above two fibers via the identity map on ΓdR(Σ, (ĝ
(κ,E)
D )PG,Σ). �

So we have reduced the problem to showing that (5.15) preserves the S×LxG-equivariance

structure. In other words, the following diagram in QCohTate(T ) needs to commute:

ΓdR(Σ, (ĝ
(κ,E)
D )PG,Σ)

∼ //

id
��

ΓdR(Σ, (ĝ
(κ,E)
D )PG)

∣∣
(s,PG,Σ,α)

(5.15)// ΓdR(
◦
Dx̃, ĝ

(κ,E)
D )

g·
��

ΓdR(Σ, (ĝ
(κ,E)
D )PG,Σ)

∼ // ΓdR(Σ, (ĝ
(κ,E)
D )PG)

∣∣
(s,PG,Σ,g·α)

(5.15)// ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ).

(5.16)

Here, the two horizontal compositions express the procedure of

(a) first restricting a flat section of (ĝ
(κ,E)
D )PG,Σ to

◦
Dx̃ ↪→ T × Σ;

(b) then using the trivialization α (respectively, g ·α) to identify it with a section of ĝ
(κ,E)
D .

However, the following diagram is tautologically commutative:

ΓdR(
◦
Dx̃, (ĝ

(κ,E)
D )PG,Σ)

id��

α∗ // ΓdR(
◦
Dx̃, ĝ

(κ,E)
D )

g·��

ΓdR(
◦
Dx̃, (ĝ

(κ,E)
D )PG,Σ)

(g·α)∗ // ΓdR(
◦
Dx̃, ĝ

(κ,E)
D ),

so we obtain the commutativity of (5.16). �(Lemma 5.8)

5.5. Descent to BunG.

5.5.1. We continue to fix the S-point (gκ, E) of ParG. The goal of this section is to “de-

scend” the classical quasi-twisting T̃
(κ,E)
G to BunG. Recall the action of H := S × L+

xG on

S̃ = S × BunG,∞x, whose quotient is given by S̃/H
∼−→ S × BunG. Let k := gκ(Ox). Then

(k, H) forms a classical action pair (see §4.1).

5.5.2. We now equip (5.11) with the structure of a (k, H)-action. Indeed, applying the func-
tor Γ(Dx̃,−) to (5.9) and using ΓdR(Dx̃, ωX̃/S̃) = 0 (Lemma 5.1), we obtain a commutative

diagram:

ΓdR(Dx̃, ĝ
(κ,E)
D )

∼ //

��

Γ(Dx̃, g
κ � OBunG,∞x×X)

η
��

η̂

tt

ΓdR(
◦
Dx̃, ωX̃/S̃) // ΓdR(

◦
Dx̃, ĝ

(κ,E)
D ) // gκ(Kx)�̂OBunG,∞x

(5.17)

where the splitting η̂ exists for obvious reasons. Since Γ(Dx̃, g
κ�OBunG,∞x×X) is canonically

isomorphic to k⊗̂OS̃, we obtain the (k, H)-action datum on L̂(κ,E) via the composition:

k⊗̂OS̃

η̂−→ ΓdR(
◦
Dx̃, ĝ

(κ,E)
D )→ L̂(κ,E),

19We are slightly abusing the notation (ĝ
(κ,E)
D

)PG,Σ , since this is now the Kac-Moody extension associated

to the parameter T
s−→ S

(gκ,E)−−−−−→ ParG, twisted by PG,Σ on the open curve T × Σ.
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which we again denote by η̂.

Remark 5.10. Ideally, we would like to directly define T(κ,E) as the quotient Q(k,H)(T̃(κ,E)).

However, we run into problems because S̃ is not locally of finite type (so we cannot use

Q(H,H[) (4.20)), and η̂ is not injective (so we cannot use Q
(k,H)
inj (4.6)). In what follows, we

circumvent this technical problem using a combination of the two functors.

5.5.3. For each integer n ≥ 0, let BunG,nx denote the stack classifying pairs (PG, αn)

where PG is a G-bundle on X and αn : PG
∣∣
Spec(O

(n)
x )

∼−→ P0
G is a trivialization over the nth

infinitesimal neighborhood Spec(O
(n)
x ) of x. Then BunG,nx is an LnxG-torsor over BunG,

where LnxG classifies maps from Spec(O
(n)
x ) to G.

Remark 5.11. In particular, LnxG is a group scheme of finite type.

Set Hn := S × LnxG, and we have an exact sequence of group schemes over S:

1→ Hn → H → Hn → 1.

Define kn := k ⊗ mnx , and kn := k/kn ∼= k ⊗ O
(n)
x . Then the above sequence extends to an

exact sequence of action pairs (see §4.1.2):

1→ (kn, Hn)→ (H, k)→ (Hn, kn)→ 1. (5.18)

5.5.4. We briefly review the Harder-Narasimhan truncation of BunG. For this, we need to
fix a Borel B ↪→ G, whose quotient torus is denoted by T . There are canonical maps

BunB
p

yy
q

&&
BunG BunT .

