QUANTUM PARAMETERS OF THE GEOMETRIC LANGLANDS
THEORY

YIFEI ZHAO

ABSTRACT. Fix a smooth, complete algebraic curve X over an algebraically closed field
k of characteristic zero. To a reductive group G over k, we associate an algebraic stack
Parg of quantum parameters for the geometric Langlands theory. Then we construct a
family of (quasi-)twistings parametrized by Parg, whose module categories give rise to
twisted D-modules on Bung as well as quasi-coherent sheaves on the DG stack LocSysg.
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1. INTRODUCTION
1.1. The geometric Langlands conjecture.

1.1.1. The goal of the Langlands program can be broadly described as to establish a cor-
respondence between automorphic forms attached to a reductive group G and Galois repre-
sentations valued in the Langlands dual group G.

1.1.2. In the (global, unramified) geometric theory, we fix a smooth, connected, projective
curve X over an algebraically closed field k. For simplicity, let G be a reductive group
over k (where “reductive” is meant to imply “connected”). Then automorphic functions
correspond to certain sheaves on the stack Bung parametrizing G-bundles over X, and the
role of Galois representations is played by local systems on X valued in G, the Langlands
dual group defined over a coefficient field E.

If we further specialize to the case where k is of characteristic zero, then it is possible to
take E = k and study the de Rham G-local systems on X. The latter also form a moduli
stack over k, denoted by LocSyss.
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1.1.3.  Unlike Bung, the stack LocSyss is not smooth. Furthermore, it is a DG algebraic
stack in general and the correct formulation of the geometric Langlands conjecture has to
take into account its DG nature.

After Arinkin and Gaitsgory [AGI5], one conjectures an equivalence of DG categories:

L¢ : D-Mod(Bung) = IndCohpip (LocSysg). (1.1)

Here, the left-hand-side is the DG category of D-modules on Bung. The right-hand-side is
the DG category of ind-coherent sheaves on LocSyss whose singular support is contained
in the global nilpotent cone. This DG category is an enlargement of QCoh(LocSyss), and
the appearance of singular support is the geometric incarnation of Arthur parameters.

1.2. What do we mean by “quantum”?

1.2.1. The quantum geometric Langlands theory seeks to simultaneously deform both sides
of in a way to make them look more symmetric. The main idea, due to Drinfeld and
expounded on by Stoyanovsky [St06] and Gaitsgory [Gal6b], is to consider the DG category
of twisted D-modules on Bung.

1.2.2. To explain this approach, let us temporarily assume that G is simple. Write £ get
for the determinant line bundle over Bung. To every value ¢ € k one can associate the DG
category D-Mod(Bung) of D-modules over Bung twisted by the (C;hhvv )th power of £ det,
where 1V denotes the dual Coxeter number of G.

Let r = 1,2, or 3 be the maximal multiplicity of arrows in the Dynkin diagram of G. One
expects an equivalence of DG categories:

LY : D-Mod®(Bung) <> D-Mod ™ 7+ (Bun,) (1.2)

The equivalence }Lg) should vary continuously in ¢, and degenerate to (1.1]) as ¢ tends to
zer0E| For a survey on the conjecture (1.2), see [Sc14].

1.2.3. We remark that the conjecture is made prior to the formulation of . For
the correct degeneration to IndCohniip(LocSys) to take place, one has to renormalize the
DG category D-Mod“(Bung).

The renormalized DG categories D-Mody,, (Bung) have apparently different nature de-
pending on the rationality and positivity of ¢, so fitting them in a quasi-coherent family is

not a trivial matter.

1.2.4. 1In the present article, we fulfill a more modest goal: we construct a family of non-
commutative algebras A over Bung, whose generic fiber (at ¢ < o) is a ring of twisted
differential operators (TDOs) on Bung and whose special fiber (at ¢ = o0) is Opocsysg, -
By taking the module category of A, we realize the degeneration of D-Mod‘(Bung) into
QCoh(LocSys), without taking into account the renormalization mentioned above.

1.3. What’s in this article?

1.3.1. Let us admit right away that when G is simple, the space of quantum parameters
is just a copy of P!, and when the genus of the curve X is at least 2, the stack LocSysg
is classical. In this case, the P!-family of non-commutative algebras A has already been
constructed by Stoyanovsky [St06], making use of the line bundle £¢ qet-

_1

Hndeed, the left-hand-side of (L.1) should more naturally be the DG category of L2  -twisted D-
modules, otherwise known as D-modules at the critical level. The two DG categories are equivalent by the
existence of the Pfaffian.



QUANTUM PARAMETERS OF THE GEOMETRIC LANGLANDS THEORY 3

1.3.2. In the present article, we construct the space of quantum parameters and an analo-
gous degeneration for a reductive group G. However, our construction proceeds along totally
different lines from [St06]. This departure in point of view is motivated by the following
considerations:

(a) In the study of the Langlands correspondence for G, an instrumental role is played by
its Levi subgroups M. The relationship between G and M is codified by the constant
term functors (and their adjoints, the Eisenstein series functors). Even for simple G,
the constant term functor carries D-Mod®(Bung) to a twisted category of D-modules
on Bunjy; which does not arise from the determinant line bundle (see [Gal6al §3.3-3.4]
for example).

It is desirable, therefore, to include these additional twists into the space of quantum
parameters for M. Our construction achieves this in a natural way. For a reductive
group G, our space of quantum parameters consists of a pair (g”, F), where g” is a
generalized symmetric bilinear form on the Lie algebra g of G, and F is an additional
parameter which depends on the center of G as well as the curve X.

(b) The DG nature of LocSys requires us to consider generalizations of TDOs whose un-
derlying O-modules are chain complexes. It is a priori unclear how to even define such
gadgets, since chain complexes interact poorly with explicit formulas. To circumvent
this, we make a geometric construction using the recent theory of derived formal moduli
problems developped by Lurie, Gaitsgory, and Rozenblyum.

More precisely, [GR14] introduces a theory of twistings which gives the derived gen-
eralization of a ring of TDOs. (We call the latter classical twistings). We introduce the
notion of a quasi-twisting which incorporates commutative degenerations of twistings.

1.3.3. Driven by these considerations, we give a construction of A which completely dis-
penses of the line bundle £ 4ot and contains more information as soon as the center of G
is nontrivial. The key steps in this construction are summarized by the following chartﬂ

quantum - Lie-x algebra
parameter (g, E) ﬁ,_(g“’E) over X
classical quasi-twisting quasi-twisting
~ ‘j.(fi,E) ~ (k,E) .
G over Bung ooy Ta over Bung

The family of algebras A ultimately arises as the universal enveloping algebra of 'Ig" ’E),
when we vary the quantum parameter. From our point-of-view, however, the family of
quasi-twistings ‘J'gf ‘) is more fundamental than A, and will be the central object of study
in this article.

1.4. Organization of this article.

1.4.1. We start in §2 with the definition of Parc, the space of quantum parameters. It is a
fiber bundle over a compactification of Sym?(g*)¢, with fibers being vector stacks describing
the “additional parameters.”

The aforementioned compactification of Sym?(g*) is simply the space of G-invariant
Lagrangian subspaces of g ® g*, where a G-invariant symmetric bilinear form embeds as its
graph. The level “at co” is understood as the Lagrangian subspace g :=0® g*.

G

2For objects that depend on g (resp. (g%, E)), we only retain the character x (resp. (k,E)) in the
notation.
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1.4.2. The main idea. Let us take a k-point in Parg, which is a Lagrangian subspace g* C
g @ g* together with an additional parameter E (see §2.4.1| where it is defined). Using the
theory of Lie-x algebras developed in [BD04], we construct a central extension

0 — OBung o — LEE) Ly or 5 (1.3)

of Lie algebroids over the scheme Bung ., parametrizing G-bundles trivialized over the
formal neighborhood D, of a fixed closed point z € X. We refer to central extensions of Lie
algebroids as classical quasi-twistings.

For g" arising from a symmetric bilinear form, the reduced universal envelope of :

Ued (L5 B)) = U(LB)) /(1 - 1)

defines a TDO over Bung cos- At (g%, E) = (g°°,0), the algebra Ured(2<°°’0>) becomes
commutative, and identifies with the ring of functions on the ind-scheme LocSysg oo, (X —
{x}) parametrizing a point (Pr,7) € Bung, . together with a connection V over Pr|x_ (4.

To obtain a central extension of Lie algebroids over Bung, we “descend” along the
torsor Bung,o» — Bung, and the algebra A(”’E ) is set to be its universal envelope. The
family of algebras A is obtained by letting the point (g*, E) in Parg vary.

1.4.3. The main challenge. There is, however, a caveat in what it means to “descend” the
classical quasi-twisting (1.3]). We need a procedure that simultaneously does the following:

(a) For g” arising from a symmetric bilinear form, it performs the strong quotient of a TDO,
in the sense of [BB93];

(b) For g = g, it transforms (the ring of functions over) LocSyss .., (X — {x}) into the
DG stack LocSysg, a procedure usually understood as symplectic reduction.

It turns out that one needs to form what we call the quotient of a classical quasi-twisting.
In general (and in the way we will apply it), this notion belongs to the DG world, i.e., the
quotient of a classical quasi-twisting may cease to be classical.

1.4.4. A (non-classical) quasi-twisting over a finite type scheme Y is defined as a @m—
gerbe in the oco-category of formal moduli problems under Y. They make up the geometric
theory of central extensions of Lie algebroids over Y, and are studied in §3] The theory of
quasi-twistings is made possible by the machinery of formal groupoids and formal moduli
problems, as developed in [GRI6].

The quotient of quasi-twistings fits into the general paradigm of taking the quotient of
an inf-scheme by a group inf-scheme. The latter procedure is rather elaborate, as it mixes
prestack quotient with formal groupoid quotient. This is the content of §d]

1.4.5. Finally, we need to deal with the technical annoyance that the theory of [GRI6]
is built for prestacks locally (almost) of finite type, whereas Bung oo, is of infinite type.
Hence the actual quotient process has to be performed in two steps, one classical and one
geometric, along the torsors:

Bungzgw — Bungﬁl — Bunge)7
where Bun(GSe) is a Harder-Narasimhan truncation of Bung and n is sufficiently large so that

Bun(GS)Z?D is a scheme (of finite type.) For this reason, we need to prove a number of results

communicating between the classical and derived worlds in §3] and §4 It is the author’s
hope that an extension of [GR16] to co-dimensional algebraic geometry will render this trick
obsolete.
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1.4.6. The main results. In §5| we perform the main construction of the quasi-twisting ‘Ig £
over Bung and check that it gives rise to the expected TDOs when g* is the graph of a
bilinear form and F = 0.

Finally, in 3.@ we show that the DG category of modules over ‘.Téoo’o) recovers QCoh(LocSysg);
in doing so, we also obtain a description of the underlying quasi-coherent sheaf of the TDO
at an arbitrary level. We end the article with remarks on the “meaning” of certain additional
parameters at level oco.

1.5. Quantum vs. metaplectic parameters.

1.5.1.  There is another approach of deforming the DG category @—Mod(Bung)ﬁ under the
name “metaplectic geometric Langlands program” (see [GLI6], for example.) We briefly
explain the relation between metaplectic and quantum parameters.

For simplicity, let us focus on the points (g, E') of Parg where g* arises from a symmetric
bilinear form. Such quantum parameters form an open substack isomorphic to Sym? (%)% x
Extl(éG ® Ox,wx), and the quasi-twistings on Bung they produce are in fact twistings.

1.5.2. Metaplectic parameters give rise to gerbes, as opposed to twistings, on Bung. Having
chosen D-modules as our sheaf-theoretic context, a gerbe on a prestack Y refers to a map
from Yqr to B2G,,. Note that a gerbe on Bung is sufficient to form the DG category of
twisted D-modules, but the additional data included in a twisting equip this DG category
with a forgetful functor to QCoh(Bung).

Unlike the metapletic geometric Langlands program, which has incarnations in various
sheaf-theoretic contexts, the quantum geometric Langlands program is limited to the case
of D-modules. (However, it seems that the restriction char(k) = 0 is not necessary, in light
of the recent work of Travkin [Tr16].)

1.5.3. By analogy with the f-adic context, gerbes are supposed to be “topological” gadgets.
However, the existence of the exponential local system on A' shows that the above definition
of a gerbe is too naive. In order to retain only topological information, we ought to adjust
the definition of a gerbe slightly, as a (2-)torsor over the groupoid of regular singular local
systems. However, we will ignore this subtlety for now.

1.5.4. Let Grg denote the affine Grassmannian associated to G, regarded as a factoriza-
tion prestack over the Ran space of X. Conjecturally, the spaces of quantum, respectively
metaplectic, parameters have the following intrinsic meanings: they are the moduli spaces
of factorization twistings, respectively gerbes, on Grg. The corresponding objects on Bung
arise from their descent along the canonical map Grg — Bung.

Furthermore, there is a fiber sequence of Picard groupoids, relating factorization line
bundles, twistings, and gerbes on the affine Grassmannian:

Pic™(Grg) — Tw™(Grg) — Ge™(Grg). (1.4)
The three items of this fiber sequence stem from apparently different sources:
algebro-geometric differential-geometric topological

Pic™(Gr¢) Tw™(Grg) Ge™*(Grg)

K-theoretic parameters | quantum parameters | metaplectic parameters

3or in the context of curves over Fp, the category of £-adic sheaves on Bung.
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1.5.5. Since the first preprint of the present paper appeared in 2017, several new devel-
opments have contributed to a better understanding of these parameters. Let us briefly
report on them. The first one is a precise relationship between the K-theoretic parame-
ters, first studied by Brylinski-Deligne [BD01], and factorization line bundles [Ga20][TZ19].
The second is a precise formulation of “topological” gerbes in the de Rham context and
the classification of factorization de Rham gerbes on Gre [Zh20]. In the f-adic context,
the analogous classification theorem now has two proofs (see [Zh20] and the new version of
[GL16].)

Finally, it is pointed out by an anonymous referee that the space of quantum parameters
defined in this paper can be further enlarged to include the “semi-classical” degeneration of
the geometric Langlands theory (from D-Mod®(Bung), as well as QCoh(LocSys) to the DG
category of quasi-coherent sheaves on the cotangent stack T* Bung.) The semi-classical limit
has featured in the works of Donagi-Pantev [DP12] (over C) and Bezrukavnikov—Braverman
[BBO6] (in characteristic p).

Notations. Throughout this article, we work over an algebraically closed ground field k£ of
characteristic zero. We write X for a smooth, connected, projective curve and G a reductive
group over k (where “reductive” is meant to imply connected). The Lie algebra of G is
denoted by g. Notations particular to each section will be explained as they appear.

Acknowledgement. The author is deeply indebted to his Ph.D. advisor Dennis Gaitsgory.
Many ideas here arose during conversations with him—in fact, the idea of using quotient
by group inf-schemes is essentially his. The author also thanks Justin Campbell for many
helpful discussions.

The anonymous referees have carefully read a previous version of this paper and made
many valuable suggestions. The author expresses his deep gratitude to them.

2. THE SPACE OF QUANTUM PARAMETERS

In this section, we define the smooth algebraic stack Parg of quantum parameters for
the geometric Langlands theory. We will define a natural isomorphism Parg — Parg, and
explain how Parg behaves when we change G into the Levi quotient M of a parabolic of G.

2.1. The base scheme of Parg.

2.1.1. The space of quantum parameters Parg will be an algebraic vector stack over a
smooth projective scheme. We begin by defining the base scheme of Parg, which will be a
compactification of the vector scheme of G-invariant symmetric bilinear on g. Its existence
is based on the following fact.

Lemma 2.1. Let (V,w) be a symplectic vector space. The presheaf which sends an affine
scheme S to the set of Lagrangian subbundles of V ® Og is representable by a connected,
smooth, projective scheme.

Proof. Let n := dim(V')/2 which is an integer. The presheaf of Lagrangian subbundles of
V ® g is a subfunctor of that of n-dimensional subbundles of V ® Og. The latter presheaf is
represented by the Grassmannian Gr(n, V). Hence the former is represented by a projective
scheme, to be denoted Grrag(V). The smoothness of Grrag(V') follows from a standard
calculation of its cotangent complex (details omitted).

To show that Grpag(V') is connected, we observe that the symplectic group Sp(V') acts
on Grrag (V). For a fixed k-point L of Grrag(V'), the map Sp(V) = Grpag(V) induced from
acting on L is surjective on k-points. Since Sp(V') is connected, so is Grpag(V). O
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2.1.2. Consider the symplectic form on g @ g* defined by the pairing:

oy o) :=0p(E)—¢©). (2.1)
Let Grrag(g @ g*) denote the scheme parametrizing Lagrangian subspaces of g & g*. (It
represents the presheaf in Lemma ) The reductive group G acts on g @ g* via the direct
sum of the adjoint and coadjoint actions. This action preserves the symplectic form .
Hence, we obtain a G-action on Grrag(g @ g*). Thanks to the hypothesis char(k) = 0, the
group G is linearly reductive. Hence the G-fixed point scheme:

Gr{l, (0@ g") C Grrag(g @ ")
remains smooth, by the classical theorem of Iversen [[v72, Proposition 1.3]. We will denote

an S-point of Grfag(g @ g*) by g~, regarded as a Lagrangian subbundle of (g ® g*) ® Og
stable under the G-action.

2.1.3.  Let Sym?(g*)“ denote the vector space of G-invariant symmetric bilinear forms on
g, regarded as a vector scheme. There is a morphism of schemes:

Sym®(g*)? = Grfl,. (s ® g%) (2.2)

sending a form &, viewed as a linear map x : g — g*, to its graph g*. The morphism ([2.2)) is
an open immersion, whose image consists of those subbundles g* C (g ® g*) ® Og for which
the projection to g ® Og is an isomorphism.

2.1.4.  We will use the following notations for special points of Grfag(g S g*):

(a) g°° denotes the k-point g* of Grfag(g ®g*);

(b) gt is the graph of the critical form crit := f% Kil, where Kil is the Killing form of g.

(c) for every S-point g~ of Grgag(g @ g*), the notation g"~i® denotes the Lagrangian
subbundle of (g @ g*) ® Og defined by the property:

EDpEgh «— £@(p—crit(€)) € gt~

Remark 2.2. Note that if x € Sym?(g*)%, then g*~ i is the graph of s — crit, so the above
notation is unambiguous; we also have go"*‘“"it = g>.

Remark 2.3. More generally, one may replace g® "'t in the above construction by g*t*°
for any ko € Sym?(g*)“. This construction defines an action of Sym?(g*)“ on Grfag (g@g")

that extends the addition on Sym?(g*)<.
2.2. Decomposition into simple factors.

2.2.1. Let g=3®), g; be the decomposition of g into its center 3 and simple factors g;. In
this subsection, we study how Grgag(g @ g*) interacts with this direct sum decomposition.
Combined with some knowledge of this space for a simple group, we will be able to describe
Grgag (g @ g*) much more explicitly. First, we begin with a lemma on the level of k-points.

Lemma 2.4. Any Lagrangian, G-invariant subspace L — g @ g* takes the form L = L; @
> Li where:

(a) Ly is a Lagrangian subspace of 3 ® 3*;

(b) each L; is a Lagrangian, G-invariant subspace of g; ® g;.