Let ΛG denote the coweight lattice of G, and Λ+
G,Λ

pos
G ⊂ ΛG denote the submonoid

of dominant coweights, respectively the submonoid generated by positive simple coroots.

Denote by Λ+,Q
G and Λpos,Q

G the corresponding rational cones.

There is a partial ordering on ΛQ
G, given by:

λ1 ≤
G
λ2 ⇐⇒ λ2 − λ1 ∈ Λpos,Q

G .

Given λ ∈ ΛQ
G, define BunλB as the pre-image of λ under the composition:

BunB
q−→ BunT

deg−−→ ΛQ
T
∼= ΛQ

G.

For each θ ∈ Λ+,Q
G , define Bun

(≤θ)
G as the substack of BunG classifying G-bundles PG with

the following property:

– for each B-bundle PB ∈ BunλB with p(PB) ∼= PG, we have λ ≤
G
θ.

The following result is proved in [DG11]:

Lemma 5.12. Bun
(≤θ)
G is an open, quasi-compact substack of BunG. �

Remark 5.13. The definition of Bun
(≤θ)
G in [DG11] refers to all standard parabolics P of

G, rather than just the Borel. However, the two definitions are equivalent; see the discussion
in §7.3.3 in loc.cit.
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5.5.5. For each integer n ≥ 0 (as well as n = ∞), we let Bun
(≤θ)
G,nx denote the preimage of

Bun
(≤θ)
G under the canonical map BunG,nx → BunG. We denote the universal G-bundle over

Bun
(≤θ)
G ×X by PG, and that over Bun

(≤θ)
G,∞x×X by P̃G; their pullbacks to S ×Bun

(≤θ)
G ×X

and S × Bun
(≤θ)
G,∞x×X are denoted by the same characters.

5.5.6. The key technical assertion we need is:

Proposition 5.14. For each θ ∈ Λ+,Q
G , there exists an integer N(θ) such that whenever

n ≥ N(θ), we have

(gκ(mnx)�̂O
Bun

(≤θ)
G,∞x

) ∩ Γ(Σ, gκ
P̃G

) = 0

as submodules of gκ(Kx)�̂O
Bun

(≤θ)
G,∞x

(via η and γ).

Proof. Fix θ ∈ Λ+,Q
G . For each integer n ≥ 0, we have an isomorphism:

(gκ(mnx)�̂O
Bun

(≤θ)
G,∞x

) ∩ Γ(Σ, gκ
P̃G

)
∼−→ R0(pr∞x)∗g

κ
P̃G

(−nx),

where pr∞x is the projection map in the following Cartesian diagram:

S × Bun
(≤θ)
G,∞x×X //

pr∞x��

S × Bun
(≤θ)
G ×X
pr
��

S × Bun
(≤θ)
G,∞x

// S × Bun
(≤θ)
G .

Since P̃G is the pullback of the universal G-bundle PG over S × Bun
(≤θ)
G ×X, it suffices to

show that R0(pr)∗g
κ
PG

(−nx) vanishes for sufficiently large n (relative to θ). (Identification

of R0(pr∞x)∗g
κ
PG

(−nx) with the pullback of R0(pr)∗g
κ
PG

(−nx) follows from flatness of the

projection S × Bun
(≤θ)
G,∞x → S × Bun

(≤θ)
G .) We verify this in a more abstract setting:

Claim 5.15. Let T be a finite type k-scheme. Suppose E is a vector bundle on T ×
X. Write pr : T × X → T for the projection map. Then there exists some n such that
R0(pr)∗E(−nx) = 0.

Indeed, let t0 ∈ T be a k-point. Since H0(X,E|t0(−n0x)) = 0 for some n0, the coherent

sheaf R0(pr)∗E(−n0x) vanishes in an open neighborhood T̊ of t0 (cohomology and base

change). Let T1 ↪→ T be a closed subscheme whose complement is T̊ . If T1 is nonempty,
pick a k-point t1 ∈ T1. The same argument shows that R0(pr)∗E(−n1x) vanishes in an open
neighborhood of t1 for some n1 ≥ n0. We find the desired n by iterating this process, which
must terminate after finitely many steps since T is Noetherian. �

It follows from Proposition 5.14 that the (k, H)-algebroid Lκ (hence also L(κ,E)) is an

object of LieAlgd
(kn,Hn)
inj (S × Bun

(≤θ)
G /S) whenever n ≥ N(θ).