Proof. The decomposition of g induces a decomposition g@g* = (33*)®>_,(g:®g;) where
the summands are mutually orthogonal with respect to the symplectic form . We may
also decompose L = L; @) j L;, where L; is the G-fixed subspace and each L; is irreducible.
Obviously, the embedding L — g ® g* sends L; into 3 ® 3* as an isotropic subspace.
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We claim that each embedding L; — g ® g* factors through g, © g; for a unique 7. In
other words, the composition L; — g® g* — g; © g; must vanish for all but one i. Suppose,
to the contrary, we have i # ¢/ such that both

Li —»g,®9;, and L; > gy ®g}

are nonzero. Without loss of generality, we may assume that the projections onto the first
factors L; — g;, L; — gi are nonzero. Hence we have
(a) L; = g; = gy as G-representations; and
(b) the image of L; under the projection g & g* — g; ® g is a G-invariant subspace with

nonzero projection onto both factors.
The second statement implies that this image is the entire space g; & g;/, contradicting the
equality dim(L;) = dim(g,) from the first statement. This prove the claim.

Now, suppose j # j' and both embeddings L;, Lj; — g @ g* factor through the same
g; ® g;. This is obviously impossible since L; ® Ly — g @ g* would factor through an
isomorphism L; & Ly — g; ® g}, so it is not isotropic. We conclude that there is a bijection
between the sets {L;} and {g; @ g;} such that each L; — g & g* factors through the
corresponding item g; ® g;.

Finally, since each L; is an isotropic subspace of g; ® g, we have:

dim(g) = dim(L,) + Z dim(L;) < dim(3) + Z dim(g;) = dim(g).

Hence the equality is achieved, and each L; (resp. L;) is a Lagrangian subspace of g, ® g}
(resp. 3 B 3"). O

Corollary 2.5. Let L be a Lagrangian, G-invariant subspace of g ® g*. Then there is a
(non-canonical) isomorphism L = g of G-representations. d

Note that we have an obvious morphism:

Grrag(3 ©3%) x [ [ Crfie(ai © 97) — Grfl (9 © g7) (2.3)

sending a series of vector bundles 3, {gf} over S to their direct sum 3" @ )", gf, which is a
subbundle of (g ® g*) ® Og.

Corollary 2.6. The morphism (2.3)) is an isomorphism.

Proof. Indeed, (2.3) is a proper morphism between smooth schemes. Lemma shows that
it is bijective on k-points, so in particular quasi-finite, and therefore finite (by properness).
A finite morphism of degree 1 between smooth schemes is an isomorphism. O

2.2.2. To proceed furthermore, let us note that any G-invariant symmetric bilinear form x;
on g; defines an isomorphism A! =5 Sym? (g7)¢, sending c to the form cx;. This isomorphism
extends to a map:

P! — Grig (i © @), ¢~ g (2.4)
In fact, an argument analogous to the proof of Corollary shows that is an isomor-
phism. Combining with the isomorphism , we see that Grfag (g® g*) is non-canonically
isomorphic to the product of a Lagrangian Grassmannian with finitely many copies of P!,
one for each simple factor of g.

2.3. Reduction to Z(G).
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2.3.1. We will now work towards the definition of Parg, which is a vector stack over
Grfag (g® g*). The fibers of this vector stack are the so-called additional parameters. They
will only come into play when the center Z(G) is nontrivial. In this subsection, we focus on
the central component of Grfag(g @ g*) with respect to the product decomposition .

2.3.2. Consider the projection map (whose existence owes to Corollary :

Grgag(g D g*) - GrLag(3 2] 3*) (25)
Note that 3 is identified with the subspace of G-invariants of g. Although 3* is more natu-
rally the space of G-coinvariants of g*, we will identify it with the invariants (g*)¢ via the
isomorphism (g*)¢ < g* — 3*.

More intrinsically, the morphism (2.5)) is defined on S-points by:
0"~ (@9 = g"N (835 © ).

where (3 ® 3*) ® Og is regarded as a submodule of (g @ g*) ® Og. In particular, (g%)¢ may
be viewed as a submodule of g~.

Remark 2.7. We refer to (g%) as the G-invariants of g*. The same terminology is used in
the sequel when we replace G by a different group H and g by an H-invariant subspace of
V@ V*, where V is any H-representation for which the composition (V*) «— V* — (VH)*
is an isomorphism.

Remark 2.8. Since crit vanishes on 3, the submodules (g"~<"")& (g")¢ C (3@3*) ® Og are
equal for any g".

2.3.3. Since the embedding 3 < g canonically splits with kernel gy := [g,g], there is a
surjection (g® g*) ® Og — (3D 3") ® Og. Under this surjection, the image of g* is identified
with (g%)¢, and the composition (g")¢ < g* — (g")¢ is the identity. In other words,

Lemma 2.9. The morphism (g%)% < g canonically splits. O
We denote the complement of (g®)% in g* by g7, . The decomposition:

0" = (M) @ ol
mimics the decomposition of g into its center and its semisimple part.

2.4. Definition of Parg.

2.4.1. We are now ready to define the stack Parg of quantum parameters. For an affine
shceme S, the groupoid Maps(S, Parg) consists of pairs (g”, F), where g" is an S-point of
Grfag(g @ g*), and F is an extension of Ox-modules:

0— wy/s = E— (gF)°HOx — 0. (2.6)

Here, X := 5 x X, and wy,s = 05 Kwx is the relative dualizing sheaf.
In other words, Parg is a fiber bundle over Grgag(g @ g*), whose fiber at a k-point g~ is

the vector stack Ext((g")¢ KO x,wx) of extensions over X. We think of g* as a generalized
symmetric bilinear form on g and E as an additional parameter.

Remark 2.10. The substack of Parg corresponding to the points (g, E') where g~ arises
from a bilinear form conjecturally parametrizes factorization twistings on the affine Grass-
mannian Grg, subject to a certain regularity condition (see §1.5). Hence, one may view
Parg as a (partial) compactification of the stack of factorization twistings. We hope to

address this conjecture in a forthcoming work.



10 YIFEI ZHAO

2.5. Langlands duality of Parg.

2.5.1. We now fix a maximal torus T' < G. Let G denote the Langlands dual group of
(G,T). Namely, it is a pinned reductive group over k whose root datum is dual to that of
(G,T). In particular, G comes with a maximal torus 7' C G dual to T.

2.5.2. Let W := Ng(T')/T denote the Weyl group of (G, T). It acts on t&t* in the standard
way. There is a symplectic isomorphism:

tot" SHial, (o~ po (-0 (2.7)
defined using the canonical identifications t* — fand t = t*. Furthermore, ([2.7) intertwines
the W and W actions (again, under the canonical identification W =5 ).

Remark 2.11. The sign is needed to match up the symplectic forms. On the other
hand, the conjectural quantum Langlands correspondence is an equivalence between a pos-
itively twisted category of D-modules on Bung and a negatively twisted category of D-
modules on Bun. This change of signs is reflected in the identification .

2.5.3. Let Grgg(t @ t*) denote the scheme parametrizing W-invariant, Lagrangian sub-
spaces of t® t*. It is connected, smooth, and projective, thanks to Lemma [2.1] and the fact
that W is a finite group. The isomorphism ({2.7)) induces an isomorphism:

Gl (to ) 5 Grfl (fo ). (2.8)
We denote the image of t* under (2.8) by t*, and view it as the dual of the generalized
bilinear form t*. Note that Sym?(t*)" is not preserved under the duality (2.8).
2.5.4. We define a morphism (the “naive reduction”)

CGrig (8 ® g") = Gri,(t® t) (2.9)

by sending an S-point g~ to (g*)7, the T-invariants of g*. An argument similar to the one
in §2.3.2| shows that we have a well-defined map GrLag( @ g*) = Griag(t P t¥); it is clear
that the image lies in the W-fixed locus.

Lemma 2.12. The morphism (2.9)) is an isomorphism.

Proof. Indeed, a decomposition of g = 3@, g; into simple factors induces a decomposition
t= 3@2 t;, where each t; is the maximal torus of the factor g;. Note that t; is irreducible as

a W-representation. An analogue of Corollary E asserts an isomorphism GI‘Lag (totr) =

Grrag(3®3") x [1; GrLag( @ t}), making the following diagram commute:
* (2.9 *
GrT,g (8@ 07) Gy (t® 1)

2 )
GrLag(3 ®3") x [1; Grlag(9: @ 07) — Grrag(3 @ 35%) x [[; Grig (t; & 7).

Note that the bottom arrow is an isomorphism since the choice of a G-invariant, symmetric
bilinear form on g; (hence a W-invariant form on t;) identifies both Grﬁag(gi @ gf) and

Gyl (t @ ) with P! (see §2.2.2). O

Remark 2.13. Using T', we may also rewrite (2.5)) as the two-step procedure of first taking
T-invariants and then taking W-invariants:

(@) = ((@")")".

This isomorphism again follows from the description of fibers of g” in Lemma
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2.5.5. We will consider a slight variant of the isomorphism (2.9) which takes into account
the critical shift (the “critically-shifted reduction”):

Gifh(g® ") 5 Gril(totr), g%~ (g" )T, (2.10)

There is an isomorphism between Grfag(g @ g*) and the corresponding space for , making
the following diagram commute:

Grflyp(g @ g*) == Grfl, (5 & §")

i/2.10 1; for G

(2.8) o
el o) B o (o)

We denote the image of g in Grfag(g @ §*) by g~. The generalized bilinear forms g~ and
g~ are supposed to be intertwined by the geometric Langlands correspondence. They have
a built-in critical shift.

2.5.6. Using the identification (g" )¢ = (g")¢ (see Remark [2.8)), we see that an exten-
sion E of (g%)¢ K Ox by wy/s (see (2.6)) is equivalent to an extension E of (%)X Ox by
wx/s- Indeed, the following Os-modules are all isomorphic:

(gn)G 1> (gmfcrit)G ~ (gkfcrit)G (1 (gk)G7

where the middle isomorphism comes from the identification of (grf=<"*)T and (gF—<it)T

under . This observation implies:
Lemma 2.14. There is a canonical isomorphism of algebraic stacks:

Parg = Pargs, (g%, F) ~ (g%, E). (2.11)
We refer to as the Langlands duality for the space of quantum parameters Parg.

Example 2.15. Suppose G is simple, and we fix a k-valued parameter (g”,0) of Parg
corresponding to some bilinear form x on g. Then K = A - Kilg for some A\ € k. Write
A= (c—h")/2hY for some c € k, where h" denotes the dual Coxeter number of G. Under
the isomorphism , (g",0) corresponds to the parameter (§~,0).

Assume ¢ # 0. Then we claim that §° arises from the bilinear form % defined by the

formulae:
. ‘ 1
F=X-Kils, A= (—— —h)/2h, (2.12)
rc
where r = 1,2 or 3 denotes the maximal multiplicity of arrows in the Dynkin diagram of
GE| Indeed, to see that §~ is given by the formulas (2.12)), one first notes that (1/2h")-Kilg
is the “minimal” W-invariant bilinear form ming on t, defined by the property that the
short coroot has self-pairing 2. Hence, « is equal to ¢ ming + critg. Likewise, & is equal to
*i -ming + crits. We then appeal to the fact that r is the ratio of the self-pairing of long
and short roots of G (under any W-invariant symmetric bilinear form).

2.6. Parabolics and anomalies.

4These are the numerics which appear in the typical formulation of the quantum Langlands correspon-
dence for simple groups, see [Scl4l §2] for example. Note that the critical shift is often omitted as the
determinant line bundle on Bung admits a square root.
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2.6.1. 'We now explain how to incorporate, via an additional parameter, the anomaly term
that appears in the study of constant term functors (see [Gal6al §3.3-3.4]). In op.cit., the
anomaly term is introduced to compare the constant term functor on D-modules on Bung
with the BRST reduction functor on the representation category of Kac—Moody Lie algebra
associated to g. The upshot is that the correctly defined constant term functor does not go
from D-Mod" (Bung) to D-Mod*~ " (Buny), but rather to the latter category twisted with
a specific line bundle on Buny (the Tate line bundle.)

The observation relevant for us is that this line bundle on Buny can be viewed as being
attached to a quantum parameter for the reductive group 7', in the form of an additional
parameter in the sense of Thus, the constant term morphism Parg — Pary we shall
presently build takes (g%, E) to ((§"~<")T, Eg_r), where the second term Eg_,r accounts
for the anomaly term.

2.6.2. In this subsection, we fix two additional pieces of structure:

(a) a Borel subgroup B C G containing T’

(b) a theta characteristic on the curve X i.e., a line bundle 8 together with an isomorphism
9®2 l) wx.

The term standard parabolic refers to a parabolic subgroup P C G containing B.

2.6.3. Let P be a standard parabolic. Denote by M its Levi quotient, which is a reductive
group. The canonical map from T to M realizes T as a maximal torus of M. The Weyl
group Wy of (M, T) can be identified with a subgroup of W.

Since 3 = t" and 3); = t"'™| there is a canonical embedding 3 < 32, We claim that
this embedding is canonically split. Indeed, this is because the composition Zy(G) — G —
G/|G,G] is an isogeny, so it gives rise to the projection 35y — 3. It follows that we have a
canonical map from the Wj,-invariants of t & t* to its W-invariants:

M D3y — 36 DG (2.13)

In particular, given any Lagrangian, W-invariant subbundle t* C (t® t*) ® Og, we have a
morphism of Og-modules:

()W ()W (2.14)

This morphism is compatible with (2.13) in the sense they intertwine the inclusion of (t)"Wm
into 30 @ 3% (resp. of (t)V into 36 @ 35.)

2.6.4. There is a reduction morphism (“critically-shifted reduction” for M):
Grgag(g@g*) — Grfﬁg(m@m*), (2.15)

defined by the composition:

Grilg (9@ ") = Gri, (t® ) < Gr"2 (t @ t*) <= Grff (m @ m")
where the isomorphisms are supplied by the critically-shifted reductions (2.10) for G, re-
spectively M. In other words, the image of g~ under (2.15)) is an S-point m”* such that
(mr=erit) T and (gF~r*)T are canonically isomorphic as subbundles of (t @ t*) ® Osﬂ The

morphism ([2.15) includes (2.10) as a special case.

5Here7 m* it js defined with reference to the critical form on m (as opposed to g).
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2.6.5. Let Zy(M) denote the neutral component of the center of M. Write 2p,, for the
character of Zp(M) determined by the representation det(np), where np is the Lie algebra
of the unipotent part of P. Let Zo(M) denote the dual torus of Zo(M). We use w%" to
denote the Zy(M)-bundle on X induced from 6 under 27y, (regarded as a cocharacter of
Zo(M)). Then the Atiyah bundle of w3 fits into an exact sequence:

0— 35 ®0x — At(whM) — Tx — 0.
Its monoidal dual gives rise to an extension of Oy-modules for every S (recall the notation
X :=95xX):
0—>wX/S—>Os|EAt(w§(M)*—>(5M®Os)|xOX—>O. (2.16)
For each S-point m” of Grﬂig (mem*), we let EZ, ., denote the extension of (m*)* induced
from ([2.16)) along the canonical map, pulled back along X — S:
(m*)M < (3ar @ 337) © 05 — jm ® Os.

The additional parameter Ezg _,a is the anomaly term at level m”.

2.6.6. The reduction morphism for quantum parameters is defined by (”constant term
morphism” for the space of quantum parameters):
CTp : Parg — Pary,, (gK,E) ~ (m”, EG—)M) (217)

where m” is the image of g" under (2.15)), and Fg_ s is the Baer sum of the following two
extensions of (m®)M:
(a) an extension induced from E (which is an extension of (g~)¢)
(mm)M ot (mm—crit)M N (gm—crit)G it (gn)G’
where the map in the middle comes from ([2.14)) for t* := (m~—ciH)T o= (gr—crit)T,
(b) the anomaly term Ef, ,,, at level m”.

via the map:

Remark 2.16. The image of (g°°, F) under CTp agrees with (m*, E). In other words, the
anomaly term Eg _, s Vanishes at level oo.

In particular, we see that CTp is incompatible with Langlands duality for quantum pa-
rameters, i.e., if we let M be the Langlands dual of M viewed as the Levi quotient of a
parabolic subgroup P C G, the following diagram does not commute:

(2.11)
arg — Parg
CTp J{ \LCT »
(2.11)

Par;; — Pary;

It is not clear how this phenomenon is reflected in the conjectural quantum geometric Lang-
lands correspondence. However, it seems related to the fact that the compatibility of the
Langlands duality functor and the constant term functor involves an autoequivalence of the
target category D-Mod”(Bun;) (for §* = §>, see [AGI5, Conjecture 13.2.9].)

Remark 2.17. For P = B and M =T, the character 2/ is the sum of positive roots, and
splittings of (2.16) form a t* ® wy-torsor Conn(w’,), which is also known as the space of
Miura opers (see [FGOG]).

2.7. Structures on g".

2.7.1.  We finish this section with a description of some structures on the vector bundle g*
functorially attached to an S-point of Grfag(g ®g).
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2.7.2. There is an Og-bilinear Lie bracket:
[= =" © g% = g" (2.18)
Os
defined by the formula (on the ambient bundle (g ® g*) ® Og):

[(E@p)l, (' e¢)l]:=(¢¢] e Coads(y)) ® 1.

One checks immediately that the image lies in g* and the required identities hold. Note
that ([2.18) factors through the embedding gf, — g".

2.7.3. There is an Og-bilinear symmetric pairing;:
(——):e" ®g" = Og (2.19)
Os
defined by the formula:
(o)L (Ee)al):=¢ (¢ 1
The pairing (2.19]) gives rise to a canonical central extension of the loop algebra g”((¢)):
0—0s—g" —g"(t) =0

whose cocycle is given by the residue pairing Res(—,d—). This is the prototype of a gener-
alized Kac-Moody extension. We will return to it in §5| (in the setting of Lie-* algebras).

Example 2.18. For the k-point g of Grfag(g @ g*), the Lie bracket (2.18]) is zero. The
pairing (2.19)) is also zero. Hence g* is the abelian Lie algebra Og & g™ ((t)).

2.7.4. Fixing an S-point (g*, E') of Parg, there is an extension of Ox-modules:
0= wyys — 3" — g"KOx — 0. (2.20)

induced from (2.6) along g* ® Og — (g")¢ ® Ox. In other words, 3("F) is the direct sum
of E and g%, X Ox, corresponding to the decomposition g* = g~ @ g~ .

Quasi-twistings and their quotients
3. QUASI-TWISTINGS

In this section, we make sense of a central extension of Lie algebroids in the DG setting;
such objects are called quasi-twistings. A dynamic theory of Lie algebroids in such generality
has been built by Gaitsgory and Rozenblyum [GRI6], and our results in §3| and §4] are no
more than a modest extension of their theory.

Notations. We work over a fixed affine scheme S smoothf over k. Some of the notions
in this section involve the interplay between classical and derived algebraic geometry. For
the latter, we use the theory of co-category as developped in [Lu09], [Lul2] and the theory
of derived algebraic geometry modeled on commutative DG algebras, using [GRI6] as our
main reference.