5.5.7. For each θ ∈ Λ+,Q
G , denote by T̃

(≤θ)
G the restriction of the classical quasi-twisting

T̃
(κ,E)
G to S ×Bun

(≤θ)
G,∞x.20 Given n ≥ N(θ), we can define a quasi-twisting over S ×Bun

(≤θ)
G

by the formula:

T
(≤θ)
G,n := Q(Hn,H

[
n) ◦Q

(kn,Hn)
inj (T̃

(≤θ)
G ), (5.19)

where H[
n denotes the quotient Hn/ exp(kn) (see §4.3.2).

20We temporarily suppress the notational dependence on the parameter (gκ, E).
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Remark 5.16. Note that Q
(kn,Hn)
inj (T

(≤θ)
G ) is well-defined as a classical quasi-twisting over

S × Bun
(≤θ)
G,nx, equipped with a (kn, Hn)-action. Since the stack S × Bun

(≤θ)
G,nx is locally of

finite type, any classical quasi-twisting gives rise to a quasi-twisting, and the (kn, Hn)-action
induces an (Hn, H

[
n)-action (see §4.3.4). Hence the formula (5.19) makes sense.

5.5.8. Suppose n1 ≥ n2 ≥ N(θ). We would like to construct a canonical isomorphism of
quasi-twistings

T
(≤θ)
G,n1

∼−→ T
(≤θ)
G,n2

. (5.20)

Indeed, let (k′, H ′) be the kernel of the map (kn1 , Hn1)→ (kn2 , Hn2). In particular, H ′ is of
finite type. Furthermore, we have an exact sequence of classical action pairs:

1→ (kn1 , Hn1)→ (kn2 , Hn2)→ (k′, H ′)→ 1.

Hence, there are isomorphisms:

T
(≤θ)
G,n1

∼−→Q(Hn2
,H[n2

) ◦Q(H′,(H′)[) ◦Q
(kn1 ,Hn1 )
inj (T̃

(≤θ)
G )

∼−→ Q(Hn2 ,H
[
n2

) ◦Q
(k′,H′)
inj ◦Q

(kn1 ,Hn1 )
inj (T̃

(≤θ)
G )

∼−→ T
(≤θ)
G,n2

,

using Propositions 4.17, 4.18, and 4.9. In light of the isomorphism (5.20), we may let T
(≤θ)
G

denote the quasi-twisting T
(≤θ)
G,n over S × Bun

(≤θ)
G for any n ≥ N(θ).

5.5.9. Finally, we check that the quasi-twistings T
(≤θ)
G glue along various Harder-Narasimhan

truncations. Indeed, suppose θ1, θ2 ∈ Λ+,Q
G . Then we have isomorphisms:

T
(≤θ1)
G,n

∣∣
S×(Bun

(≤θ1)

G ∩Bun
(≤θ2)

G )

∼−→ Q(Hn,(Hn)[) ◦Q
(kn,Hn)
inj (T∞x

∣∣
S×(Bun

(≤θ1)

G,∞x ∩Bun
(≤θ2)

G,∞x)
)

∼−→ T
(≤θ2)
G,n

∣∣
S×(Bun

(≤θ1)

G ∩Bun
(≤θ2)

G )
,

whenever n ≥ N(θ1), N(θ2). Therefore we obtain a quasi-twisting T
(κ,E)
G on S × BunG

(relative to S) whose restriction to each S × Bun
(≤θ)
G agrees with T

(≤θ)
G .

Notation 5.17. We write T
(κ,E)
G = Q(gκ(Ox),L+

xG)(T̃
(κ,E)
G ), although it is tacitly understood

that the construction of T
(κ,E)
G requires two quotient steps and gluing. In a similar way, we

write:
T

(κ,E)
G,n := Q(gκ(m(n)

x ),Hn)(T̃
(κ,E)
G ), (5.21)

for the corresponding quasi-twisting on S × BunG,nx. Since the construction of T
(κ,E)
G

(resp. T
(κ,E)
G,n ) is functorial in S, we obtain a universal quasi-twisting Tuniv

G over ParG×BunG
(resp. Tuniv

G,n over ParG×BunG,nx.)

Remark 5.18. The construction of Tuniv
G depends a priori on the choice of the closed

point x ∈ X. To remove this dependence, one may consider a multiple point version Tuniv
G,xI

associated to any collection xI of closed points of X. For each inclusion xI ⊂ xJ , there is
a canonical isomorphism Tuniv

G,xI
∼−→ Tuniv

G,xJ of quasi-twistings. Hence, the quasi-twisting Tuniv
G,x

associated to any individual point x ∈ X is canonically isomorphic to colimxI⊂X(k) T
univ
G,xI .

Remark 5.19. Note that the DG category T
(κ,E)
G -Mod is naturally a QCoh(S)-module.

Again from the functoriality in maps (gκ, E) : S → ParG, we obtain a sheaf of DG categories
over ParG, denoted by Tuniv

G -Mod.
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The näıve version of the quantum Langlands duality claims an equivalence of sheaves of
DG categories:

Tuniv
G -Mod

∼−→ Tuniv
Ǧ

-Mod (5.22)

over the common base ParG
∼−→ ParǦ (by (2.11)). However, the hypothetical equivalence

(5.22) is false whenever G is not a torus, and a renormalization procedure is required for
stating the correct version of quantum Langlands duality.