6Most of the materials in g3 and should extend to any base affine scheme S over k. The reason we
choose not to work in this generality is because the theory of ind-coherent sheaves in [GR16| is built in
an absolute setting whereas we would need a notion of ind-coherent sheaves for an S-scheme Y which is
“quasi-coherent along S.” Since our ultimate goal is to construct a quasi-coherent sheaf of categories (which
are fppf-local objects, see [Gald, Appendix A]) on the smooth algebraic stack Parg, it is enough to limit
our attention to smooth test schemes S — Parg.
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By a scheme, we shall mean a classical scheme (as opposed to a DG scheme). On the
other hand, a prestack means a presheaf on affine DG schemes valued in co-groupoids. More
specialized notations involving derived formal moduli problems will be explained in

3.1. The classical notion.

3.1.1. Let Y be a scheme over S. A Lie algebroid over Y (relative to S) is an Oy-module
£ together with an Og-linear Lie bracket [, —] and an Oy-module map o : £ — Ty, g such
that the following properties are satisfied:

(@) [l f-lo] = o(L)(f) - lo + fll1, L2];

(b) o intertwines [—, —] with the canonical Lie bracket on Ty /g.

The morphism o is called the anchor map of L. The category of Lie algebroids over Y
is denoted by LieAlgd 5(Y). A Picard algebroid is a central extension of the tangent Lie
algebroid Ty, g by Oy; they are equivalent to a ring of twisted differential operators (TDOs)
over Y (see [BB93]).

Definition 3.1. A classical quasi-twisting T over Y (relative to ) is a central extension:

050y 5L =40 (3.1)
of Lie algebroids.

We say that T is based at the Lie algebroid £. Classical quasi-twistings with a fixed
base £ form a k-linear, strictly commutative Picard groupoid under the operation of Baer
sum. We denote it by QTW;IS(Y/L). The following is obvious:

Lemma 3.2. A classical quasi-twisting T is a Picard algebroid if and only if the anchor
map of L is an isomorphism. O

3.1.2. Given a classical quasi-twisting T, the (reduced) universal envelope of T is defined
to be the Oy-algebra:

U(T) = U(L)/(1 - 1),

where U(E ) is the universal enveloping algebra of E, and 1 denotes the image of the unit in
Oy. A module over T is a U(T)-module, or equivalently, a module over the Lie algebroid
L on which 1 acts by the identity.

3.2. Some co-dimensional geometry.

3.2.1. Suppose Y is a scheme over S but not locally of finite type. The above notion of
Lie algebroids is not very amenable to study. We will occasionally encounter some oco-type
schemes, for which we need the notion of a Lie algebroid “on Tate module”.

Let R be a (discrete) ring over k. The notion of Tate R-modules is developed in [Dr06].
We briefly recall the definitions.

3.2.2. An elementary Tate R-module is a topological R-module isomorphic to P & Q*,
where P and @) are discrete, projective R—modulesm A Tate R-module is topological R-
module isomorphic to a direct summand of some elementary Tate R-module. There are two
important types of submodules of a Tate R-module M:

(a) a lattice is an open submodule Lt with the property that L™ /U is finitely generated
for any open submodule U < LT,

"The topology on Q* is generated by opens of the form UL where U is a finite generated R-submodule
of Q.
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(b) a co-lattice is a submodule L~ such that for some lattice L*, both L*NL~ and M/(L*+
L) are finitely generated.

Example 3.3. Clearly, every profinite R-module is an elementary Tate R-module. The
Laurent series ring R((t)) is also an elementary Tate module (but not profinite).

3.2.3. Given a map of (discrete) rings R — R/, the pullback of a Tate R-module M is
defined by
M®R' :=1lim (M/U)® R’
R — R

where U ranges over open submodules of M.

Tate R-modules are local objects for the flat topology (see [Dr06, Theorem 3.3].) In
particular, we may define a Tate Oy-module F over a scheme Y (or more generally, an
algebraic stack) as a compatible system of Tate Oz-modules F | ,, for every affine scheme Z
mapping to Y.

3.2.4. Let Y be a scheme over S. Then Y is placid if Zariski locally there is a presentation
Y 5 limY;, where each Y; is a scheme of finite type, and the connecting morphisms Y, =Y
—

are smooth surjections. We call a placid scheme Y pro-smooth, if we can furthermore choose
each Y; to be smooth.

If Y is a pro-smooth placid scheme, then the tangent sheaf Ty,5 is naturally a Tate
Oy-module. Indeed, locally on Y there is an isomorphism:

Y/S = li Wf Y; /S
J - p Ty,
where m; : Y — Y; is the canonical map.

3.2.5. Suppose Y is a pro-smooth placid scheme. We define a Lie algebroid on Tate module
over Y as a Tate Oy-module £ together with a continuous Oy-linear map o : £ — Tyyg,
such that as a plain Oy-module, £ has the structure of a Lie algebroid with o as its anchor
map.

Example 3.4. The tangent sheaf Ty, g has the structure of a Lie algebroid on Tate module.

A classical quasi-twisting on Tate modules T over Y is a central extension (3.1)) of Lie
algebroids on Tate modules where all the morphisms are continuous.

Remark 3.5. The above notion is very naive, as it does not indicate how the Lie bracket
interacts with the topology on £. However, it suffices for our purpose since in the construc-

tion of ‘Tg’E} in the first quotient step will reduce the classical quasi-twisting on Tate
modules ‘j'g" ) into a discrete, classical quasi-twisting over Bun(GS’fL?r.
Remark 3.6. We will frequently refer to a classical quasi-twisting on Tate modules simply

as a classical quasi-twisting, as the Tate structures should be clear from the context.

3.3. Formal groupoids.

3.3.1. In this subsection, we review the theory of derived formal moduli problems. Let
Vect denote the derived oco-category of chain complexes of k-vector spaces. It has a natural
symmetric monoidal structure which commutes with colimits in both variables. As such,
it may be viewed as a commutative algebra object in the oco-category of presentable stable
oo-categories equipped with the Lurie tensor product.

By a DG category, we mean a module object over Vect in this symmetric monoidal oo-
category. We use the notation DGCateont to denote the co-category of DG categories (whose
functors are continuous, i.e., colimit-preserving.) The oco-category DGCateont inherits a
symmetric monoidal structure.
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3.3.2. We use the notation PStkjas_gef 5 t0 mean the oo-category of prestacks locally al-
most of finite type (“laft”) over S which admit deformation theory (see [GRI6l IIL.1]). A
simplicial object R® of PStkiag qer /s is called a groupoid (relative to S) if the following
conditions are satisfied:

(a) for every n > 2, the map R" — R! x - .- x R! induced by products of the maps [1] — [n]
Y Y
sending 0 ~» 4, 1 ~» ¢ + 1, is an isomorphism;

(b) the map R? — R! x R! induced by the product of the maps [1] — [2] sending
Y

0~~0,1~1land0~0, 1~2
is an isomorphism.
Furthermore, R® is a formal groupoid if all morphisms in R® are nil-isomorphisms, i.e.,

they induce isomorphisms on the reduced prestacks. We denote the co-category of formal
groupoids (relative to S) by FGpd 4. There is a functor

FGpd e PStklaft_def S, R® ~~ fRO, 3.2
/ /

whose fiber at Y is denoted by FGpd,g(Y) and is referred to as the oco-category of formal
groupoids actin on Y.

Example 3.7. Completion along the main diagonals Y — Y x - - - XY organizes into a formal
s s

groupoid R® := (Y*)y acting on Y. This is the final object of FGpd,g(Y) and is called the

infinitesimal groupoid acting on Y.

3.3.3. The functor (3.2) is a Cartesian fibration of co-categories. The Cartesian arrows in
FGpd,g are maps R* — T* such that the induced morphism

R* = T° x (Y°)g, whereY:=R%and Z:= 7"
(2*)z
is an isomorphism.

3.4. Formal moduli problems.

3.4.1. Let FMod,g denote the oo-category of morphisms Y — Y2 in PStKjase et /s Which
are nil—isomorphismsﬁ In particular, FMod,g is a full subcategory of the functor category
Fun(A', PStkjag-der /s)- Its objects are called formal moduli problems (relative to S). We
have a functor

FMods = PStKiatr-det /s, (4 = Y") ~ Y, (3.3)
whose fiber at Y € PStkjafger /s is by definition the oo-category of formal moduli problems
under Y, and is denoted by FMod g (Y).

3.4.2. The functor (3.3) is a Cartesian fibration of co-categories, whose Cartesian arrows
are commutative diagrams on the left whose induced square on the right is Cartesian:

%%Z ybﬁzb
oo |
Y — 2 Yar —= Zdar

8Caution: our notation FMod g is different from [GR16} IV.1, §1], where the analogous notation means

formal moduli problems over a fixed laft prestack.
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Applying straightening to (3.3)), we obtain a pullback functor for every morphism f:Y — Z
in PStkyafi-der /s

finod : FMod /5(2) — FMod s(¥),  fhyoaZ’ == 2" X Yar-

dR

3.4.3. The Cech nerve construction defines a functor € : FMod,s — FGpd/S of oo-
categories over PStkjag def /5. The main result in [GRI16, §IV.1] (which has its origin in
Lurie’s theory of formal moduli problems) can be summarized as follows:

Theorem 3.8 (Lurie-Gaitsgory-Rozenblyum). The functor Q) is an equivalence.

Proof. Indeed, [GRI6l §IV.1, Theorem 2.3.2] shows that  is an equivalence when restricted
to the fiber at each Y € PStkjgqef /s The above formulation follows because 2 also
preserves Cartesian arrows (and we appeal to [Lu09, Corollary 2.4.4.4]). g

We denote the functor inverse to 2 by B : FGpd,g — FMods. Their restrictions to the
fiber at Y € PStkiaf-ger /s are denoted by 2y and By.

Example 3.9 (de Rham prestack). Let Yqr s denote the fiber product Yqr x S which is

Sar

the terminal object of FMod,s(Y). Then Y4r,s corresponds to the infinitesimal groupoid
(¥)5 (Example under the equivalence FGpd 5(Y) = FMod,5(Y).

In particular, given any group object H € PStkiag-def /5, there is a canonical short exact
sequence of group prestacks:

Corollary 3.10. The prestack By(R®) is identified with the quotient of R® in PStkyas_qer /-

Proof. We need to show that By(R®) identifies with cgl(gn R*, where the colimit is taken in

PStkjage-det /5. This follows from the fact that Maps(By(R®), 2) identifies with the mapping
space from Y — By(R®) to Z — Z in FMod g, which by Theorem identifies with
Maps(R®, Z).

3.4.4. However, we point out that the quotient of R® in PStky,s_gef /¢ may not agree with
that in PStk /g, which is one of the main technical complications for us.

Example 3.11. Let S = pt and we omit the subscript /S from the notations. The Cech

nerve of the object pt — A}ﬁ} in FMod is the formal groupoid R® := pt x --- X pt. The
Al AT
quotient ccilim R® taken in PStk does not agree with A}G}' Indeed, since colimits in PStk
op
are computed pointwise, we have an equivalence:

Maps(Spec(k[e]/ (%)), cgloign R®) = cglgrr)n Maps(Spec(k[g]/ (%)), R®). (3.5)

On the other hand, morphisms from a classical scheme to a DG scheme factors through its
classical subscheme. Since the classical subscheme of each R™ is a point, the colimit (3.5))

yields a point (as an oo-groupoid). However, the formal scheme A%G} receives nontrivial

maps from Spec(k[e]/(g2)).



QUANTUM PARAMETERS OF THE GEOMETRIC LANGLANDS THEORY 19

3.4.5. We note one case where By (R®) agrees with the quotient in PStk g.

Lemma 3.12. Suppose the morphisms R' ==Y are formally smooth. Then the canonical
map cglim R* — By(R®), where the colimit is taken in PStk,g, is an isomorphism.
op

Recall that a morphism X — Y of prestacks is called formally smooth if for every affine

DG scheme T over Y, and a nilpotent embedding T' < T”, the map

Maps(T’,Y) — Maps(T,Y)
is surjective on m (see [GRI6| III.1, §7.3].) Let (‘T;C/‘j‘m denote the cotangent complex at
a T-point x : T — X. It is proved in op.cit. that if X — Y admits (relative) deformation
theory, then formal smoothness is equivalent to

Maps(Tx 1y |z, F) € Vect=?, (3.6)
where F € QCoh(T)" and T is any affine DG scheme with a morphism = : T — DCH

Proof of Lemma[3.14 The authors of [GRI6] give the following description of By(R®). Let
U be an affine DG scheme. Then Maps(U, By (R*®)) is the space of the following data:

(a) a formal moduli problem U over U;

(b) a morphism from the Cech nerve of U — U to R®, such that the following diagram is

Cartesian for each of the vertical arrows:
UxU—=R!
U
Wl
U——=R
On the other hand, Maps(U, cglggn R*) classifies the above data satisfying the condition that

U — U admits a section. Now, since U—=Uisa nil-isomorphism, we obtain a section over
U™, A lift of this section to U exists if the morphism U — U is formally smooth.

Now, let T be affine DG scheme equipped with a map @ : T — U. The Cartesian
diagrams:

UxU—U UxU-—®R!
ol
U——>U U——>1Y
show that ‘J'(’i] Jula is isomorphic to T% which is in turn isomorphic to T, Yl

UxU/U (@)’
U

where r! is the composition T @8, 7« 7 — R Hence the formal smoothness of R over
U

Y implies that of U over U. g

3.4.6. In particular, let h be a (classical) Lie algebra over Og, such that exp(h) acts on
some Y € PStkiag ger /5. Then the groupoid Y x exp(h) ==Y is formally smooth, so its
s

quotient may be formed in PStk,s. We have two particular instances of this example:

(a) Taking Y = pt, we see that Bexp(h) is the prestack quotient pt / exp(h);
(b) Let H be a group scheme. Then the prestack quotient H/exp(h) identifies with Hyg g.

9We use the notation QCoh(Y) to denote the DG category of complexes of Oy -modules. In contrast, the
abelian category of Oy-modules is denoted by QCoh(Y)“, understood as the heart of a natural t-structure
on QCoh(Y).
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3.5. Modules over a formal moduli problem.

3.5.1. Recall that for an affine DG scheme Y almost of finite type over S, the DG category
IndCoh(Y') is the ind-completion of the full subcategory Coh(Y) < QCoh(Y). There is a
symmetric monoidal functor:

Ty/s: QCoh(Y) — IndCoh(Y), I ~ F®@wyys, (3.7)

which is an equivalence of DG categories if ¥ — S is smooth ([GRI6 I1.3]). The basic
functoriality of ind-coherent sheaves is the (derived) !-pullback functor. It is well-defined
for any morphism f : X — Y of affine DG schemes almost of finite type over S and
intertwines it with the (derived) pullback functor f* on quasi-coherent sheaves.

3.5.2. For a laft prestack Y, the DG category IndCoh(Y) is defined as the limit of IndCoh(T")
over all affine DG schemes T equipped with a map to Y (with transition functors given by
I-pullback). The formalism of Kan extension allows us to regard IndCoh(—) as a functor:

IndCoh : PStkyas /s — DGCateont -

In particular, a morphism f : X — Y of laft prestacks gives rise to the functor of !-pullback:
f': IndCoh(Y) — IndCoh(X).

3.5.3. Note that if f : X — Y is an inf-schematic nil-isomorphism, then the functor f' is
conservative ([GRI6, I11.3, Proposition 3.1.2]). It furthermore has a left adjoint f™4€°h and
the pair (fdCeh f') is monadic. One deduces from this a descent property (see Proposition
3.3.3 of op.cit.):

Proposition 3.13. Let X3 be the Cech nerve of an inf-schematic nil-isomorphism f : X —
Y. Then the canonical functor:

IndCoh(Y) — Tot(IndCoh(XY)) (3.8)
s an equivalence. O
")

3.5.4. The DG category of modules over an object Y* € FMod,5(Y) is defined as IndCoh(Y
Note that IndCoh(Y") is a module object over QCoh(S). By the above discussion, there is
a conservative functor oblv : IndCoh(Y?) — IndCoh(Y) given by !-pullback along Y — Y°.
Furthermore, Proposition [3.13| provides an equivalence of categories:

IndCoh(Y”) = Tot(IndCoh(R®)). (3.9)
whenever Y* = By(R*).
3.5.5. Given Y’ € (PStkiafi-det)y /5, We can associate the relative tangent complex T‘d/‘ab
which is in general an object of IndCoh(Y). (Informally, since the cotangent complex natu-
rally lives in the pro-category of quasi-coherent sheaves, the tangent complex is naturally an

ind-coherent sheaf, see [GR16] II1.1, §4.4] for details.) The following result is [GR16], IV 4,
Theorem 9.1.5]:

Theorem 3.14. Suppose Y is a finite type scheme over S. We have a fully faithful functor:
LieAlgd (V) < FGpd /5(Y), (3.10)

whose essential image consists of those formal groupoids R® such that Ty, g, (re) lies in the
essential image of QCoh(Y)Y under Ty/s. O
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Composing (3.10) with By, we obtain a fully faithful functor
LieAlgd,5(Y) < FMod,5(Y), (3.11)

whose essential image consists of those formal moduli problems Y* € FMod /s(Y') such that
Ty jy» lies in Ty (QCoh(Y)"). Furthermore, given a smooth morphism 7 : Y’ — Y of finite
type schemes over S, the following diagram commutes:

1
TLieAlgd

LieAlgd (V) LieAlgd (") (3.12)

\L&ll iS.ll
!

FMod /g (Y) —45 FMod 5(Y”)

where i . Alga 18 the pullback of Lie algebroids (as defined in [BB93]), and Thaog 1S the
functor described in

In what follows, we will frequently use the fact that mf. Algd(L) has underlying Oy-

module given by m*£  x Ty/g.
W*Ty/s

Notation 3.15. We shall refer to the image Y® of a Lie algebroid £ under (3.11) as the
formal moduli problem associated to £, and denote it by Y* := L.

Note that when Y — S is smooth, IndCoh(Y") is identified with the DG category of com-
plexes of (quasi-coherent) L-modules.

3.6. Quasi-twistings.

3.6.1. LetY € PStkjafi_der /5. We use @m to denote the formal completion of G,,, at identity.
It is a group formal scheme.

Definition 3.16. A quasi-twisting T over Y consists of the following data:

(a) an object Y* € FMod, 5(Y);

(b) a Gyn-gerbe Y° over YP;

(c) a trivialization of the pullback of Y® along Y — Y°.

We say that T is based at the formal moduli problem Y’.

Remark 3.17. For an abelian group prestack A over S, the notion of an A-gerbe here is
taken in the naive sense: the prestack B* A classifies A-gerbes (on an affine S-scheme) that
are globally nonempty, and an A-gerbe on a prestack Y is an object of

Gea(Y) := Thg}g Maps(T, B® A),

where T ranges through affine S-schemes mapping to Y. (Informally, an A-gerbe is a torsor
for the classifying prestack B A.) We will later show that using étale locally trivial G,,-gerbes
in the definition of a quasi-twisting produces the same class of objects.

Remark 3.18. Alternatwely, one can think of a quasi-twisting T as consisting of two formal
moduli problems H" — Y® under Y, equipped with the structure of a (Gm gerbe.

3.6.2. The co-groupoid of quasi-twistings T based at Y° can be defined as a fiber of oo-
groupoids:

QTw ,5(Y/Y") := Fib(Geg (¥) = Geg_(¥)).
More generally, we use QTW‘;‘S(‘(J/ Y®) to denote an analogously defined category, with the

abelian group prestack A acting as the structure group instead of @m
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3.6.3. We now show that quasi-twistings can be defined using different structure groups.
The same results about twistings are obtained in [GR14].

Lemma 3.19. The functor of inducing an A-gerbe from an A{T}—gerbe gives rise to an

equivalence of categories QTW?&T} YY) = QTW?S(%/W),

Proof. In light of the exact sequence (3.4]), an inverse functor exists if the induced Aggr/s-
/s be the

Aqgr,s-gerbe over Y® induced from some A-gerbe 95’4 Clearly, there is an identification

gerbe of any object in QTW‘;‘S Y/ Hb) is canonically trivialized. Indeed, let %R

between Qi‘dms and the formal completion of QbA inside Hb, ie., QbAdR = (g%)dpt/s X Yb

Yar/s
(c.f. Example .

Therefore, a section of the Agr/s-gerbe diR /s amounts to filling in the dotted arrow

9%4&{/5 - (yix)dR/S

T

Y ———Yarys

making the lower-right triangle commute. However, the structure of a quasi-twisting on Qi‘
supplies a section Y — 954 over Y°. Hence we obtain a map Y’ — Yar/s — (%bA)dR/s over
Yar/s-

It follows from Lemma [3.19] that the following functors are equivalences:
QTw,z (Y/Y") < QTw,s(Y/Y¥") = QTwa(Y/¥) = QTw/a(Y/Y"). (3.13)

Let QTW%(% /Y°) denote the oo-groupoid of étale locally trivial @m—gerbes over Y°, equipped
with a section over Y.

Corollary 3.20. The tautological functor QTW/S(H/W) — QTW%(%/W) is an equivalence.

Proof. We use the G,-incarnation of quasi-twistings, as well as their counterparts defined
by étale locally trivial gerbes (see Lemma [3.19). For an affine S-scheme T', there holds

H} (T,G,) =0, HZ(T,G,)=0.

Let B, G, denote the étale sheafification of B G,. Thus, it classifies étale locally trivial
Gq-gerbes. The above vanishing statements show that the canonical map B%G, — Bgt Gg
is an isomorphism. It follows that the corresponding notions of quasi-twistings are also
equivalent. O

3.7. Modules over a quasi-twisting.

3.7.1.  We continue to assume that Y € PStkjafi-ger /s and T is a quasi-twisting over Y. Our
goal now is to define T-Mod as a DG category tensored over QCoh(S) (i.e., it is a module
object over QCoh(S), see ) We first proceed more generally and define ind-coherent
sheaves “twisted” by a @m—gerbe.

The discussion below applies also to G,,-gerbes, where alternative definitions of the

twisted category exist (for example, the category denoted D®(Y); of [BB06, §2.1].) In fact,
these notions agree after inducing a G,,-gerbe along the map of structure groups G,, — G,,.
We choose to present the construction in terms of G,,-gerbes since our theory uses only nil-

isomorphisms.
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3.7.2.  Let Z € PStkyafi-ger /5, and Zbea @m—gerbe over Z. Consider the canonical action of

B G,,, on Vect, which induces an action of B@m. (See [Beld, §1-2] for notions pertaining to
group actions on DG categories. Informally, the B G,,-action on Vect is given by tensoring a
vector space with a line.) Formally, Vect can be regarded as a co-module object in DGCatCO,ﬂaC
over the co-algebra (IndCoh(B G,,), m'), where m is the multiplication map on BG,,. The
co-action

Vect — Vect ® IndCoh(B G,,) = IndCoh(BG,,,)

is specified by x € IndCoh(B G m), the character sheaf induced from the map B @m — BG,,
Note that IndCoh(Z) admits a B G,,-action, so the product IndCoh(Z) ® Vect is again

acted on by BG,,. The corresponding co-simplicial system {IndCoh(Z X B(GTXH”)}[,L]E A has
the following first few terms:

(act x1)'
= IndCoh(Z X BG“) (; m)! IndCoh(Z x BG m) =—— e IndCoh(i). (3.14)
prlg ®x pr; ®x

We define the DG category IndCoh(Z)s of Z-twisted ind-coherent sheaves on Z as the

totalization of the above co-simplicial system. One sees immediately that IndCoh(Z)s is
tensored over QCoh(S).

3.7.3. Since the functors associated to each face map [n] — [m] all admit left adjoints, we
obtain:

IndCoh(Z)s = lim IndCoh(Z x BGX™) = colim IndCoh(Z x BGX™),
Z [nleA [n]eAcp

where we use the left adjoints to form the colimit. Here, the colimit is taken in DGCatcopnt.
(The forgetful functor from DGCatcopnt to plain co-categories does not commute with colim-
its.)

Remark 3.21. Note that any (global) trivialization of the gerbe 2 — Z gives rise to an
equivalence IndCoh(Z)s — IndCoh(Z).

Remark 3.22. In [GLI6l §1.7], a definition of a twisted presheaf of DG categories is given.
We relate their definition to ours. For the presheaf over Z:

IndCoh,z : (DGSch?E ) 5 S ~» IndCoh(S)

and a G m-gerbe 2 the twisted sheaf of DG categories (IndCoh 2 )5 is defined by

(a) specifying its values on the category Spht( ) of affine DG schemes S — Z equipped
with a lift to 2, usmg the canonical Maps(S BG m)-action on IndCoh(S); and then

(b) applying h- descen along the basis Spht(Z) — DGSché}g to obtain a sheaf (in the
h-topology) over DGSch/Z, denoted by (IndCoh,z ).

Thus we may calculate the global section I'(Z, (IndCoh /2 )5) by the covering 2 — 2. The

resulting co-simplicial system is identified with (3.14). Hence the definition of 2-twisted
ind-coherent sheaves in [GL16], §1.7] (adjusted to the h-topology) agrees with ours.

10T he authors of [(GL.16] work with the étale topology instead.
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3.7.4. Let T be a quasi-twisting over Y, represented by the (Gm gerbe ‘éb — Y*. We denote
by H the Gm gerbe over Y pulled back along Y — Y’; it is equipped with a canonical
trivialization.

We define the DG category of T-modules by: T-Mod := IndCoh(Y° ) . There is a canon-
ical functor:

oblvy : T-Mod — IndCoh(Y)s =5 IndCoh(Y),

since Qb is trivialized over Y, and Remark m identifies the corresponding twisted category
with IndCoh(Y).

Proposition 3.23. The functor oblvy admits a left adjoint inds, and the pair of functors
(inds, oblvy) is monadic.

Proof. The functor oblvy is by definition the totalization of the !-pullback functors:
(™))" : IndCoh(Y* x BGX") — IndCoh(Y x BGX™),

where 7(™) denotes the morphism Y x B(/G;Tfl" - Y x B(/G\frxn” Each (7(™)" admits a left
adjoint ”inl)ndCo}r Furthermore, the diagram induced from an arbitrary face map:

IndCoh(Y x BGX") —= IndCoh(Y x BG:™)

m

(m)

7r(") ™
*,IndCoh *,IndCoh

IndCoh(Y* x BGX") —= IndCoh(Y* x BGX™)

which a priori commutes up to a natural transformation, actually commutes. Hence oblvy
admits a left adjoint indy := Tot(winl)ndc()h). We now prove:

(a) oblvy is conservative; this is because all other arrows in the following commutative
diagram:

oblvy

IndCoh(Y’ )g» — IndCoh(Y)y

b e

(0
TndCoh(y*) T~ mdCoh(y)
are conservative, hence so is oblve.
(b) oblvyg preserves colimits; this is obvious as we work in DGCatcont.

It follows that that the pair (inds, oblvy) is monadic, by the Barr-Beck-Lurie theorem. [J

3.7.5. Using Proposition we may regard U(7) := oblvyoindy as an algebra object in
End(IndCoh(Y)), and the DG category T-Mod identifies with that of U(T)-module objects
in IndCoh(Y). We call U(T) the universal envelope of T.

3.8. Comparison with the classical notion.

3.8.1. Suppose Y is a (classical) scheme of finite type over S. Let £ be a classical Lie
algebroid over Y and Y’ € FMod /S(Y) be the formal moduli problem associated to £,
under the embedding . The goal of this subsection is to show that quasi-twistings
based at Y® are equivalent to classical quasi-twistings based at £.
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3.8.2. Given a formal moduli problem Y* — Y° such that Ty g € Ty (QCoh(Y)"), one can
functorially assign a classical Lie algebroid z equipped with a map L. Furthermore, a
morphism Y x BG,,, — Y in FMod,s(Y') induces a map

L0y L, (ILf)~1+f1 (3.15)
where 1 is the image of (0, f) in L. Tf the morphlsm yb X B(G — ‘éb realizes ‘éb as a
Gm gerbe over Y°, then we see that Oy — L f ~ f1 is the kernel of the canonical | map
£ — L. The fact that ( preserves Lie bracket then implies Oy is central inside L. In
other words, the map L — L is a central extension of classical Lie algebroids.
3.8.3. Now, given any object in QTW/S(Y/’g}b)7 we claim that the corresponding formal
moduli problem Y satisfies the property that Ty/gb lies in Ty (QCoh(Y)?). Indeed, we
have a canonical triangle in IndCoh(Y'):

wy = Tg, |y = Ty g = Ty

and the outer terms lie in the essential image of QCoh(Y)Q. Hence the previous discussion
shows that we have a functor:

QTw s(Y/Y) = QTwis(Y/L). (3.16)
Proposition 3.24. The functor (3.16]) is an equivalence of categories.
In particular, the co-category QTw / S(Y/yb) is an ordinary category.
Proof We explicitly construct the functor inverse to ). Namely, given a central exten-
sion £ of L, we need to equip its corresponding formal moduh problem Eb with the structure

of a Gm gerbe over Yr . As before, the action map Hb x B G — ‘jb arises from the morphism
of classical Lie algebroids over Y:

LH0y =L, (I f)~ 1+ f1.
The morphism induced by action and projection gb X B@m — 9" X Qb is an isomorphism
since the same holds for the corresponding map of classical Lie alge%roids:
L0y —>2;§Z, (I, f) ~ (L + f1,1).
It remains to show that Qb — Y° admits a section over any affine DG scheme T mapping
to Y°. We shall deduce the existence of this section from the following claim:

Claim 3.25. The morphism gb — Y formally smooth.

Indeed, let T" be any afﬁne DG scheme with a morphism gy : T — s By the criterion
of formal smoothness (3.6), we ought to show Maps(T% ,F) € Vect=0 for all F €

yb/yb
QCoh(T)¥. The Cartesian square:

T (yﬁ,y)) gb X gb —> gb
Ye J{
gb sy

together with the isomorphism above gives:

‘Tw/w = wayb/w|( v Tgbe@m/§F|(@1)

~

— OT[fl].
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One deduces from this the required degree estimate.
Using the claim, we will construct a section of Yo s Yb over T — Y as follows. First
consider the fiber product T x Y, which is equipped with a nil-isomorphism to 7. We obtain
Hb

a solid commutative diagram:

Tred%Txy%gégb

yYP J{ /
T sy
Formal smoothness now implies the existence of the dotted arrow. O

Remark 3.26. By letting £ = Ty,g be the tangent Lie algebroid, we obtain from Proposi-
tion the fact that Picard algebroids identify with twistings on classical schemes locally
of finite type. The same result is established in [GRI4l §6.5] using a computation involving
de Rham cohomology.

4. HOwW TO TAKE QUOTIENT OF A LIE ALGEBROID?

This section is devoted to the study of quotients of Lie algebroids, in both classical and
DG settings. The set-up involves an H-torsor Y — Z and a Lie algebroid £ over Y. With
additional data on £, there exists a quotient Lie algebroid over Z. The quotient procedure
we shall describe takes as input a map 7 : E® Oy — £, where € is an arbitrary Lie algebra. It
generalizes two existing notions—weak and strong quotients—both considered by Beilinson
and Bernstein [BB93|. For technical reasons involving oo-type schemes, we shall construct
two quotient functors:

(a) Qi(ﬁj’.H), which is a classical procedure that works in the case where 7 is injective;
(b) QU-H b), which is its geometric counterpart for Y locally of finite type,

and we check that they agree in overlapping cases. A geometric procedure that works in full
generality should exist as soon as the theory in [GRI16] is extended to oo-type situations.

Throughout this section, we work over an affine scheme S smooth over k.
4.1. (¢ H)-Lie algebroids.
4.1.1. We describe the necessary data for taking quotients of Lie algebroids.
Definition 4.1. A classical action pair (¢, H) consists of a flat affine group scheme H over
S, an Og-linear Lie algebra ¢ acted on by H, as well as a morphism of Lie algebras:
t — bh:=Lie(H) (4.1)
with the following properties:
(a) (4.1)) is H-equivariant, where b is equipped with the adjoint H-action;
(b) the t-action on itself induced from (4.1)) is the adjoint action.

Remark 4.2. This datum is superficially similar to that of a Harish-Chandra pair, but they
serve very different purposes.

Example 4.3. Fix an S-point g~ of Grf’ag (9@ g*) (see . Then we have a classical action
pair (g”[t], S x G[t]), where the morphism is induced from the projection g* — g® Og.
All classical action pairs considered in this paper are variants of (g”[t], S x G[t]). Note that
the group scheme S x G[t] is not of finite type.
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4.1.2. The notion of a morphism (¢, H%) — (¢, H) of classical action pairs is obvious. We
say that (£, H?) is a normal subpair if €0 < € is an ideal, H® < H is a normal subgroup,
the H-action stabilizes €°, and H® acts trivially on £/€°. This definition means precisely
that a normal subpair fits into an ezact sequence (in the obvious sense):

1— (€0 H) — (¢ H) — (¥, Hy) — 1. (4.2)

4.1.3. Let Y be a classical scheme over S equipped with an H-action. Recall that every
H-equivariant Oy-module F admits an h-action by derivations. Specializing to Oy itself, we
obtain a canonical map:

h® Oy — Ty/s. (4.3)

On the other hand, the Oy-module Ty /s admits a canonical H-equivariance structure, given
by pushforward of tangent vectors.

Definition 4.4. A (¢, H)-Lie algebroid on Y consists of a Lie algebroid £ € LieAlgd 5(Y"),
an H-equivariance structure on the underlying Oy -module of £, and a morphism 7 : E0y —
L of H-equivariant Oy-modules, subject to the following conditions:

(a) the H-equivariance structure on £ is compatible with its Lie bracket;
(b) the anchor map o of £ intertwines the H-equivariance structures on £ and Ty /g;
(c) the following diagram is commutative:

L
27N
E@OY {.Ty/s

®OY

(d) n is compatible with the Lie bracket on £ in the following sense: given £ € £ ® Oy and
l € £, there holds:

(4.4)

M) ] =& 1€l (4.5)
where & is the image of £ in h ® Oy along (4.1]), and & - | denotes the action of &, on !
coming from the equivariance structure.

We will frequently write a (¢, H)-Lie algebroid as (£,7n), in order to emphasize the depen-
dence on 7. The category of (¢, H)-Lie algebroids on Y is denoted by LieAlgd(/{;LH) (Y). Given
another scheme Y’ over S acted on by H and an H-equivariant morphism Y’ — Y, one can
form the pullback of a (¢, H)-Lie algebroid in a way compatible with the forgetful functor
to plain Lie algebroids.

4.2. Quotient of Lie algebroids.

4.2.1. We describe how to form the quotient of a (¢, H)-Lie algebroid when the morphism

&5 (7).

7 is injective. Denote the category of such (¢, H)-Lie algebroid by LieAlgd, : /5

4.2.2. Suppose Z is a scheme over S and Y is an H-torsor over Z. Since H is affine and
flat, the projection 7 : Y — Z is an affine, faithfully flat cover (in particular, fpqc). We will
define a quotient functor:
eH . e H .
Qi : LieAlgd( 1k (V) — LieAlgd 5(2) (4.6)

(¢,H)
inj

on each (£,n) € LieAlgd (Y/S) by the following procedure:
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(a) (Oz-module and anchor map) We have a morphism of H-equivariant Oy-modules:
L/(E ® OY) — Ty/s/(h & OY) = ﬂ'*rIz/S

by (4.4). Let £y denote the fpqc descent of £L/(t ® Oy) to Z so we obtain a map of

Oz-modules o : Lo — Tz/5. The image of (£,7) under Qmi ) g supposed to have
underlying Oz-module £y and anchor map oy.

(b) (Lie bracket) Since 7 is affine, it suffices to define an Og-linear Lie bracket on 7= 1L.
Consider the embedding:

7 L = Lo = L/ (E® Oy).

The Lie bracket on £ will induce one on 7=1Lg if [E® Oy, 77 1Lo] = 0 in £. The latter
identity is guaranteed by (4.5]).
Q(E H).

We omit checking that this procedure gives rise to a well-defined functor Q;;

4.2.3. Given a flat morphism of schemes f : Z/ — Z, we set Y’ := Z' X Y which is an
z

H-torsor over Z'. The map f Y’ — Y is H-equivariant, and the pullback of (£,7n) €

LleAlgde /S(Y) along f lies in LleAlgdl(EJI;;(Y) Furthermore, QI(EJ ) is compatible with

pullbacks along f and f.
Q(E H)

inj

Remark 4.5. Since Lie algebroids are smooth local objects (see [BB93|) and

inj 1) %o the case where Z := Y/H is
representable by an algebraic stack (i.e., smooth locally a scheme).

compatible with flat pullbacks, we may generalize Q

Remark 4.6. The special case where the classical action pair is given by (b, H) with (4.1)
being the identity map, has been studied in [BB93] under the name strong quotient. Note
that when H acts freely on Y, the map 7 is automatically injective.

Example 4.7. Another instance of the functor is the weak quotient. This is the case
where £ = 0. The only data needed in defining a (0, H)-Lie algebroid are a Lie algebroid
£ € LieAlgd, 5(Y), together with an H -equivariance structure on the underlying Oy -module
of £, subject to the first two conditions in

Suppose Y/ H is representable by an algebralc stack. Then the resulting quotient Q
has underlying Oy, g-module the descent of (the Oy-module) £ along Y — Y/H.

(OH()

inj

4.2.4. We now characterize the object QIE]H)

Consider an arbitrary Lie algebroid M € LleAlgd/S(Z). We can equip wiieAlng with the
structure of a (& H)-Lie algebroid as follows:

(£) € LieAlgd,5(Z) by a universal property.

a) regarding T . as the Oy-module 7 X v/, the H-equivariance structure
garding 7 ;,21,aM as the O dule m*M Ty,s, the H-equivari truct
™ Tz/s
is a combination of the natural H-equivariance structures on 7*M and Ty/s;
e morphism 7 : € Oy — 77, is a combination of the zero map t® Oy — 7
b) th hi 20 Liealgd (VO i bination of th 20 M
and the composition t @ Oy —» h R Oy — ‘Ty/s.