5.5.10. Recovering the classical TDOs. Suppose G is simple, and we fix a k-valued parameter
(gκ, 0) of ParG corresponding to some bilinear form κ on g. Let λ and c be as in Example
2.15. Let LG,det denote the determinant line bundle over BunG. It is the inverse of the
relative determinant of the vector bundle gPG (PG being the universal G-bundle) along the

map BunG×X → BunG (see [So00, §6.1]). Write L̃G,det for its pullback to BunG,∞x.

Proposition 5.20. The classical quasi-twisting (5.11) at the parameter (gKil, 0):

0→ OBunG,∞x → L̂(Kil,0) → LKil → 0

identifies with the Picard algebroid Diff≤1(L̃G,det).

Proof. Via the isomorphism prg : gKil ∼−→ g, the lower triangle of (5.10) identifies with:

0→ OBunG,∞x → ĝTate�̂OBunG,∞x → g(Kx)�̂OBunG,∞x → 0. (5.23)

where ĝTate is the central extension of g(Kx) defined by the cocycle

(ξ ⊗ f, ξ′ ⊗ f ′) Kil(ξ, ξ′) · Res(df · f ′).

Recall that (5.23) is a classical quasi-twisting, where the Lie algebroid brackets are induced
from the LxG-action on BunG,∞x.

It is well known (see, e.g. [So00, §7, §10]) that ĝTate comes from a central extension of
group ind-schemes:

1→ Gm → ĜTate → LxG→ 1,

and the LxG-action on BunG,∞x extends to an action of ĜTate on L̃G,det. Hence ĝTate acts

as derivations on L̃G,det, and we obtain a morphism ĝTate�̂OBunG,∞x → Diff≤1(L̃G,det) of
Lie algebroids. Note that the following diagram commutes:

0 // OBunG,∞x
//

∼

��

ĝTate�̂OBunG,∞x
//

��

g(Kx)�̂OBunG,∞x
//

��

0.

0 // OBunG,∞x
// Diff≤1(L̃G,det) // TBunG,∞x

// 0

Furthermore, the OBunG,∞x -submodule Γ(Σ, g
P̃G

) of ĝTate�̂OBunG,∞x acts by zero on L̃G,det,

so by modding out Γ(Σ, g
P̃G

), we obtain a morphism of classical quasi-twistings:

0 // OBunG,∞x
//

∼

��

L̂(Kil,0) //

��

LKil //

��

0.

0 // OBunG,∞x
// Diff≤1(L̃G,det) // TBunG,∞x

// 0

where the last terms LKil and TBunG,∞x are identified. As such, it is an isomorphism of
classical quasi-twistings. �
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It follows from Proposition 5.20 that the classical quasi-twisting at (gκ, 0) operates on

the virtual line bundle L̃λG,det. Since quotient by the action pair (g(Ox),L+
xG) agrees with

strong quotient of Picard algebroids, we obtain an equivalence

T
(κ,triv)
G -Mod

∼−→ Diff(LλG,det)-Mod(BunG).

In particular, the hypothetical equivalence (5.22) specializes to (1.2).

6. Recovering QCoh(LocSysG) at κ =∞

In this section, we show that at level ∞, the quasi-twisting T
(κ,E)
G constructed in §5

recovers the DG algebraic stack LocSysG in the following sense: T
(∞,0)
G is the inert quasi-

twisting on some triangle OBunG → Q̂
(∞,0)
desc → Q

(∞,0)
desc in QCoh(BunG) (see §4.6.6 for what

this means). Furthermore, the corresponding stack V(Q̂
(∞,0)
desc )λ=1 over BunG identifies with

LocSysG, so we obtain an equivalence of DG categories T
(∞,0)
G -Mod

∼−→ QCoh(LocSysG).
Finally, we comment on the role of certain additional parameters E when gκ = g∞.

6.1. The underlying OS×BunG-modules of T
(κ,0)
G,n .

6.1.1. We adopt the following notations from the previous section: let Sn := S ×BunG,nx,
and Xn := S ×BunG,nx×X which is a curve over Sn. The tautological G-bundle over Xn is

denoted by P
(n)
G . Write S̃ := S × BunG,∞x and similarly for X̃ and P̃G.

Recall the quasi-twisting T
(κ,0)
G,n and T

(κ,0)
G = T

(κ,0)
G,0 which are special cases of (5.21) for

the S-valued parameter (gκ, 0). Suppose T
(κ,0)
G,n is expressed as a map of some formal moduli

problems Ŝ[n → S[n under Sn.

6.1.2. Since T
(κ,0)
G,n is the quotient of T̃

(κ,0)
G by the pair (gκ(mnx), Hn), the underlying ind-

coherent sheaves of Ŝ[n and S[n arise from a triangle in QCoh(Sn):

OSn → Q̂
(κ,0)
n,desc → Qκn,desc, (6.1)

where Q̂
(κ,0)
n,desc is the descent of the Hn-equivariant complex of OS̃-modules:

Q̂(κ,0)
n := Cofib(gκ(mnx)� OBunG,∞x → L̂(κ,0)),

and a similar description is valid for Qκn,desc.

6.1.3. The Atiyah bundle construction gives rise to a triangle:

ωXn/Sn → At(P
(n)
G )∗ → g∗

P
(n)
G

over Xn. Its pullback along the projection gκ
P

(n)
G

→ g∗
P

(n)
G

is denoted by:

ωXn/Sn → Eκ(P
(n)
G )→ gκ

P
(n)
G

. (6.2)

Note that there is a canonical isomorphism Qκn,desc
∼−→ R Γ(X, gκ

P
(n)
G

(−nx))[1].

Proposition 6.1. The triangle (6.1) is identified with the push-out of

R Γ(X,ωXn/Sn(−nx))[1]→ R Γ(X,Eκ(P
(n)
G )(−nx))[1]→ R Γ(X, gκ

P
(n)
G

(−nx))[1] (6.3)

along the trace map R Γ(X,ωXn/Sn(−nx))[1]→ OSn .
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6.1.4. We now begin the proof of Proposition 6.1. Since both triangles in question are
descent of triangles over S̃, we ought to establish an Hn-equivariant isomorphism between
the triangle:

OS̃ → Q̂(κ,0)
n → Qκn (6.4)

and the push-out of the analogous triangle:

R Γ(X,ω
X̃/S̃

(−nx))[1]→ R Γ(X,Eκ(P̃G)(−nx))[1]→ R Γ(X, gκ
P̃G

(−nx))[1] (6.5)

under the trace map R Γ(X,ω
X̃/S̃

(−nx))[1]→ O
S̃
.

6.1.5. We describe more explicitly the DX̃/S̃-modules underlying the extension sequence of

Lie-∗ algebras (5.9):

0→ ωX̃/S̃ → (ĝ
(κ,0)
D )P̃G → (gκD)P̃G → 0,

in the case where the E = 0. Namely, consider the DX̃/S̃-modules induced from the sequence

(6.2) (where we use X̃ instead of X(n) in the Atiyah bundle construction):

0→ (ωX̃/S̃)D → Eκ(P̃G)D → (gκD)P̃G → 0

Let Eκ(P̃G)push
D be the push-out along act : (ωX̃/S̃)D → ωX̃/S̃ of the DX̃/S̃-module Eκ(P̃G)D.

Lemma 6.2. The DX̃/S̃-module underlying the extension (ĝ
(κ,0)
D )P̃G identifies with Eκ(P̃G)push

D .

Proof. Recall that (ĝ
(κ,0)
D )P̃G is the P̃G-twist of the trivial extension ĝ

(κ,0)
D

∼−→ ωX̃/S̃ ⊕ gκD.

Consider the push-out diagram:

(ωX̃/S̃)D //

act

��

(ωX̃/S̃ ⊕ (gκ ⊗ OX̃))D

��
ωX̃/S̃

// ωX̃/S̃ ⊕ gκD.

(6.6)

Note that the entire diagram is acted on by the sheaf of groups G, as described below:

(a) the G-actions on (ωX̃/S̃)D and ωX̃/S̃ are trivial, and the action on ωX̃/S̃⊕ gκD is given by

§5.3.5;
(b) the G-action on (ωX̃/S̃ ⊕ (gκ ⊗ OX̃))D is the DX̃/S̃-linear extension of the following G-

action on ωX̃/S̃ ⊕ (gκ ⊗ OX̃) centralizing ωX̃/S̃:

gU · (ξ ⊕ ϕ) = ϕ(g−1
U dgU) + (AdgU(ξ)⊕ CoadgU(ϕ)) (6.7)

where gU ∈ G(U) and ξ ⊕ ϕ ∈ gκ ⊗ OU.

If we twist the trivial OX̃-module extension equipped with the G-action (6.7):

0→ ωX̃/S̃ → ωX̃/S̃ ⊕ (gκ ⊗ OX̃)→ gκ ⊗ OX̃ → 0

by the G-bundle P̃G, we obtain precisely the Atiyah sequence (pulled back along gκ
P̃G
→

g∗
P̃G

):

0→ ωX̃/S̃ → Eκ(P̃G)→ gκ
P̃G
→ 0.