Note that 7y ;,1,aM € LleAlgd(/S )( Y') does not belong to LieAlgdi(sﬁ;(Y) in general.

Proposition 4.8. There is a natural bijection:

t,H ~ 1
MapSLleAlgd/S Z)(Ql(n_] )( ) M) — MapSLicAlgd(/EsiH)(Y) (LﬂTLiEAIng) (47)
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Proof. A morphism QI(;H)( ) — M is equivalent to an H-equivariant map ¢ : L/ ® Oy —
7*M preserving the Lie bracket on H-invariant sections. We claim that such datum is
equivalent to a morphism ¢ : £ — 7}, AlgaM of (¢, H)-Lie algebroids.
Indeed, given ¢, the map qz is uniquely determined by the properties that the following
diagrams commute:

¢ [
L —— 7TLieAlng L— W!LieAlng
Lo, N
L/E® Oy —— 1M Ty/s-

Furthermore, 5 preserves the Lie bracket on £, because £ is generated over Oy by H-
invariant sections and on such sections, the Lie bracket factors through £/¢ ® Oy and
is preserved by ¢. Conversely, given 5, the map ¢ is uniquely determined by the first
commutative diagram above. O

4.2.5. Suppose we are given an exact sequence (4.2)) of classical action pairs, and an object
L,n) € LleAlgd(E ) (y). Assume also that Y/H is representable by an algebraic stack.
inj /S
Note that:
a) Y/H° admits an Hy-action, realizing it as an Hy-torsor over Y/H (in particular, Y/H"
g

is also representable by an algebraic stack);
b) there is an induced (¥y, Hp)-Lie algebroid structure on (¢,H°) L), for which the struc-
( : g inj ;

ture map

(¢°,H)
o : €0 ® Oyypo — QmJ (L)

is again injective, i.e., (Q-(E- H° )(L) No) € LleAIgd(EO HO)(Y/HO)

inj

We have a version of the second isomorphism theorem:

Proposition 4.9. There is a natural isomorphism:
€0, H, 0, HO) ¢H
Qi ™ 0l (8) = @l (0).

Proof. As Oy po-modules, the cokernel of 7y identifies with the descent of £/t ® Oy along
Y — Y/HY since the latter map is faithfully flat. Hence the underlying Oy, g-module of

Q(EO o) Q(E H) (L) agrees with that of Q(E H)( L). Identifications of the anchor maps and

inj inj inj
the Lie brackets are immediate. 0
4.2.6. Suppose we have a classical quasi-twisting (3.1)) over Y, where both Lie algebroids
L and £ have the structure of (¢, H)-algebroids, and £ — £ is a morphism of such. In
particular, the structure map 7 : t® Oy — £ is a lift of 5. Hence, if (£,7n) € LieAlgdl(EJiI;( ),
then so does (2 7). For fixed (£, n), we denote the category of classical quasi-twistings with
this additional structure by QTW(E H)(Y/L).

Assuming that Z := Y/H is represented by an algebraic stack. Then the quotient Lie
algebroids again form a central extension:

e H
0= Oyym — Q™ (8) = Q™ (£) = 0.

Therefore, we may regard Qi(ni ) as a functor:

Q™ QW™ (v/£) —» QTw (2/Ql" (£)).
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Remark 4.10. When Y is placid and ¢ is a topological Lie algebra over Og, we can adapt the
above definitions to make sense of a Tate (¢, H)-Lie algebroid £ (c.f. §3.2.5)). In particular,
n will be a map out of the completed tensor product ¢®0y — £.

We do not discuss how to keep track of the topology in the (analogously defined) quotient
Q"

of finite type and QI(EJH) (L) should be discrete.

(L), since all quotients considered in this paper have the properties that Y/H is locally

4.3. (H, H")-formal moduli problems.

4.3.1. We now study the geometric version of quotient of Lie algebroids. Recall the oo-
category FMod g of @

Definition 4.11. We call a group object (H, H”) in FMod,s a geometric action pair if H
is a group scheme locally of finite type.

Explicitly, a geometric action pair consists of a group scheme H, a group prestack H® €
PStkjagi-def /s, and a nil-isomorphism H — H > that respects the group structure.

4.3.2. We will functorially construct a geometric action pair from any classical action pair
(¢, H), where H is locally of finite type. Indeed, there is a morphism exp(t) — H coming
from the composition exp(t) — exp(h) — H. Furthermore, the H-action on exp() equips
the prestack quotient H’ := H/exp(t) with a group structure, such that H — H’ is a
group morphism. Note that Lemma éi%l identifies H” with B m(H x exp(£)®); in particular,
H’ e PStkiage_det /5, 50 (H, H") is a geometric action pair.

Lemma 4.12. The category of classical action pairs is identified with the full subcate-
gory of geometric action pairs (H,H®), for which the tangent complex Ty m» belongs to
Y 5 (QCoh(H)Y).

Proof. We explicitly construct the inverse functor. Given a geometric action pair (H, H b)
for which Ty > € TH(QCoh(H )¥), we can functorially associate a classical Lie algebroid
L over H. The following Cartesian diagrams:

HxH—->HxH HxH—>HxH"’
S S S

i/m \Lact i/m S\Lact
H—>H H—>H

equip the underlying O g-module of £ with right, respectively left, H-equivariance structures.

Hence we may realize £ as £ @ Oy where ¢ is an Og-module equipped with an H-action.

The Lie bracket on £ comes from the Lie algebroid bracket on £. We omit checking that

these data make (¢, H) into a classical action pair. O
b

4.3.3. For a geometric action pair (H, Hb), we define FMod(/g’H ) to be the oo-category of

objects in FMod g equipped with an (H, H")—action. Explicitly, an object of FMod%’Hb)

consists of the following data:

(a) Y,Y" € PStkige-qor /s together with a nil-isomorphism Y — yb.

(b) an H-action on Y, and an H’-action on Y°, such that the morphism Y — Y° intertwines
them.
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Note that there is a functor
b
FMOdﬁ}SI)H ) - PStkII_aIft—def /S (9, yb) ~ y (48)

where PStkgft_def /S denotes the oo-category of objects in PStkjafi-ger /s equipped with an
b b
H-action. The fiber of (4.8) at Y is denoted by FMod(/gI’H )(H). Informally, FMod(/I;’H )(9)

is the oco-category of formal moduli problems Y® equipped with an H’-action that extends
the H-action on Y.

4.3.4. Suppose (¢, H) and (H,H") are as in §4.3.2) and let Y be a scheme locally of finite
type over S, equiped with an H-action. We will construct a functor:

LicAlgd 5™ (v) — FMod/77 (v) (4.9)

which enhances the association of formal moduli problems to Lie algebroids, in the sense
that the following diagram commutes:

LieAlgd|5™ (V) FModg’;’H” Y)

\Loblv i/oblv
LieAlgd 5 (1) FMod,5(Y)

To proceed, suppose (£,7n) € LieAlgd(/ES’H) (Y). We need to construct an H’-action act’

on the formal moduli problem Y° corresponding to £, together with a map of simplicial
prestacks:

act X1
— LY xHxH Lm YxH——xY (4.10)
- X X Xm X .
—— S S Prio S pry

\L actbxl \L
p— Y b b T yb p 8t
WX H X H 1xm WP x H —< .
—— S S pPrio S pry

Since each formal moduli problem Y® x (H”)® arises from the Lie algebroid pri £ @ pr; (¢ ®
Of)®® over Y >§ H*, we only need toS
(a) produce a morphism
a:pry LOpry(tR0y) — act!LiQAlgdL (4.11)
between Lie algebroids over Y >§ H (which would rise to act’, in a way compatible with

the morphism act)
(b) check that the following diagram:

pry £ @ pri; (8@ 0p)%% = (1 X m)j a0 (Pr3 £ @ pry (E© Opr)) (4.12)
J/aCt!LieAlgd(a)Xl i/(lxm)ltieAlgd(O‘)
aCt!LicAlgd(L) ©pr(E® On) (1x m)!LieAlgd aCt!LicAlgd(L)

’ ’

(act x 1)!LieA1gd(pr*Y L @ pri; (8@ 0n)) = (act X 1)!LieAlgd a‘Ct!LieAlgd (L)
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of Lie algebroids over Y x H x H is commutative. (This would affirm the commutativ-

s s
ity of (4.10) up to 2-simplices, but the higher commutativity constraints are satisfied
automatically since the corresponding oco-categories are classical.)

4.3.5. Note that as an Oy x g-module, we have an isomorphism:
S
! ~ *
actyenrga(L) — act® L x  Ty,pyg.
act* Ty /s s
The required map « is the sum of the following components:
(a) the map pri £ — act, Algd (£) induced from the H-equivariance structure on £ and
the composition
x p PIYO .
pry L —— pry Ty;s = TYEH/&
where o is the anchor map of £;
(b) the map ¢® Oy — actILieAlgd (£) induced from
act™

e L HO(Y, L) 22 HO(Y x H, act* £),
S

and the composition
S

The following Lemma shows that the functor (4.9) is well-defined.

Lemma 4.13. The map « is a morphism of Lie algebroids, and the diagram (4.12)) com-
mutes.

Proof. 1t is obvious that « is compatible with the anchor maps. To show that « preserves

the Lie bracket, we check it for sections of prj £ @ pri;(8® Og) of the following types:

(a) 11,1 € pr{/1 L; this follows from the assumptions that the equivariance structure 6 :
pry L — act* £ is compatible with the Lie bracket, and o is a map of H-equivariant
sheaves;

(b) &1,& € ¢ this is clear;

(c) le pl“;,l L and £ € € this is a slightly more involved calculation, which we now perform.

Write 6(1) = Y, f; ® l;, where f; € Oy g and I; € act™" L. We need to show the vanishing

of the following element in act* £ x Ty, p/s:
act* Ty, s S

[a(1), ()] = D_(fi @ L) x o(1), A @n(€)) x o’ (&)] (4.14)
where o’ denotes the composition (4.13]). Note that the Ty, /g-component of (4.14) van-
S

ishes tautologically, so we just need to show the vanishing of its act* £L-component. The
latter is given (using (4.5)) by

Z i ® [liyn(6)] — Zo'(f)(fi) ®lLi=-Y (fi® & L)+ (& fi)h) (4.15)

3
where in the second summand, &y acts on f; € Oy, /s by derivation on the Oy -component.
S
Consider the right H-action on Y x H, given by (y, h),h’ ~ (y, hh'); if we equip act* £ with
s
the following H-equivariance structure:

0 ’
* ~ (yh,h") ~ *
act” L] 0 5 L] 2 ] T act” L],
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then (4.15) is the (negative of the) induced action of &, on the section ) . f; ® I; = 6(I) in
act™ £. Note that prj. £ can also be endowed with an H-equivariance structure:

pr* L|(y7h) = L‘y = prt L|(y,hh')

such that 6 is a map of H-equivariant Oy x y-modules. Hence the element &y - §(1) identifies
S
with (&, -1). On the other hand, [ € pr~! £ so &, -1 = 0, from which we deduce the required

vanishing of (4.15)). Checking the commutativity of (4.12)) is not difficult, and we leave it
to the reader. O

4.3.6. We now characterize the image of the functor (4.9).
Proposition 4.14. The functor (4.9)) is an equivalence onto the full subcategory:

FMod! ) (v) < FMod!H) (v)

that consists of objects Y° such that Ty jys lies in Ty (QCoh(Y)").

Proof. Indeed, such a formal moduli problems Y® arises from some Lie algebroid £ via the
functor (3.11). Given the additional data of an (H, H”)-action, we consider the following
commutative diagrams:

Y x H act Y Y x H act Y (4.16)
Yo o H iy x | 2y Y x HY ey pb 2y
S S S S

From these diagrams, we obtain two maps between tangent complexes:

acti Ol

TYxH/wa — TYxH/W - TY/W |ny>
S S s S

which gives rise to a morphism 6 : prj, £ — act* £; and

b .
act, oj«

S
which gives rise to a map 77 : pri; (¢ ® Og) — act* £; restricting to Y x {1}, we obtain a
s

map 1 : £® Oy — L. The functor FMod%’Hb)(Y)Cl — LieAlgd%H)(Y) inverse to (4.9) is

defined by sending Y® to the Lie algebroid £, equipped with the (¢, H)-structure specified
by the above maps 6 and 7. O

4.3.7. We give an alternative description of the map « that will be used in the proof of
Proposition Consider the commutative diagram:

Y i Y/H (4.18)

P l

Yo (B [H) = (HP 1) 5y B

which is the “quotient” by H of the right diagram in (4.16]). It produces the following map
between tangent complexes:

—~b ~
act, oj«

Ty iy —— Ty smy = Tovpmy e imly = Ty (4.19)
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We claim that (4.19) identifies with the restriction of (4.17)) to Y . {1}. Indeed, this
follows from the fact that (4.17) is the pullback of (4.19)) along pry : Y >§ H — Y, and the

composition Y x {1} < Y x H 25 Y is the identity.
s S

4.4. Quotient of formal moduli problems.

4.4.1. Let (H,H") be a geometric action pair (see Definition . Suppose (Y,Y°) €
FMod%’Hb). The quotient of (Y,Y°) by (H, H?) is defined as the quotient in the co-category
FMod,g. In other words, it is the geometric realization of the simplicial object (%,Hb) X
(H,H")* in FMod%’Hb) characterizing the (H, H®)-action on (Y, Y).

Proposition 4.15. The quotient of (Y,Y°) by (H, H") exists.

Proof. We construct the quotient in the oco-category Fun(Al, PStky.¢_qer /s), and then check
that the result belongs to the full subcategory FMod,s. Quotient in the above functor
category is computed pointwise as follows:

(a) at the vertex [0], we have the prestack quotient Y/H; it is an object of PStkiag qet /s
because H is a group scheme locally of finite type;
(b) at the vertex [1], we assert that the quotient of Y* by H” exists in PStkyug-qer /s; indeed,

H H
it is given by By, /1 (Y >§ H°/H) where Y >§ H®/H denotes the Hecke groupoi acting

on the prestack quotient Y*/H:

actb><1
—p H o By et
=R X H' x H'/H 1xm Y’ x H'/H ——=Y/H,
I S S Prio S b1y

and By, 1s the functor from §3.4.3

H
Finally, the morphism Y/H — B%,.,/H(yb x H°/H) is a nil-isomorphism since it is the com-
s

H
position of nil-isomorphisms Y/H — Y°/H — Byb/H(%Jb >S< H°/H). O
Regarding Y as a fixed prestack acted on by H, we denote the resulting quotient functor by
H
QUH-H") . FMod(/I;’Hb)(‘é) — FMod,s(Y/H), Y ~ By 5(¥ x H’/H). (4.20)

H
4.4.2. Tautologically, the quotient (Y/H, Byb/H(yb >S< H’/H)), equipped with the map from

(Y,Y"), satisfies the universal property:
H
Mapspytod, o (9/H, Bys (Y’ X H'/H)),(2,2"))

o (9,9, (2,2%)),

FMod(/H ;

Hsuppose € is an oo-category with finite products. Let H — K be a map of group objects in €. Suppose
any object in € with an H-action admits a quotient. Then given an object Y € € with a K-action, there

H
exists a Hecke groupoid Y x K/H acting on Y/H whose quotient, if exists, agrees with Y/K.
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where in the second expression, (Z,2”) is equipped with the trivial (H, H”)-action. Special-
izing to Z =Y/H, we see that the object Q(H’Hb)(‘éb) € FMod,s(Y/H) is characterized by
the universal property:

b ~
MapSFMOd/S(y/H) (Q<H7H )(Hb), Z’b) — MapsFMod;g'Hb)(H)(%b7 W%Mod(Zb)) (421)

where in the second expression, W%MOde ~ 2" X Ygg is acted on by H® through the
(9/H)ar

canonical homomorphism H” — Hgg on the Y4gr factor.

Remark 4.16. Recall the (¢, H)-Lie algebroid structure on WiieAlgd(M), where (¢, H) is
any classical action pair and M is a Lie algebroid on the quotient Y/H (see . If
H® = H/exp(t) as in §4.3.2] then the (H, H”)-formal moduli problem 7}y, 4(Z") is precisely
the one associated t0 m;,414q(M) under the functor ([@.9).

4.4.3. Let (H°,(H®)*) — (H, H”) be a morphism of geometric action pairs. We say that
(HO, (H®)") is a normal subpair of (H, H”) if there is a morphism (H, H”) — (Hy, (Hy)") of
geometric action pairs whose kernel identifies with (H, (H°)?). In particular, the (H, H")-
action on itself extends to (H°, (H°)?).

Given a normal subpair (H, (H°)*) of (H, H"), we recover (Hy, (Hy)") by the isomor-
phisms:

Hy = H/H®, Hj = QU ) (),
Let Y € FMod(/g’Hb)(H). Then the prestack Q" (H")")(Y?) is naturally an object of

b
FMod%O’H")(‘é JHY), and we have a second isomorphism theorem:

Proposition 4.17. There is a natural isomorphism:
QHo:Ho) o Q(Hov(HO)b)(yb) ~y Q(H,H")(gb).

Proof. Both sides are the quotient of (Y,Y") by (H, H) in the co-category FMod/g. O

4.4.4. Suppose we have a quasi-twisting Y* € QTW/S(H/W), such that (y,@’) is also an

(H, H)-formal moduli problem, and the morphism Yoy preserves this structure. We
call quasi-twistings with these additional data (H, H’)-quasi-twistings (based at Y°) and

denote the category of them by QTW%’Hb)(‘j/‘db). The quotient Q(HyHb)(gb) inherits the

structure of a quasi-twisting on Y/H based at Q(H’Hb)(‘éb). Indeed,

., we obtain a BG,,-action on

(a) applying QH-H") to the action groupoid Y* x BG?
Q(H’Hh)(‘éb), which gives rise to a G,,-gerbe structure;
(b) the section Y/H — Q(H’Hb)(‘db) is given by the composition:

Y/H =/ H — QUEH) (),
Therefore, we may view QUT-H ") as a functor:

b
QUL - QTw L™ (Y/8) = QTW  in oy oy (Y/H)/S).

4.5. Comparison of Q%) and QU:H"),

inj
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4.5.1. Suppose (¢, H) and (H, H") are as in §4.3.2, and let Y be a scheme locally of finite
type over S equipped with an H-action. We shall show that the two quotient functors
constructed above are compatible.

Proposition 4.18. The following diagram is commutative:

4.
LieAlgd: () B2 Ptod ) ()

Qe Q(H,Hb)

inj

LieAlgd g (Y/ ) EL Flod, 5(Y/H).

Proof. Suppose (£,n) € LieAlgdi(EJ’.If;(Y), ie., L is a (¢, H)-Lie algebroid over Y such that
the map 7 : €® Oy — £ is injective. Let Y° be the corresponding formal moduli problem

under Y, equipped with the H’-action defined by the functor . Thus Q(H’Hh)(‘éb)
satisfies the universal property for 2 € FMod,s(Y/H).