Therefore, twisting the diagram (6.6) by P̃G, we obtain a push-out diagram:

(ωX̃/S̃)D //

act

��

Eκ(P̃G)D

��
ωX̃/S̃

// (ĝ(κ,0)
D )P̃G .
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This proves the Lemma. �

6.1.6. By construction of Q̂
(κ,0)
n and Qκn, the required isomorphism shall follow from a

general claim. We first explain the set-up (which is quite involved): let S be a scheme, and
X := X × S with section x given by the closed point x ∈ X. Suppose we have an exact
sequence of OX-modules:

0→ ωX/S → E→ F → 0.

Let ED denote the induced D-module of E and E
push
D its push-out along act : (ωX/S)D →

ωX/S.
Then we may form a map between exact sequences:

0 // ΓdR(Σ, ωX/S) //

0��

ΓdR(Σ,Epush
D ) //

��

Γ(Σ,F) //

γ��
γ̂
ww

0

0 // ΓdR(
◦
Dx, ωX/S) // ΓdR(

◦
Dx,E

push
D ) // Γ(

◦
Dx,F) // 0,

as well as a section γ̂ from the residue theorem. On the other hand, let E
push
D (m(n)) denote

the OS-submodule of ΓdR(Dx,E
push
D ) annihilated by the restriction to D

(n)
x ; we use the

notation F(m(n)) for a similar meaning. We have a triangle:

OS → Q̂→ Q (6.8)

where:

(a) Q̂ := Cofib(Γ(Σ,F)→ ΓdR(
◦
Dx,E

push
D )/Epush

D (m(n)));

(b) Q := Cofib(Γ(Σ,F)→ Γ(
◦
Dx,F)/F(m(n))).

Remark 6.3. For S := S̃, E := Eκ(P̃G), and F := gκ
P̃G

, we see from the construction of

(6.4) that it identifies with the triangle (6.8).

Claim 6.4. The triangle (6.8) identifies with the push-out of the canonical triangle:

R Γ(X,ωX/S(−nx))[1]→ R Γ(X,E(−nx))[1]→ R Γ(X,F(−nx))[1] (6.9)

along the trace map R Γ(X,ωX/S(−nx))[1]→ OS.

Proof. Recall the identification:

Q = Cofib(Γ(Σ,F)→ Γ(
◦
Dx,F)/F(m(n)))

∼−→ R Γ(X,F(−nx))[1],

which is also valid when F is replaced by any OX-module. It suffices to produce a morphism
of triangles from (6.9) to (6.8), whose first and third terms are the trace map, respectively
the above isomorphism.

Consider the diagram defining E
push
D :

0 // (ωX/S)D //

��

ED
//

��

FD

∼��

// 0

0 // ωX/S
// Epush

D
// FD

// 0.
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Using the functors ΓdR(
◦
Dx,−) and M M(m(n)), we obtain a diagram:

0 // ◦ω/ω(m(n))

res

��

// Γ(
◦
Dx,E)/E(m(n)) //

��

Γ(
◦
Dx,F)/F(m(n)) //

∼��

0

0 // OS̃
// ΓdR(

◦
Dx,E

push
D )/Epush

D (m(n)) // Γ(
◦
Dx,F)/F(m(n)) // 0

where the rows are still exact sequences by the Snake lemma. We now take cofibers of the
map from the triangle Γ(Σ, ω)→ Γ(Σ,E)→ Γ(Σ,F) to the top row, and the cofibers of the
map from 0→ Γ(Σ,F)→ Γ(Σ,F) to the bottom row:

R Γ(X,ωX/S(−nx))[1] //

��

R Γ(X,E(−nx))[1] //

��

R Γ(X,F(−nx))[1]

∼��
OS

// Q̂ // Q

This is a morphism between triangles. Finally, we observe that the residue morphism from
◦
ω/ω(m(n)) passes to the trace map from R Γ(X,ωX/S(−nx))[1]. �

We have now constructed an isomorphism from (6.4) to the push-out of (6.5) along the
trace map R Γ(X,ω

X̃/S̃
(−nx))[1]→ O

S̃
. We omit checking that this map is compatible with

the Hn-equivariance structure. �(Proposition 6.1)

Remark 6.5. Combined with §5.5.10, we have showed that the Picard algebroid Diff≤1(LG,det)
has as its underlying triangle of OBunG-modules constructed explicitly by the following pro-
cedure:

(a) Consider the triangle R Γ(X,ωX/S)[1]→ R Γ(X,Eκ(PG))[1]→ R Γ(X, g∗PG)[1];
(b) Obtain a push-out along the trace map R Γ(X,ωX/S)[1]→ OS:

OS → E→ R Γ(X, g∗PG)[1]

(c) The extension associated to Diff≤1(LG,det) is the pullback of the above triangle along:

TBunG
∼−→ R Γ(X, gPG)[1]

Kil−−→ R Γ(X, g∗PG)[1].

where the Killing form Kil is regarded as a G-invariant isomorphism g
∼−→ g∗.

6.2. An alternative description of LocSysG.

6.2.1. Recall that LocSysG is defined as the mapping stack Maps(XdR,BG); it is repre-
sented by a DG algebraic stack ([AG15, §10]). We give an alternative description of LocSysG
in terms of “G-bundles with connections.” This description is more closely related to the
quasi-twisting at level ∞.

6.2.2. Let LocSys′G denote the prestack over BunG such that for every affine DG scheme
S, the groupoid Maps(S,LocSys′G) classifies:

(a) a G-bundle PG over S ×X;
(b) a splitting of the canonical triangle in QCoh(S ×X):

gPG → At(PG)→ TS×X/S . (6.10)

Recall that for such S, the complex At(PG) can be described as the relative tangent complex
associated to the map S × X → BG represented by PG, and the triangle (6.10) is the
corresponding canonical triangle.
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6.2.3. Note that a lift of PG to an S-point of LocSysG supplies the dotted arrow in the
following commutative diagram:

S ×X PG //

��

S × BG

��
S ×XdR

//

77

S

This arrow gives rise to a splitting of (6.10) as TS×X/S×XdR
is isomorphic to TS×X/S . In

other words, we have a morphism of stacks over BunG:

LocSysG → LocSys′G . (6.11)

Proposition 6.6. The morphism (6.11) is an isomorphism.

Proof. Let us first introduce some auxiliary objects. For an affine open U ⊂ X, denote
by LocSysG(U) (resp. LocSys′G(U)) the prestack over BunG such that a lift of an S-point
PG of BunG to LocSysG(U) corresponds to a flat connection of PG|U (resp. a splitting of
(6.10) over S×U .) Denote by HitchG(U) the prestack over BunG classifying a G-bundle PG
together with a section of g∗PG ⊗ ωX over U . It is known that both prestacks LocSysG(U)
and HitchG(U) are classical (see [AG15, Proposition 10.5.3]).

We claim that LocSys′G(U) is also classical. Indeed, since any choice of a splitting of
(6.10) over U supplies an isomorphism between LocSys′G(U) and HitchG(U), it suffices to
show that such a splitting exists. The extension (6.10) over U corresponds to an element of
the groupoid:

τ≤0 HomQCoh(S×U)(TS×U/S , gPG [1]) ∼= τ≤0 HomQCoh(U)(TU , gPG [1]).

Since gPG is in cohomological degree ≤ 0 and U is affine, any such element is null-homotopic.
Next, we claim that the morphism of prestacks analogous to (6.11):

LocSysG(U)→ LocSys′G(U)

is an isomorphism. Indeed, since both sides are classical, it suffices to verify the claim
for classical test affine schemes S. In this case, note that lifting an S-point PG of BunG
to LocSys′G(U) amounts to supplying a connection on PG, whereas a lift to LocSysG(U)
amounts to supplying a flat connection on PG. Their equivalence follows from the fact that
dim(X) = 1.

Finally, we find that (6.11) is an equivalence by covering X with two affine opens U1 and
U2, and using the Cartesian squares:

LocSysG //

��

LocSysG(U1)

��
LocSysG(U2) // LocSysG(U1 ∩ U2)

LocSys′G //

��

LocSys′G(U1)

��
LocSys′G(U2) // LocSys′G(U1 ∩ U2)

These follow straightforwardly from the descent property of BG, respectively QCoh. �

6.3. Identification of the fiber at ∞.

6.3.1. We now specialize to the parameter (g∞, 0) : pt → ParG, where g∞ identifies with

the subspace g∗ ↪→ g⊕ g∗. The quasi-twisting T
(∞,0)
G over BunG is obtained as the quotient

of T̃
(∞,0)
G (i.e., (5.11) at parameter (g∞, 0)) by the pair (g∞(Ox),L+

xG) along the L+
xG-torsor

BunG,∞x → BunG.
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Proposition 6.7. (a) T
(∞,0)
G is the inert quasi-twisting associated to the triangle (6.1) (for

n = 0):

OBunG → Q̂
(∞,0)
desc → Q∞desc (6.12)

(b) there is a canonical isomorphism of DG stacks:

V(Q̂
(∞,0)
desc )λ=1

∼−→ LocSysG .

Combined with (4.24), we obtain an equivalence of DG categories:

T
(∞,0)
G -Mod

∼−→ QCoh(LocSysG).

Proof of Proposition 6.7. It is clear from the construction that the classical quasi-twisting

T̃
(∞,0)
G is given by the central extension of Lie algebroids (with zero Lie bracket and anchor

map)

0→ OBunG,∞x → L̂(∞,0) → L∞ → 0.