On the other hand, Qi(EJ?H) (L) satisfies the universal property . Since the essential
image of consists of objects 2° € FMod,g(Y/H) such that T(y/m)/z> belongs to
Ty (QCoh(Y/H)?), it suffices to show that QUHH")(Y?) has this property. The result
thus follows from the lemma below and the fact that Y — Y/H is faithfully flat. O

Lemma 4.19. Suppose (Y,Y°) is the (H, H’)-formal moduli problem corresponding to the
(¢, H)-Lie algebroid (£,n) under the functor (4.9). Then there is a canonical isomorphism
between ‘J'(Y/H)/Q(H,Hb)(w) ’Y and Cofib(n).

H
Proof. We will use the expression of Q(H’Hb)(léb) as quotient of the Hecke groupoid Y’ x
s

H°/H (see (£.20))). Consider the following commutative diagram, which extends the com-
mutative diagram (4.18)):

Y_ >Y/H
id x{l}l v
R —~.b
Y x H'JH =Y x H'JH 2 >4 /[
S S i
.
v yb Q(H,Hb)(gb)

where the two lower squares, as well as the dotted quadrilateral, are Cartesian. From this
diagram, we obtain the following commutative diagram of objects in QCoh(Y):

TT(YEW/U)/Y}y[*l]‘~> (gb/H)/Q(HAH")(ldb)‘y[iu > Ty my o/ m |y >T(y/H)/Q(H~H")(g7)|Y

: | -

~b ~
act, 0.

Ty~ Tyjw/m = Tov v/ ly > Ty v/m 1]

(Iy/\éb

Furthermore, the two horizontal dotted triangles are exact. Note that the composition (4.19)
identifies with 7, so the upper horizontal triangle allows us to identify T

(Y/H)/QUHED) (y2) ly
with Cofib(n). O
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4.6. Example: inert quasi-twistings.

4.6.1. We now specialize to Lie algebroids arising from abelian Lie algebras. They give
rise to what we call “inert quasi-twistings.” In the geometric Langlands theory, they arise
naturally as degeneration of (non-inert) quasi-twistings as the quantum parameter x tends
to 0o. (The details of this application will appear in .

4.6.2. Recall that over any Y € PStkjas_qef /5, there is a functor
triv : IndCoh(Y) — Lie(IndCoh(Y))

that associates to an ind-coherent sheaf F the abelian Lie algebra on F. (The notation
Lie(IndCoh(Y)) means Lie algebra objects in the symmetric monoidal category IndCoh(Y).)
More precisely, triv is the right inverse to the forgetful functor. Because the latter is con-
servative and preserves limits, triv also preserves limits.

4.6.3. We also have a pair of adjunction:
diagy : Lie(IndCoh(Y)) === FMod(}) : ker-anch

where diagy preserves fiber productsE It follows that the composition diagy o triv preserves
fiber products. We call Y° := diagy o triv(F) the inert formal moduli problem on 7.

Remark 4.20. Let Y be a scheme (not necessarily locally of finite type) over S. The
classical analogue of the above construction associates to an Oy-module F the Lie algebroid
on F with zero Lie bracket and anchor map. If Y — S is locally of finite type, then the

image of F under (3.11) agrees with diagy o triv(Yy,s(J)).

4.6.4. For the remainder of this section, we suppose Y — S is smooth. Then the identifi-
cation Ty, : QCoh(Y') = IndCoh(Y') allows us to view the universal enveloping algebr
of an object Y* € FMod,5(Y") as an algebra in QCoh(Y). If Y* = diagy o triv(Yy ()), then
it is given by Symg, (7).

4.6.5. Suppose F € QCoh(Y)=C. Let V(J) := Spec,, Symg, (F). It is a prestack over Y’
fibered in vector DG schemes. We have an equivalence of DG categories:

IndCoh(Y°) = QCoh(V(F)), (4.22)

where oblv : IndCoh(Y®) — IndCoh(Y") passes to the pushforward functor on QCoh (see
[GR16| IV .4 §4.1.3, IV.2 (7.12), and IV.3 Proposition 5.1.2]).

4.6.6. Suppose, furthermore, that we have a quasi-twisting Qb € QTw, s(Y/ Y*) that arises
from a triangle Oy — F—Fin QCoh(Y)=? under the composition diagy o triv oTy/s. We
call Qb the inert quasi-twisting on the triangle Oy — F 9.

120ne sees this by identifying Lie(IndCoh(Y)) with FMod(Y) /y, where Y is regarded as a formal moduli
problem under itself by the identity map. Under this identification, diagy becomes the tautological forgetful
functor; see [GR16} IV .4].

13 This is defined as a monad on IndCoh(Y) in [GRI6} IV.4.4].
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4.6.7. Since Spec,, Symg, (Oy) is identified with ¥ x A, the map Oy — F gives rise to a
morphism of DG schemes:

Spec,, Symy, (F) =V x Al. (4.23)

We let V(f;"),\zl be the fiber of (4.23]) at {1} — Al. Note that the analogously defined fiber
V(F)a=o identifies with V(F). There is a canonical equivalence of DG categories:

Y- Mod = QCoh(V(F)r—1). (4.24)

Remark 4.21. From our point of view, the DG category QCoh(LocSys) is realized by
modules over some quasi-twisting on Bung. The DG stack LocSys only appears a posteriori

through (4.24).

4.6.8. We now discuss how quotient interacts with inert quasi-twistings. Denote by pt the
S-scheme S itself. Suppose (¢, H) is a classical action pair with zero map ¢ — h. Then we
have

H’ := H/exp(t) = H x (pt / exp(t)),

where the formation of the semidirect product is formed by the H-action on pt /exp(t).
Note that the normal subpair (pt, pt / exp(£)) of (H, H”) has quotient (H, H), since

QPPN (1Y) = By (H” x (bt / exp(£))*) = H;

4.6.9. We now assume that £ is also abelian. Suppose the smooth scheme Y admits an
H-action, and Y is the inert formal moduli problem on some H-equivariant sheaf F €
QCoh(Y)?.

Suppose we have an H-equivariant map 7 : ¢ ® Oy — F, giving rise to an H’-action on
Y® (see §4.3.4). Let Q := Cofib(n); it is an H-equivariant complex of Oy-modules, hence
descends to an object Q¢ € QCoh(Y/H).

Proposition 4.22. The quotient Q(H’Hb)(‘éb) identifies with the inert formal moduli problem
on Q4 € QCoh(Y/H).

Proof. By Proposition [4.17] we have
Q(H,Hb)(léb) AN Q(H:H) ° Q(pt,pt/exp(ﬁ))(yb) AN Q(pt,pt/exp(ﬁ))(%l’)/]_].

Note that descent of Oy-modules corresponds to quotient by H on the inert formal moduli
problem. Hence we only need to identify QPt:rt/ e"p(k))(‘éb) as the inert formal moduli
problem on Q.

Consider the Cech nerve of ¥ — Q in QCoh(Y), which identifies with the groupoid
Fd (£® Oy)®*. Since the composition diagy- o triv preserves fiber products, we see that

diagy o triv(F & (@ Oy)®*) =5 Y* x (pt /exp(k))®
identifies with the Cech nerve of the map Y®> — diagy o triv(Q). The result follows since this
is also the Cech nerve of Y* — Q(Pt:pt/exp(®)(yb) O

Remark 4.23. When Y is any scheme over S (not necessarily locally of finite type) but n
is injective, we also have an identification of Qi(ﬁiH) (F) with the Lie algebroid on Q4°¢ with

zero Lie bracket and anchor map. This follows immediately from the definition of QI(YZH) (F).
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Geometrically, the datum of 7 gives rise to a map ¢ : V(F) - Y . £*, and V(Q) identifies
with its fiber at {0} — £*. Hence we have isomorphisms of DG stacks:
V(Qdesey 2 V(Q)/H =5 ¢~ 1(0)/H. (4.25)
4.6.10. Suppose we have an exact sequence of H-equivariant Oy-modules:
00y = F = TF 0.

Let Y* € QTw /y»(Y/S) be the corresponding inert quasi-twisting. Assume that 7 lifts to
an H-equivariant map 77 : € ® Oy — F. Then Proposition shows that the quotient
quasi-twisting arises from a triangle in QCoh(Y/H):

OY/H N @desc N Qdesc

where 095 is the descent of Q := Cofib(7) to Y/H.
In particular, we have isomorphisms of DG stacks:

V(QU) o1 5 V(Q)amt/H = 632, (0)/H (4.26)

where ¢)—1 is the composition

V(F)aer = V(F) 22y <E

Remark 4.24. In light of (4.25) and (4.26)), one may think of Q(Hva) on inert quasi-

twistings as an analogue of symplectic reduction where ¢ and (;ASAzl play the role of the
moment map.

The universal quasi-twisting

E
5. CONSTRUCTION OF ‘Igf’ )

Let S be an affine scheme smooth over k. To an S-point (g*, E) of Parg, we shall

)

functorially attach a quasi-twisting ‘J'g" ) over S x Bung (relative to .9).

)

We proceed by first constructing a Lie-x algebra ﬁ(g ) over § x X , then twisting its

pullback to S x Bung .o XX by the tautological G-bundle j)G. Via taking sections over
Bw, we produce a classical quasi-twisting ‘j'g ) over S x Bung,eoz- Then we show that
‘j'g’E) admits an action by the pair (g"(0.), L} G), so we may form the quotient ‘Tg“E) =
Q(B“(Oz),ﬂi @) (‘j'g ’E)). This last step requires both quotient functors constructed in §4| and
their compatibility.

We then verify that for a simple group G and g* arising from the bilinear form x = A-Kil,

the quasi-twisting ‘J’gf 0 identifies with the twisting given by A-power of the determinant
line bundle £ get Over Bung.

5.1. Recollection on Lie-x algebras.

5.1.1. Let X — S be a smooth curve relative to S with connected fibers[”] The diagonal
morphism A : X — X x X is a closed immersion. Denote by Dx/s-Mod" the category of

s
Ox-modules equipped with a right action of the relative differential operators Dy /.

For our applications, we will take X := S x X.
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5.1.2. A Lie-* algebra on X (relative to S) is an object B € Dy,g-Mod", equipped with
a Dy x/s-linear morphis [—, =] : B¥2 — A|(B) such that the following properties are
S

satisfied:

(a) (anti-symmetry) for all sections a,b of B, there holds
F12([a X b)) = —[b R ],

where 712 is the transposition morphism over X x X given by:
s

o AY(B) = A((B);  where o12(z,y) = (y,z).
(b) (Jacobi identity) for all sections a, b, and ¢ of B, there holds
[[a 6] B ] + G123([[b B ] W a]) + Gis([[c K a] K B]) = 0,

where G123 denotes the morphism over X x X x X given by:
s s

O—;ng(Am:y:z)‘(fB) — (Am:y:Z)!(iB); Where 0123($, Y, Z) = (y7 Z, SU)
Denote by Lie*(X/S) the category of Lie-x algebras on X relative to S. Clearly, for any
morphism S' — S with X' := X . S’, we have a functor Lie*(X/S) — Lie*(X'/S’) acting

as pulling back a Dy /g-module, and equipping it with the induced Lie- algebra structure.

5.1.3. Lie-* algebras are étale local objects. More precisely, let Et /x be the small étale site
of X. Given B € Lie*(U/S) where U € Et/x and a morphism U — U, we may associate an
object B|ﬂ € Lie*(U/S). This procedure defines a functor in groupoids:

Et)x — Gpd, U~ Lie"(U/S). (5.1)

The étale local nature of Lie-x algebras refers to the fact that (5.1]) satisfies descent.

5.1.4. Let G be a presheaf of group schemes on Et/x, and B € Lie*(X/S). A G-action on
L consists of the following data:

— for each U € Et/x, an action of Gy as endomorphisms of B’u € Lie*(U/S);

furthermore, this action is required to be functorial in U.
Suppose P is an étale G-torsor over X, and B € Lie*(X/S) admits a G-action. Then we
can form the P-twisted Lie-x algebra Bp € Lie*(X/S) using the descent property of (5.1)).

5.2. De Rham cohomology over the disc.

5.2.1. Let z € X be a closed point. Write X := S x X and z : S — X for the S-point
determined by z. Let D, be the completion of X at z and D, be its open subscheme D, —{xz}.

As S is assumed affine, we have D, = Spec(0s®0,) and D, = Spec(0s®X,), where O,
denotes the completed local ring at x, and X, the localization of O, at its uniformizer.

15We use K to denote tensoring over Og.
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5.2.2. Following [BDO04, §2.1.13, 2.1.16], there is a right-exact functor I'qgr (D, —) carrying
Dy /s-modules to topological Og-modules. (It is the functor of zeroth de Rham cohomology,
denoted by h, in op.cit.) Let FdR(ﬁz, —) denote the functor I'qr (D, j«j*—) where j :
X — {z} — X is the open immersion. According to [BD04, Lemma 2.1.14], the functors

Tar(Dg, =), Tar(Dg, —) carry coherent Dy, g-modules to Tate Og-modules.
Lemma 5.1. There are canonical isomorphisms:
Lar(Dy,wx/s) =0, Tar(Dy, wx/s) = 0s.

Proof. The Spencer complex defines a resolution of wy /s by the complex Dy /g — wx /s @
Dyss. Applying I'qr(Dy, —), this complex becomes d : 0580, — 0s®w, (see [BDO4,
§2.1.13, Examples (i)]). The vanishing of 'qr (D, wx/s) thus follows. The calculation
of FdR(lo)z, wx/s) follows from the canonical triangle i;i!(wx/s) — wy/s = Jxj wxys (for
i : S — X denoting the closed immersion z) and the isomorphism i!(wx/s) ~0g[-1]. O

5.2.3. Given a Lie-x algebra B, the object T'qr(D,,B) acquires the structure of a Lie
algebra in QCoh™"°(S), whose (continuous) Lie bracket is given by the composition:

The map Ly (Dy, B) = Lar (D, B) realizes I'qr (Dy, B) as a Lie subalgebra if B is Ox-flat.
5.3. The Kac-Moody Lie-+ algebra.

5.3.1.  Suppose now that S is equipped with a morphism S — Par¢, represented by (g”, E)
(see §2)). We will construct a central extension of Lie-x algebras over X := S x X:

0 — wy/s —>§(I',“’E) — g5 — 0, (5.2)

together with G-actions on ﬁ(; ) and g4, where G is the presheaf of group schemes Gy :=

Maps(U, G) on Et /x- The construction will be functorial in S.

Remark 5.2. The central extension (5.2)), together with the G-action, is called the (gener-

alized) Kac-Moody central extension of Lie-x algebras, and we refer to ﬁg;’E) as the (gener-
alized) Kac-Moody Lie-x algebra.

5.3.2. The Lie-* algebra gf, has underlying Dy g-module g* X Dy 5. Its Lie-x algebra
structure is defined using the Lie bracket (2.18) on g*:

[ =] (09)™ = A(gh), (RO 1R (W ®@1) ~ [u,p4] @ Lo,
where 1p is the canonical symmetric section of Aj(Dx/g). Note that the Lie-x bracket
[—, —] factors through the embedding g&; X Dy, g — g¥,

We construct a G-action on gf, as follows: for every U € Et/x, there is an adjoint-coadjoint
action of the group scheme Maps(U, G) on g~ ® Oy:

gu - (€ @ ¢) = Adg, (§) © Coadg, (). (5:3)

16gee : for the notation gf .
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where £ @ ¢ denotes a section of g* ® Oy, regarded as a subbundle of (g ® Oy) @ (g* ®
Ow). The action (5.3) extends to an action of Maps(U, G) on g" ® Dy, 5 by Lie- algebra
- Ou

endomorphisms.

5.3.3.  The underlying Dy ;g-modules of (5.2)) are defined by first inducing a sequence of
Dy /s-modules from ([2.20):

O%WZ)C/S(;@ DI)C/S %/g\ﬁ(;@ ®3C/S %g'ﬂEDx/s —0 (54)
x x

and then taking the push-out along the action map wy,s ® Dx /5 — wx/s-
Ox

In particular, the extension ’g\(; B g% splits over gf, X Dy, g, and we have a decom-

position

o 2 En @ (g7, R Dy/g). (5.5)

where Eq is the push-out of ' ® Dy /g along wy,s ® Dyx,5 — wx/s-
Ox Ox

5.3.4. The Lie-x algebra structure on ﬁ(g’E) is defined by the composition:

@55 = (@) = Mi(wxys) ® Mgl B Dayss) = Mi(@p ™)
where the middle map is defined using the bilinear form (2.19)) and the Lie bracket (2.18))
on g~:
(L@ 1)K (W @1) ~ (1)1, + [, 0] @ 1
the notation 1;, denotes the canonical anti-symmetric section of Aj(wy,g).

5.3.5. We now construct the G-action on ’g\(g’E). Let U € Et/x and gy be a point of

Maps(U, G). The corresponding endomorphism gy : ﬁ(g N ﬁ(g ) is defined by the sum

of the following maps (using the decomposition (5.5)):

(a) identity on Eqp;
(b) adjoint-coadjoint action on gZ X Dy /g by formula (5.3));
(¢) the composition:

res(gu)

ﬁ%’E)|u — g% |y = (6" K Oy) & Days 2% wyys < G u (5:6)
u

where the map res(gy) is defined by the formula:

EDp) @1~ (g dau), £y e gt ROy

Here, d : Oy — wyyys is the exterior derivative, so gﬂldgu is a section of g X wy,/g, on
which ¢ rightfully acts.

It is clear from the construction that ﬁg ) g4, is G-equivariant.

Remark 5.3. If g* arises from a symmetric bilinear form x (see , then we have an

(m0) >, B(g, k) where B(g, x) is the Kac-Moody Lie- algebra at level x in

the ordinary sense (see [Ga98|). On the other hand, the Lie-x algebra /g\g;o,o) is given by

wx/s @ g, with zero Lie-* bracket (but a nontrivial G-action).

isomorphism .
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5.3.6. Let us bring in the closed point z € X, which induces a section z : S — X. Applying

o

Lar(Dg, —) to the sequence (5.2)) and using Lemmaa we obtain a central extension of Lie
algebras in QCoh™(S9):

0— O0g — g F) = g"(K,) — 0, (5.7)

where the notation g*(0,) (resp. g®(X,)) denotes the Tate Og-module g*®0O, (resp. local-
ization at the uniformizer of O,.)
The Lie bracket on g*-®) is given by the composition:

(@)% = (g"(K,))™* — 05 @ gl (Ka) = 7,
where the middle map is defined by
(ne )R @ f) ~ (n, 1) - Res((df) f') + [, 1] @ ff'.
Lemma 5.4. The central extension (5.7)) canonically splits over g™(0,,).

Proof. The result follows from applying I'qr(Dy, —) to the sequence (5.2) and observing
that I'qr (Dg, wx/s) vanishes (Lemma. O

Let £,G (resp. £} G) denote the loop (resp. arc) group of G at z. There is an action of
£,G on g% defined analogously to §5.3.5, with the composition (5.6) replaced by:

B L gi(K,) 2 0g s OB

where the map res(g) (g is a point of £,G) is defined by the formula:

(E@ @) ® f ~ Res(f- (g~ dg)).

Since the Lie algebra of £, G identifies with g(X,), this £,G-action induces a g(X,)-action
on g ¥ by Og-linear endomorphisms.