Since T
(∞,0)
G arises from the quotient of T̃

(∞,0)
G by (g∞(Ox),L+

xG), the paradigm of §4.6.9 ap-

plies, and T
(∞,0)
G is the inert quasi-twisting on the triangle (6.12). For the second statement,

note that we have a push-out diagram in QCoh(BunG):

R Γ(X,OBunG×X)∗ //

��

R Γ(X,At(PG)⊗ ωX)∗

��
OBunG

// Q̂(∞,0)
desc ,

by Proposition 6.1 and Serre duality. Hence V(Q̂
(∞,0)
desc )λ=1 fits into the commutative diagram:

V(R Γ(X,OBunG×X)∗) V(R Γ(X,At(PG)⊗ ωX)∗)oo

BunG

{1}
OO

V(Q̂
(∞,0)
desc )λ=1.oo

OO

For any DG scheme S mapping to BunG (represented by the G-bundle PG over S ×X), a
computation using the projection formula shows:

(a) MapsBunG(S,V(R Γ(X,At(PG)⊗ ωX)∗))
∼−→ τ≤0 R Γ(S ×X,At(PG)⊗ ωX), and

(b) MapsBunG(S,V(R Γ(X,OBunG×X)∗))
∼−→ τ≤0 R Γ(S ×X,OS×X).

Hence MapsBunG(S,V(Q̂
(∞,0)
desc )λ=1) is identified with the ∞-groupoid

τ≤0 R Γ(S ×X,At(PG)⊗ ωX) ×
τ≤0 R Γ(S×X,OS×X)

{1}

i.e., the ∞-groupoid of splittings of the Atiyah sequence gPG → At(PG) → TS×X/S . We

obtain an isomorphism V(Q̂
(∞,0)
desc )λ=1

∼−→ LocSys′G so the result follows from Proposition
6.6. �

Remark 6.8. An alternative argument (one that avoids using the results of §6.1) runs
as follows: by a local computation, one identifies the universal envelope of the classical
quasi-twisting (5.11) with the (topological) ring of functions over LocSysG,∞x(Σ), the stack

classifying (PG, α) ∈ BunG,∞x together with a connection over PG
∣∣
Σ

. One then shows

that the closed subscheme V(Q̂(∞,0))λ=1 identifies with LocSysG,∞x, and (4.26) gives rise to
isomorphisms:

V(Q̂
(∞,0)
desc )λ=1

∼−→ LocSysG,∞x /L
+
xG

∼−→ LocSysG .



QUANTUM PARAMETERS OF THE GEOMETRIC LANGLANDS THEORY 57

6.3.2. We comment on the role of integral additional parameters at∞, i.e., the ones arising
from Z(G)-bundles. More precisely, let E := At(PZ(G))

∗ for some Z(G)-bundle PZ(G). Then
E is an extension of z∗G ⊗ OX by ωX , so (g∞, E) is a well defined k-point of ParG.

Proposition 6.9. Let E = At(PZ(G))
∗ for a Z(G)-bundle PZ(G). Then there is a canonical

isomorphism of DG stacks:

V(Q̂
(∞,E)
desc )λ=1

∼−→ LocSysG ×
BunG

BunG, (6.13)

where the second map is the central shift −⊗ PZ(G).

Proof. Note that the DBunG,∞x×X/BunG,∞x -module (5.9) at parameter (g∞, E) is induced
from the following sequence:

0→ ωBunG,∞x×X/BunG,∞x → At(PZ(G) ⊗ PG)∗ → g∗PG → 0

via the functor (−)D and pushing out (see §6.1). An argument similar to the above shows

that T
(∞,E)
G is the inert quasi-twisting associated to the triangle in QCoh(BunG):

OBunG → Q̂
(∞,E)
desc → Q∞desc,

where we have a canonical isomorphism Q̂
(∞,E)
desc

∣∣
PG

∼−→ Q̂
(∞,0)
desc

∣∣
PZ(G)⊗PG

. Hence the result

follows from Proposition 6.7. �

Remark 6.10. A connection on PZ(G) gives rise to a splitting of E, hence an isomorphism

V(Q̂
(∞,E)
desc )λ=1

∼−→ V(Q̂
(∞,0)
desc ). Geometrically, this corresponds to a lift of the isomorphism

−⊗ PZ(G) : BunG
∼−→ BunG to LocSysG.

Remark 6.11. Specializing the hypothetical equivalence (5.22) to the parameter (gcrit, 0),
we obtain the usual, näıve statement of the geometric Langlands correspondence:

Diff(L
− 1

2

G,det)-Mod(BunG)
∼−→ QCoh(LocSysǦ).

Specializing to (gcrit, E) where E = At(PZ(Ǧ))
∗, we obtain from (6.13) a hypothetical

equivalence:

Diff(L
− 1

2

G,det ⊗M)-Mod(BunG)
∼−→ QCoh(LocSysǦ ×

BunǦ

BunǦ)

where M is the pullback to BunG of the line bundle on BunG/[G,G] corresponding to PZ(Ǧ).
This equivalence can be viewed as an expected compatibility of the geometric Langlands
duality with central shift. Let us reiterate that when G is not a torus, none of these
equivalences are true without a renormalization process.
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