Lemma 5.5. The Lie bracket on §"F) agrees with the composition.:
(geB)m2 PRl gy glnE) A<ty G(nE)
Proof. This is a straightforward computation. O

5.4. The classical quasi-twisting ‘j'éfE) over Bung ocz-

5.4.1. Let Bung .o denote the stack classifying pairs (P, a) where P is a G-bundle on
X and « : ?G‘Dm = CP% is a trivialization over D,. The (right) £FG-action on Bung, s
by changing « realizes Bung oo, as a £} G-bundle over Bung, locally trivial in the étale
topology. In particular, Bung o, is placid; see

5.4.2. The Beauville-Laszlo theorem shows that Bung ., also classifies pairs (Pg s, @),
where P x is a G-bundle on ¥ := X — {2} and o : Pg »

2 = TOG is a trivialization over
x

D,. This alternative description shows that the £ G-action on Bung .o, extends to an
L,.G-action.
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5.4.3. Fix an S-point (g~, E) of Parg. We apply the construction of to the relative
curve

X:= S x Bung ooz XX over §:=8x Bung,coxs
and obtain a central extension in Lie*(X/8):

0— wy/z — a5 = g — 0. (5.8)

In other words, is the image of Kac—Mqody extension under the base change
functor — X Opung ., : Lie"(X/S) — Lie"(X/8).

Let Z : 8 < X (resp. z : S < X) denote the section given by # € X. Let Pg be the
tautological G-bundle over X equipped with the trivialization « over Dz. Since ﬁgg ) and
g4, are equipped with G-actions, we can form the Pe-twist of :

~(Kk,E K
0= wis — @55, = (85)5, = 0. (5.9)

Remark 5.6. (a) Since gf, is the Dy g-module induced from g* M Opung .., xx and the
G-action comes from one on g* X OBung.cos x X, We see that (g%)@a is the Dx/g—module
induced from gggc.

(b) the datum of « gives an isomorphism between (5.8) and (5.9) when restricted to Dj.

5.4.4. We apply the functors T'qg (2, —) and T'qr(Dgz, —) to (5.9). Using the two observa-
tions above, we obtain a morphism between two triangles in QCoh™*(8):

Lar (3 wi/5) —= Tar (3, @5 )5,) —= (S, 05 ) (5.10)

Far(Dg,wy,5) — Far(Dgz; 85") —— 0" (K )ROBune .,
where g"(X,) is (as before) an object of QCoh™*(S).
Since wy /3 has top de Rham cohomology (along X — §) isomorphic to Og, one may
conclude that the first vertical map in (5.10]) vanishes by comparing the canonical triangles
associated to open immersions ¥ C X and Dz C D3| ‘| Hence we obtain a splitting 7 as

depicted. Note that v (hence 7) is injective, so we may define two Tate Og-modules by
cokernels without running into DG issues:

LRE) Coker(¥), £L" := Coker(7y).

o
Since I'qr (Dz, wy /5) is canonically isomorphic to Og (Lemma , we arrive at an exact
sequence of Tate Og-modules:

0— 05 = LB 5 8 0. (5.11)

Notation 5.7. In what follows, we will show that (5.11)) has the structure of a classical
quasi-twisting (on Tate modules) over S (relative to S; see ib to be denote by ‘j'g ),

7T his vanishing is also reflected in the classical fact that the sum of residues of a meromorphic form is
Zero.
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5.4.5. We (temporarily) use the notation fj(g’f) to denote the Kac-Moody Lie-x algebra

over X, constructed using the recipe in for the relative curve X — S.

The isomorphism ﬁ,_(;’E) = ﬁg’?@OBunGmm gives rise to an isomorphism in QCoh™(8):

[e] (o]

Tar(Dz, 85 "7) = Tar (Dy, 8% % )80Bung, ., 2 5P RO0Bum; ... (5.12)
Observe that the G(XK;)-action on Bung o, gives rise to a g(ﬂ(m)-actioﬂ on OBung e, DY

derivations. Hence, the Lie (algebroid) bracket on I'qr(Djz, ﬁ(g ’E)) can be defined using the

Og-linear Lie bracket on gi**) (see §5.3.6)):
(&S, R = [ ]+ () i = () - e
where 7z denotes the image of 1 € () along %) — g"(K,) — g(X,)ROg, which acts

o]

on Oz by Og-linear derivations. The anchor map & of I'qr(Dj3, ﬁ(g’E)) is defined by the
composition:

5B E12)

Car(Ds, 8% G M0Bung, .. — 8(K2)H05 = Tg . (5.13)

We have thus equipped T'qr (D3, ’g\g;’E)) with the structure of a Lie algebroid. The fol-

lowing lemma, whose proof is deferred to §5.4.6] extends this Lie algebroid structure to its
quotient £E).
Lemma 5.8. The morphism 7 realizes F(E,g%c) as an ideal of Tar (D3, /g\g;’E)).

In an analogous way, we turn g"”"(fKC,;)ﬁ(‘)BunG)im into an object of LieAlgd(S/S), and the

map FdR(Di,ﬁ(g’E)) — gn(fKI)QOBunsz in (5.10) is a morphism of such. Lemma
shows that v also realizes I'(Z, ggc) as an ideal of g”(fKQ@OBunG’wx. Hence the cokernels
(5.11)) is a central extension of Lie algebroids.

5.4.6. Proof of Lemma [5.8 We first give an alternative description of the Lie bracket on
Tar(D;z, ﬁggﬂ)). Indeed, from the identification in (5.12)) and the g(X, )-action on g\*¥) (see

§5.3.6), we obtain an action of g(ﬂCm)gOg on Iar (D, ﬁg;”’E)) by Og-linear derivations. It

follows from Lemmathat the Lie bracket on I'qr (Dj, ﬁ(g ’E)) agrees with the composition:

o

° ~(k r,id e ~(k ac ° ~(k
FdR(D@QgJ’E))m erid), (8(X2)X0g) X FdR(D@gf(D’E)) 2 FdR(D@gg)’E)% (5.14)

where pr denotes the composition of the first two maps in (5.13]).
Therefore, it suffices to show that the Tate Og-submodule:

~(k.E ° ~(k,E
Tar(S, (@5 ))ij) < Tar(Dz, §5) (5.15)
is invariant under the aforementioned g(ﬂ(fw)g(?g—action. Note that by construction, this

action arises from the S x £,G-equivariance structure on I'gr (D3, ﬁg;’E)). The following

claim is immediate:

Claim 5.9. There is also an S x £,G-equivariance structure on I'qg (X, (ﬁgg ’E))@G), defined

at every T-point (s,Pg s, o, g) of S x Bung ey xL,G (for T € Sch?f) by:

18Unlike the Tate Og-module g*(X,), the notation g(X) is reserved for the Tate vector space g ® K
(similar for the notation g(Oz).)
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a) first identifying the fiber of Tyr (X, (3%F))5 ) at both of the T-points

(a) ying (@ )pe p
(s,Pe >, ), and (5,Pex,9-a), g€ Maps(T,L,G),

with PdR(E7 (ﬁg’E))ch,z)
(b) relating the above two fibers via the identity map on I'qr (%, (ﬁ(g’E))TPa,z)' -

So we have reduced the problem to showing that ([5.15|) preserves the Sx £, G-equivariance
structure. In other words, the following diagram in QCoh™"(T") needs to commute:

~(Kk,E ~ ~(k,E o A kB
Tar(Z, (35)pe.5) —> Tar (S, (6% ))?c)|(8’%72’a) == T'4r(Dz,55") (5.16)

Jo I

~(k,E ~ ~(k,E (5.15) ° ~(k,E
Tar (S, @5 )76.5) == Tar(Z @57)26)] (g o ooy —= Far(Dz, 8577).

Here, the two horizontal compositions express the procedure of
o]
a) first restricting a flat section of (g.,""’)p 0Dz =T xX;
first restricting a flat section of (§5°7))p, y to Dz < T x %
en using the trivialization « (respectively, g - a) to identify it with a section of g, .
b) then using the trivializati tivel to identify it with a section of g4

However, the following diagram is tautologically commutative:

© ~(Kk,E * o~ kB
Lar (D3, (9(1) ))?G,z) s FdR(D@g(@ )

J/id J,g-
o _(k,E (9-a)« ° (k,E
I'qr(Dg, (9(@ ))?G,Z) —>FdR(D@g§3 )),
so we obtain the commutativity of (5.16]). O(Lemma

5.5. Descent to Bung.

5.5.1. We continue to fix the S-point (g~, F') of Parg. The goal of this section is to “de-
scend” the classical quasi-twisting ‘58? ) 1o Bung. Recall the action of H := S x LG on
$=29x Bung,coz, whose quotient is given by S/H — S x Bung. Let £ := g*(0,). Then
(¢, H) forms a classical action pair (see §4.1)).

5.5.2.  'We now equip (5.11]) with the structure of a (¢, H)-action. Indeed, applying the func-
tor I'(Dz, —) to (5.9) and using Tyr (D3, wy,g) =0 (Lemma , we obtain a commutative
diagram:

Lar(Dz, 85) == T(Dz, 9" B Opung ., xx) (5.17)

Far(Dg, wg/5) — Lar(Dgz, §57) —— (K, ROBun .,

where the splitting 7) exists for obvious reasons. Since I'( Dz, "M OBung. ., xx) is canonically

(5, E)

isomorphic to E@Og, we obtain the (¢, H)-action datum on z via the composition:

o

805 L Tur(Dz, §57)) — LB,

LOWe are slightly abusing the notation (/g\S;’E))

"B .
to the parameter T = S E;—)> Parg, twisted by Pg, x on the open curve 7' x 3.

P 5 » since this is now the Kac-Moody extension associated



QUANTUM PARAMETERS OF THE GEOMETRIC LANGLANDS THEORY 47

which we again denote by 7.

Remark 5.10. Ideally, we would like to directly define T(*:%) as the quotient Q&) (‘j'(’“’E)).
However, we run into problems because 8 is not locally of finite type (so we cannot use
QUHH") (4.20)), and 7 is not injective (so we cannot use Q(E’H) (4.6)). In what follows, we

inj
circumvent this technical problem using a combination of the two functors.
5.5.3. For each integer n > 0, let Bung ,, denote the stack classifying pairs (Pg, o)

where P is a G-bundle on X and «, = T% is a trivialization over the nth

: TG|SpeC(O§"))
infinitesimal neighborhood Spec(Ogg")) of . Then Bung n, is an £,,G-torsor over Bung,

where £,,,G classifies maps from Spec(O;n)) to G.
Remark 5.11. In particular, £,,,G is a group scheme of finite type.
Set H, := S x L£,,,G, and we have an exact sequence of group schemes over S:
1-H"—- H— H, — 1.

Define " := t@m?, and ¢, = ¢/t" 2 ¢ ® Oén). Then the above sequence extends to an

exact sequence of action pairs (see §4.1.2)):
1— (", H") — (H,t) = (Hp,t,) — 1. (5.18)

5.5.4. We briefly review the Harder-Narasimhan truncation of Bung. For this, we need to
fix a Borel B — G, whose quotient torus is denoted by T'. There are canonical maps

Bungp
N
Bung Buny .
Let Ag denote the coweight lattice of G, and A, A%® C Ag denote the submonoid
of dominant coweights, respectively the submonoid generated by positive simple coroots.

Denote by AJCE’Q and APGOS’Q the corresponding rational cones.
There is a partial ordering on A%, given by:

M <Ay <= A— A € AIC);OS’Q.
G

Given A € A%, define Bung as the pre-image of A\ under the composition:
d
Bung - Bung —=2s Ag ~ A%.

For each 0 € Ag’(@, define Bun(GS‘g) as the substack of Bung classifying G-bundles Pg with
the following property:

~ for each B-bundle Pp € Buny with p(Pp) = P, we have A < 6.
G
The following result is proved in [DGI11]:

Lemma 5.12. Bun(GSG)

s an open, quasi-compact substack of Bung. O
Remark 5.13. The definition of Bun(GSQ) in [DGII] refers to all standard parabolics P of
G, rather than just the Borel. However, the two definitions are equivalent; see the discussion
in §7.3.3 in loc.cit.
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5.5.5. For each integer n > 0 (as well as n = 00), we let Bungzzc denote the preimage of

Bun(GSG) under the canonical map Bung ,, — Bung. We denote the universal G-bundle over
Bun(GSG) x X by Pq, and that over Bun(GS’zc)m x X by j’g; their pullbacks to S x Bun(GSe) x X

and S x Bun(cfzo)w x X are denoted by the same characters.

5.5.6. The key technical assertion we need is:

Proposition 5.14. For each 0 € AJC?Q, there exists an integer N(0) such that whenever
n > N(0), we have
(g"(mz)XOp,, <0 )NT(Z,95,) =0

xX

as submodules of g”’(ﬂ(m)ﬁoBun(ge) (via n and ).
G,c0x

Proof. Fix 0 € AE’Q. For each integer n > 0, we have an isomorphism:
(" (M)MOy <o JNT(S, g5 ) = RO (prog, )5, (—nx),

where pr__, is the projection map in the following Cartesian diagram:

[ook i

S % Bungng xX — S5 x Bunge) x X

\Lproo:r, \LPT

S x Bun(cifo)z S x Bunge) .

Since P¢ is the pullback of the universal G-bundle P¢ over S x Bun(GSe) x X, it suffices to
show that R°(pr). 9%, (—nz) vanishes for sufficiently large n (relative to ¢). (Identification
of Ro(proox)*ggc(—nx) with the pullback of RO(pr)*g$G(—naz) follows from flatness of the

projection S x Bungzzz — 5 x Bun(GSg).) We verify this in a more abstract setting:

Claim 5.15. Let T be a finite type k-scheme. Suppose E is a vector bundle on T x
X. Write pr : T x X — T for the projection map. Then there exists some n such that
R%(pr), E(—nz) = 0.

Indeed, let ty € T be a k-point. Since H*(X, E|;, (—noz)) = 0 for some ng, the coherent
sheaf R°(pr),E(—noz) vanishes in an open neighborhood T of ty (cohomology and base
change). Let T) — T be a closed subscheme whose complement is T. If Ty is nonempty,
pick a k-point ¢; € T7. The same argument shows that Ro(pr)*E (—nq12) vanishes in an open
neighborhood of ¢; for some n; > ng. We find the desired n by iterating this process, which
must terminate after finitely many steps since T is Noetherian. O

It follows from Proposition that the (& H)-algebroid £* (hence also £(F)) is an
object of LieAlgd'": ')(S X BunGSG) /S) whenever n > N(6).

inj

5.5.7. For each 0 € AJ“Q7 denote by ‘jge) the restriction of the classical quasi-twisting
‘j'g”»E) to S x Bun%i{x Given n > N(0), we can define a quasi-twisting over S x Bun(GSG)
by the formula:
<0 b € H™) 5(<6
TG = QU o QU (TEY), (5.19)

where H? denotes the quotient H,,/exp(t,) (see §4.3.2)).

20wye temporarily suppress the notational dependence on the parameter (g, F).
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Remark 5.16. Note that Ql(E H™) (‘I(<9)) is well-defined as a classical quasi-twisting over

S x Bun=") equipped with a (&,, H,)-action. Since the stack S x Bungz)r is locally of

G,nx’
finite type, any classical quasi-twisting gives rise to a quasi-twisting, and the (&,, H,)-action

induces an (H,, H?)-action (see §4.3.4). Hence the formula (5.19) makes sense.

5.5.8. Suppose n; > ng > N(f). We would like to construct a canonical isomorphism of
quasi-twistings
<0) ~_ (<0
TED X Tsl. (5.20)
Indeed, let (¥, H') be the kernel of the map (¢,,, H,,) — (tn,, Hn,). In particular, H' is of
finite type. Furthermore, we have an exact sequence of classical action pairs:

1— (", H™) — (£, H™) — (¥, H') — 1.
Hence, there are isomorphisms:

T(C:S,gz ;Q(anvHiQ) o Q(H/,(H/)b) . Qfﬁ?l Hm)(‘J'(<9))

= Q(H"?’H;z) o Q.(Ei’Hl) o Q(ETLl ’Hnl)(j'égo)) T(<9)

inj inj G,ny?

using Propositions , and In light of the isomorphism ([5.20)), we may let ‘J'ge)

denote the quasi-twisting ‘J'gg) over S X Bun(Gga) for any n > N(6).

(<0)

5.5.9. Finally, we check that the quasi-twistings T~ glue along various Harder-Narasimhan

truncations. Indeed, suppose 01,0, € AJr ‘0. Then we have isomorphisms:
‘J'(<91

|S>< Bun(<91) N Bu (<92))

e oH™
e Q(Hn, H,)%) ° Qi(nj : )(TOO$’SX(BHH(<81) A Bu (<92)))

G,o0x

~

—Ta

(<92)
|S><(Bun(<91) r‘lBun(<92))’

whenever n > N(61),N(02). Therefore we obtain a quasi-twisting ‘J’gf ) on S x Bung

(<6) =0,

(relative to S) whose restriction to each S x Bung;™"’ agrees with

Notation 5.17. We write ‘.T('{ B) _

(,)

= Q8" (0), £36) (‘j'g"E)L although it is tacitly understood
that the construction of T, requires two quotient steps and gluing. In a similar way, we
write:

K, K (n) n (K,
TeE) = QU mIH™) (L)), (5.21)

for the corresponding quasi-twisting on S X Bung .. Since the construction of ‘Tg E)

(resp. ‘J’g’n )) is functorial in S, we obtain a universal quasi-twisting T&" over Parg x Bung
(resp. ‘J"C‘,“;" over Parg x Bung ng.)

Remark 5.18. The construction of TgMV depends a priori on the choice of the closed
point x € X. To remove this dependence, one may consider a multiple point version J¢Y
associated to any collection z! of closed points of X. For each inclusion 2! C x7, there is

a canonical isomorphism ‘J'u““’ = ‘J"““ v of quasi-twistings. Hence, the quasi-twisting ‘.Tu““’
associated to any 1nd1v1dua1 point z E X is canonically isomorphic to colim,rc x 1) ‘J’g vt

Remark 5.19. Note that the DG category Tg"’E)—Mod is naturally a QCoh(S)-module.
Again from the functoriality in maps (g”, F) : S — Parg, we obtain a sheaf of DG categories
over Parg, denoted by ‘J'g,“iv—Mod.
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The naive version of the quantum Langlands duality claims an equivalence of sheaves of
DG categories:

TE-Mod =5 TE-Mod (5.22)
over the common base Parg — Pargs (by (2.11])). However, the hypothetical equivalence

(5.22) is false whenever GG is not a torus, and a renormalization procedure is required for
stating the correct version of quantum Langlands duality.

5.5.10. Recovering the classical TDOs. Suppose G is simple, and we fix a k-valued parameter
(g7,0) of Parg corresponding to some bilinear form x on g. Let A and ¢ be as in Example
Let £ det denote the determinant line bundle over Bung. It is the inverse of the
relative determinant of the vector bundle gy, (Pg being the universal G-bundle) along the
map Bung xX — Bung (see [So00) §6.1]). Write ﬁadet for its pullback to Bung, eoq.

Proposition 5.20. The classical quasi-twisting at the parameter (g¥i,0):
0 = OBung o — LELD) _, pKil
identifies with the Picard algebroid Diffgl(EG,det).
Proof. Via the isomorphism prj : g¥ =5 g, the lower triangle of identifies with:

0 = OBung e — 8 2°NO0Bung .. — 8(Ke)XOBung ... — 0. (5.23)

Tate

where g is the central extension of g(X,) defined by the cocycle

€@ f.&®f)~Kil(& ) - Res(df - ).
Recall that (5.23) is a classical quasi-twisting, where the Lie algebroid brackets are induced
from the £,G-action on Bung,coz-
It is well known (see, e.g. [So00, §7, §10]) that gT*® comes from a central extension of
group ind-schemes:
1= Gy — G™e 5 £.G — 1,

Tate

and the £,G-action on Bung o, extends to an action of GTate on Eg}det. Hence g acts

as derivations on Zgwdet, and we obtain a morphism ﬁTateﬁoBunGmm — Diﬁgl(zadet) of
Lie algebroids. Note that the following diagram commutes:

0 — oBunG,ocgc — /g\TateIiloBunG,(,c,z — g(j{z)goBunG,o@z — 0

k ' i

00— OBuncyocm - Diﬂ‘ﬁl (EG,det) - ‘TBunG,ocm ——0

Furthermore, the Opung. ., -submodule I'(X, gﬂgc) of ﬁTateﬁ(‘)BunGmI acts by zero on Zg,det,
so by modding out I'(%, gﬁgc)7 we obtain a morphism of classical quasi-twistings:

0 —> OBung . £ (Kil0) kil 0.

| l l

0— OBunc)wx — Diﬁ‘gl(zG,det) — ‘J'Bung,oox —0

where the last terms £¥! and Ty, ., are identified. As such, it is an isomorphism of
classical quasi-twistings. O
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It follows from Proposition that the classical quasi-twisting at (g, 0) operates on
the virtual line bundle Lz\;,det. Since quotient by the action pair (g(0,), L} G) agrees with
strong quotient of Picard algebroids, we obtain an equivalence

TE Mod &5 Diff (£ e )-Mod(Bung).
In particular, the hypothetical equivalence (5.22)) specializes to (|1.2)).

6. RECOVERING QCoh(LocSysg) AT k = 00

In this section, we show that at level oo, the quasi-twisting ‘J'gf ) constructed in
recovers the DG algebraic stack LocSys; in the following sense: ‘J'éoo’o) is the inert quasi-

twisting on some triangle Opyn, — Qézzco - Q dZZCO) in QCoh(Bung) (see §4.6.6 for what
Q(oo 0)

dome Ja=1 over Bung 1dent1ﬁes with

this means). Furthermore, the corresponding stack V(

LocSys, so we obtain an equivalence of DG categories ‘T(Oo’ ) Mod = QCoh(LocSysg).
Finally, we comment on the role of certain additional parameters E when g~ = g

6.1. The underlying OgxpBun,-modules of ‘J’g;?).
6.1.1. We adopt the following notations from the previous section: let 8,, := S X Bung .,

and X,, := S x Bung n, xX which is a curve over §,,. The tautologlcal G- bundle over X,, is
denoted by ?(" Write S 1= S x Bung, oom and similarly for X and fPG
Recall the quasi-twisting ‘J'gi 7? ) and ‘J'G = (K 0) which are special cases of - ) for

0)

the S-valued parameter (g”,0). Suppose ‘J'gf’n is expressed as a map of some formal moduli

problems gEL — 8" under 8,,.

6.1.2. Since ‘Tgﬁ) is the quotient of ‘j'gf’o) by the pair (g*(m?}), H"), the underlying ind-

x

coherent sheaves of gz and 8 arise from a triangle in QCoh(8,,):

K,0
OS - Qn de)sc - Qn desc (61)
where QEL d(;)sc is the descent of the H"-equivariant complex of Og-modules:

QU0 = Cofib(g"(m”) K Opung .., — L"),

and a similar description is valid for QF ;...

6.1.3. The Atiyah bundle construction gives rise to a triangle:
wx, /s, = AP = gl
G
over X,,. Its pullback along the projection g~

y = 9% (ny is denoted by:

P P
WX, /8, 8”(9)(;)) - Q;gm (6.2)
Note that there is a canonical isomorphism Q7 ;... = RF(X,ggg) (—nx))[1].
Proposition 6.1. The triangle is identified with the push-out of
RI(X,wx, /s, (~na))[1] = RI(X, £%(PG)(—na))[1] = RI(X, gl (—na))[]  (6.3)

along the trace map RT'(X,wy, /s, (—nx))[1] = Os,, .
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6.1.4. 'We now begin the proof of Proposition [6.1} Since both triangles in question are
descent of triangles over 8§, we ought to establish an H"-equivariant isomorphism between
the triangle:

05 — Q=) — g (6.4)
and the push-out of the analogous triangle:
RT(X,wg 5(—na)[1] = RT(X, £(Pg)(—na))[1] — RT(X, g _(—na))[1] (6.5)

under the trace map RT'(X, wi/g(—mc))[l] — Og.

6.1.5. We describe more explicitly the D4 / g-modules underlying the extension sequence of

Lie-* algebras (5.9)):

~(k,0 K
0— wy/5 — @5 N5, = (@5)5, — 0,
in the case where the £ = 0. Namely, consider the D4 /g—modules induced from the sequence

(6-2) (where we use X instead of X(™ in the Atiyah bundle construction):
0— (wi/g)p — 8'{(%@)@ — (g%)ﬂsc —0
Let 8”(5@)%“5}‘ be the push-out along act : (wg,5)p — w5 of the Dy s-module &5 (Pa)p.

Lemma 6.2. The Dy 5-module underlying the extension (ﬁgg’o))@c identifies with S’Q@G)E’D“h.
Proof. Recall that (ﬁfg’o))@c is the Po-twist of the trivial extension ag;,o) = wy /5 D 0%
Consider the push-out diagram:

(wg/g)p — (wi/5 ® (" @ Og))p (6.6)
i/act i/
Wys — = Wy/s D gD

Note that the entire diagram is acted on by the sheaf of groups G, as described below:
(a) the G-actions on (wi/s)p and wy. /5 are trivial, and the action on w5 @ g is given by

§0.3.5
(b) the G-action on (Wic/é ® (g" ® 03))p is the Dy /5-linear extension of the following -

action on wy /5 B (" ® O4) centralizing wy /5

gu - (5 D <P) = (p(gﬁldgu) + (Adgu (f) D Coadgu (‘P)) (6'7)
where gy € G(U) and £ D ¢ € g" ® Oy
If we twist the trivial Og-module extension equipped with the G-action (6.7)):

0= wy/g 7 wgs® (" ®0x) 29" ®0x =0
by the G-bundle j’g, we obtain precisely the Atiyah sequence (pulled back along g%G —
95,.): ~
0= wy/5 = €%(Pa) = g5, — 0.

Therefore, twisting the diagram by j’g, we obtain a push-out diagram:

(wg/5)D —= €"(Pa)p

R

~(k,0
wy s —= @55,
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This proves the Lemma. O

6.1.6. By construction of ng’o) and QF, the required isomorphism shall follow from a
general claim. We first explain the set-up (which is quite involved): let 8 be a scheme, and
X := X x 8 with section z given by the closed point x € X. Suppose we have an exact
sequence of Ox-modules:

0= wys = &= —0.

Let €5 denote the induced D-module of € and E%uSh its push-out along act : (wx/s)p —

WDC/S-
Then we may form a map between exact sequences:

0 — T4r(Z, was) — Lar(Z, ER") —= (%, F) —=0

bo o2

0 —> Lar(Dy,wy/s) — Lar(Dy, ER°") —= T (D, F) — 0,

as well as a section 7 from the residue theorem. On the other hand, let 2" (m(™)) denote
the Og-submodule of Tygr(Dy, S%HSh) annihilated by the restriction to Dc(,;n); we use the

notation F(m(™) for a similar meaning. We have a triangle:
9s »0—Q (6.8)
where:
(2) @ i= Cofib(I(%,F) = Lan(Dys E5") /™ (m(™));
(b) Q:= Cofib(I'(%,F) — T(Dy, F)/F(mM)).

Remark 6.3. For § := §, & := 8”(5’@), and F := g'g%G, we see from the construction of
(6.4) that it identifies with the triangle (6.8).

Claim 6.4. The triangle identifies with the push-out of the canonical triangle:
RI'(X,wy/s(—nz))[1] = RT(X, &(—nx))[1] — RT(X, F(—nx))[1] (6.9)
along the trace map RT'(X, wy s(—nx))[1] = Os.

Proof. Recall the identification:

Q = Cofib(I'(%, F) — r(fjg, F)/F(m™)) = RO(X, F(—nzx))[1],

which is also valid when & is replaced by any Ox-module. It suffices to produce a morphism
of triangles from to , whose first and third terms are the trace map, respectively
the above isomorphism.

Consider the diagram defining 8%“5}1:

0— (wx/s)p —>=E&€p —>Fp —0

Ik

0 wx/g g%uSh —> 3~'D — 0.
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(o)

Using the functors T'qr(D,, —) and M ~» M(m(™)), we obtain a diagram:

0 —> w/w(m™) F(By &)/&(m)) — r(lo)y F)/F(mM) —0

[ } i

0 05 Tar(Dy, ER) /€2 (M) —= D(D,., F)/F(m™) — 0

where the rows are still exact sequences by the Snake lemma. We now take cofibers of the
map from the triangle I'(X,w) — I'(3, €) — T'(X, F) to the top row, and the cofibers of the
map from 0 — I'(X, F) — I'(X, F) to the bottom row:

RT(X,wy/s(—n2))[1] —= RT(X, &(—nx))[1] — RT(X, F(—na))[1]

| | :

Os Q

This is a morphism between triangles. Finally, we observe that the residue morphism from
@ /w(m(™) passes to the trace map from RT(X, wax /s (—nx))[1]. O
We have now constructed an isomorphism from (6.4]) to the push-out of (6.5)) along the

trace map RT'(X, wi/g(—nx))[l] — Og. We omit checking that this map is compatible with
the H"-equivariance structure. O(Proposition

Remark 6.5. Combined with §5.5.10, we have showed that the Picard algebroid Diffgl(LGVdet)
has as its underlying triangle of Opyn,-modules constructed explicitly by the following pro-
cedure:

(a) Consider the triangle RT'(X,wx/s)[1] — RT(X, €%(Pg))[1] — RT(X, g5 )[1];
(b) Obtain a push-out along the trace map RI'(X,wx/s)[1] — Os:
0s — & = RT(X, g5,)[1]

(¢) The extension associated to Diff ' (L g qe;) is the pullback of the above triangle along:
~ Kil X
TBung — RT(X, g96)[1] — RT(X, gp,)[1].
where the Killing form Kil is regarded as a G-invariant isomorphism g — g*.

6.2. An alternative description of LocSys..

6.2.1. Recall that LocSys is defined as the mapping stack Maps(Xqr, B G); it is repre-
sented by a DG algebraic stack ([AGI5] §10]). We give an alternative description of LocSysg
in terms of “G-bundles with connections.” This description is more closely related to the
quasi-twisting at level co.

6.2.2. Let LocSysy denote the prestack over Bung such that for every affine DG scheme
S, the groupoid Maps(S, LocSysy) classifies:

(a) a G-bundle Pg over S x X;

(b) a splitting of the canonical triangle in QCoh(S x X):

975 — At(Pg) = Tsxxys- (6.10)

Recall that for such S, the complex At(Pg) can be described as the relative tangent complex
associated to the map S x X — BG represented by Pg, and the triangle (6.10]) is the
corresponding canonical triangle.
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6.2.3. Note that a lift of P to an S-point of LocSysy, supplies the dotted arrow in the
following commutative diagram:

SxXngBG

Sx Xggp —= S

This arrow gives rise to a splitting of (6.10) as Tgy x/g5x x4y 18 isomorphic to Tgy x/g. In
other words, we have a morphism of stacks over Bung:

LocSysg — LocSysg, . (6.11)
Proposition 6.6. The morphism (6.11) is an isomorphism.

Proof. Let us first introduce some auxiliary objects. For an affine open U C X, denote
by LocSysq(U) (resp. LocSysy(U)) the prestack over Bung such that a lift of an S-point
P of Bung to LocSys(U) corresponds to a flat connection of Pg|y (resp. a splitting of
over S x U.) Denote by Hitchg(U) the prestack over Bung classifying a G-bundle P¢
together with a section of g3, ® wx over U. It is known that both prestacks LocSysg(U)
and Hitchg(U) are classical (see [AGI15l Proposition 10.5.3]).

We claim that LocSysg(U) is also classical. Indeed, since any choice of a splitting of
over U supplies an isomorphism between LocSysg (U) and Hitchg(U), it suffices to
show that such a splitting exists. The extension over U corresponds to an element of
the groupoid:

=0 Homqeon(sxt) (Tsxu/s, 896 [1]) = 70 Homqeonw) (Tu, g9 [1])-
Since gy, is in cohomological degree < 0 and U is affine, any such element is null-homotopic.
Next, we claim that the morphism of prestacks analogous to (6.11)):
LocSys (U) — LocSysg (U)

is an isomorphism. Indeed, since both sides are classical, it suffices to verify the claim
for classical test affine schemes S. In this case, note that lifting an S-point Pg of Bung
to LocSysy(U) amounts to supplying a connection on Pg, whereas a lift to LocSysq (U)
amounts to supplying a flat connection on Pg. Their equivalence follows from the fact that
dim(X) = 1.

Finally, we find that is an equivalence by covering X with two affine opens U; and
U,, and using the Cartesian squares:

LocSys; — LocSysq (Ur) LocSys; — LocSysg (Un)

i ! ! |

LocSysg(Usz) — LocSysg (U1 NUz)  LocSysg (Us) —= LocSysg (U N Uz)
These follow straightforwardly from the descent property of B G, respectively QCoh. d

6.3. Identification of the fiber at oo.

6.3.1. We now specialize to the parameter (g>°,0) : pt — Parg, where g™ identifies with
the subspace g* — g @ g*. The quasi-twisting ‘J'éoo’o) over Bung is obtained as the quotient
of ‘}gx,o) (i.e., at parameter (g°°,0)) by the pair (§°°(0,,), £} G) along the £ G-torsor
Bung,eee — Bung.
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Proposition 6.7. (a) ‘J‘g’o’o) is the inert quasi-twisting associated to the triangle (6.1) (for
n=0):

(m)o)

desc

OBune — 000Y Q3 (6.12)

(b) there is a canonical isomorphism of DG stacks:

V(ﬁ(m’o))Azl = LocSysg -

desc

Combined with (4.24]), we obtain an equivalence of DG categories:
‘J’g’o’o)—Mod =5 QCoh(LocSys)-

Proof of Proposition[6.7 It is clear from the construction that the classical quasi-twisting
‘j'g)o’o) is given by the central extension of Lie algebroids (with zero Lie bracket and anchor
map)

0 = OBung o, — L0 = £ 0.
Since ‘.Téoo’o) arises from the quotient of ‘}g’o’o) by (§°°(0.), L1 G), the paradigm of ap-
plies, and ‘J'(GOO’O) is the inert quasi-twisting on the triangle . For the second statement,
note that we have a push-out diagram in QCoh(Bung):

RI(X, OBung xx)* — RT(X, At(Pg) ® wx)*

! ’

0 (c0,0)
OBHHG Qdcsc ’

by Proposition and Serre duality. Hence V(ﬁ(oo’o) )a=1 fits into the commutative diagram:

desc
VRT(X, Opung xx)*) <— V(RT(X, At(Pe) © wx)*)
{1}T i

Bung V(@é:’co)))\zl.

For any DG scheme S mapping to Bung (represented by the G-bundle Pg over S x X), a
computation using the projection formula shows:

(a) Mapsg,,, (S, VIRT(X, At(Pe) @ wx)*)) = 7= RI(S x X, At(Pe) ® wx), and
(b) Mapspp,, (S, V(RT(X, Ogung xx)*)) — 7<°RI(S x X, Ogxx)-

Hence Mapsg,,,,.. (S, V(Q(m’o)))\zl) is identified with the co-groupoid

desc

7SORT(S x X, At(Pe) @ wx) X {1}
TSORT(SXX,05xx)
i.e., the oo-groupoid of splittings of the Atiyah sequence gp, — At(Pg) — Tgxx/s. We
obtain an isomorphism V(ﬁ((g;’co)) a=1 — LocSysg so the result follows from Proposition
6.6l 0

Remark 6.8. An alternative argument (one that avoids using the results of §6.1) runs
as follows: by a local computation, one identifies the universal envelope of the classical
quasi-twisting ([5.11)) with the (topological) ring of functions over LocSysg ., (¥), the stack

classifying (Pg, ) € Bung,eo, together with a connection over in|E. One then shows
that the closed subscheme V(Q(W’O))Azl identifies with LocSysg .., and (4.26)) gives rise to
isomorphisms:

V(Q(OO’O))Azl = LocSysg aep /L5 G = LocSys .

desc
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6.3.2. We comment on the role of integral additional parameters at oo, i.e., the ones arising
from Z(G)-bundles. More precisely, let £ := At(Pz())* for some Z(G)-bundle Pz (. Then
E is an extension of 3¢ ® Ox by wx, so (§°°, F) is a well defined k-point of Parg.

Proposition 6.9. Let E = At(Pz(q))* for a Z(G)-bundle Pz (). Then there is a canonical
isomorphism of DG stacks:

V(Q(M’E))Azl = LocSys; x Bung, (6.13)

desc
Bung

where the second map is the central shift — @ P z(q).

Proof. Note that the Dpung. ., xx/Bung,...,-module (5.9) at parameter (g°°, £) is induced
from the following sequence:

0— wBunG,o@z x X/ Bung,con — At(TZ(G) & TG)* — g*:PG -0

via the functor (—)p and pushing out (see §6.1). An argument similar to the above shows
that T is the inert quasi-twisting associated to the triangle in QCoh Bung):
G q g g

(0, E) o]
OBUUG - Qdesc - Qdesc?
L . 2(c0,E) ~. A(00,0)
where we have a canonical isomorphism Q;__" |TG — Qiose |TPZ(G) oPe” Hence the result
follows from Proposition O

Remark 6.10. A connection on Pz () gives rise to a splitting of F, hence an isomorphism
V(Q(OO’E)),\Zl = V(Q(OO’O)). Geometrically, this corresponds to a lift of the isomorphism

desc desc

-~ ®@ Py : Bung = Bung to LocSys,.

Remark 6.11. Specializing the hypothetical equivalence (5.22)) to the parameter (g*it, 0),
we obtain the usual, naive statement of the geometric Langlands correspondence:

Diff(L(_;%iet)—Mod(BunG) = QCoh(LocSyss).

Specializing to (g*, F) where F = At((PZ(G))*, we obtain from (6.13]) a hypothetical
equivalence:

1 ~
Diff (L2, ® M)-Mod(Bung) — QCoh(LocSyss; x Bung)
! Bung
where M is the pullback to Bung of the line bundle on Bung (g g) corresponding to P 2(6)
This equivalence can be viewed as an expected compatibility of the geometric Langlands
duality with central shift. Let us reiterate that when G is not a torus, none of these
equivalences are true without a renormalization process.
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