TAME TWISTINGS AND ©-DATA

YIFEI ZHAO

ABSTRACT. The goal of this paper is to assign an intrinsic meaning to the space of
quantum parameters Parg appearing in the geometric Langlands program of Beilinson—
Drinfeld. We introduce tame twistings, a variant of twisted differential operators (TDOs)
for which regularity of twisted D-modules is well-defined. Our main result is that for a
proper curve X, Parg is precisely the moduli space of factorization tame twistings on
the affine Grassmannian.
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INTRODUCTION

Quantum parameters.

Not long since the origin of the geometric Langlands program concerning D-modules on
the moduli stack of G-bundles over a proper complex curve X [4], it has been speculated
that the entire program should have a deformation related to the 1-parameter family of
quantum groups U,(g) deforming the universal enveloping algebra [46] [23].

For a simple group G, there is a natural candidate for such a deformation. Namely, the
stack Bung has a determinant line bundle dety and one may consider D-modules twisted
by any of its power det; (for ¢ € C). The quantum Langlands program, therefore, asks for a
spectral interpretation of the twisted category D-Mod®(Bung) in terms of the dual group G.
As the category D-Mod®(Bung) receives a functor from reprensentations of the Kac-Moody
Lie algebra at level ¢, it indeed relates to representations of Uy(g) for ¢ = exp(2mic) [18].

This paper is devoted to answering the following (apparently ill-posed) question: what
does the parameter ¢ mean?

To begin with, the relationship between dety and the Killing form suggests that for a
reductive group G, the number ¢ should be replaced by a Weyl-invariant bilinear form x on
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the Cartan subalgebra t. On the other hand, the study of parabolic induction indicates that
K is not the only relevant part of quantum parameters—reduction from G to T acquires a
shift by a sheaf of twisted differential operators (TDO) on Buny which can be attributed to
an extension of O x-modules of the following form [22, §3.3]:

0wy - F—=t®0x —0.

Incorporating this “quantum anomaly” led to the definition of the parameter space Parg as
pairs (k, E) where & is as before, and E is an wx-extension of 3¢ ® Ox, for 3¢ being the
center of the Lie algebra g.

This definition of quantum parameters turns out to be quite convenient. In [54], it is
observed that each (k, E) gives rise directly to a TDO on Bung and thus to a category of
twisted D-modules, bypassing line bundles. However, it has been unclear what the nature
of such pairs (k, E) is. The naive guess that they parametrize all TDOs on Bung is al-
ready wrong for a torus: Buny has infinitely many connected components labeled by the
cocharacter lattice Ar.

Factorization twistings.

A more sensible guess is that Parg parametrizes factorization twistings on the Beilinson—
Drinfeld affine Grassmannian Grg ran- The object Grg ran can be viewed as a local avatar
of Bung, attached to any collection of points z(* in the base curve. The formal way to
say this is that Grg ran is a prestack over the Ran space of X. In fact, the projection
Grg,ran — Ran is a filtered colimit of schematic morphisms, though not smooth ones. The
factorization structure on Grg ran describes how its fibers merge as distinct points collide.

On the other hand, Gaitsgory—Rozenblyum [26] introduced the notion of a twisting as a
natural generalization of TDOs to non-smooth schemes, so it makes sense to study twistings
on Grg Rran Which respect the factorization structure. They are called factorization twist-
ings. This discussion does not involve the global geometry of X, so one may even drop the
assumption that X is proper.

For a torus 7', a twisting on Grp might appear differently on each connected component
Gr%, but factorization forces the distinct components to interact. On the other hand,
imposing factorization is natural for the purpose of the Langlands program. In order to
make contact with spectral data, G(0)-equivariant twisted D-modules on Grg should form
a Tannakian category, where the symmetry constraint arises from the factorization structure
[40]. This would not be possible if the twisting defining D-modules itself lacked factorization.

We do not yet know whether Parg parametrizes factorization twistings aside from the case
of a semisimple, simply connected group G'. In this paper, we show that when X is proper,
Par¢ instead parametrizes a variant of twistings, called tame twistings. The following result
appears as Theorem 5.9 in the main text.

Theorem A. For a proper, smooth, connected curve X and a reductive group G, the category
of factorization tame twistings on Grg ran 5 canonically equivalent to Parg.

Like usual twistings, tame twistings are objects of algebraic geometry and exist over any
ground field k£ = k with char(k) = 0. Before giving a precise definition, we mention several
aspects of this notion that explain how it appears “in nature.”

Lwhere the answer is affirmative, see below; however, we suspect the answer to be false in general.
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(a) A usual twisting on a smooth scheme X is a torsor for the complex Q% — Qi’d, whereas
a tame twisting is a torsor for the subsheaf Q% of Q% whose sections over U consists of
differentials with logarithmic growth along a good compactification U of U.

In particular, the process of inducing twistings from line bundles factors through tame
twistings by the map dlog : 0% — Qﬁ(
(b) In contrast to usual twistings, the category of D-modules twisted by a tame twisting
has a natural notion of reqularity generalizing the usual notion of regular D-modules.

(¢) A tame twisting has an underlying tame gerbe. Furthermore, when k = C, tame gerbes
on X form a full subcategory of gerbes on the analytification X*" banded by the constant
group C*.

These properties suggest that tame twistings naturally arise when we consider twisted D-

modules in conjunction with complex constructible sheaves—this is, indeed, something one

does for the purpose of the geometric Langlands program (see [35], for example). We em-
phasize that tameness is not a condition of a twisting, but an additional piece of structure.

The properness hypothesis in the statment of Theorem A is artificial in the following
sense. The actual result we shall prove is that factorization tame twistings are paramterized
by a modified groupoid P;rg, regardless of properness of X. It consists of pairs (&, E) where

K is as before and E is an extension of Zariski sheaves valued in k-vector spaces:

0— Q% = E—36—0.

It just so happens that when X is proper, the datum of E is equivalent to that of F.
In the non-proper case, there are advantages of taking PzirG as the definition of quantum
parameters as opposed to Parg. Besides its closer relationship with analytic objects, ParG
has the structure of an algebraic stack with finite-dimensional automorphism groups (hence
1-affine, see [21]).

Tame twistings are k-linear objects, and the equivalence of Theorem A which we shall
produce respects k-linearity. Thus we automatically obtain an equivalence of k-linear stacks.

We also give a partial answer to the classification problem of usual factorization twistings
on Grg Ran, as it is interesting in its own right. The following result appears as Theorem
5.12, where the curve X is only assumed to be smooth and connected.

Theorem B. Suppose G is semisimple and simply connected. Then the category of factor-
ization twistings on Grg Rran 1S canonically equivalent to Weyl-invariant symmetric bilinear
forms on t.

In particular, for a semisimple and simply connected group G, a usual factorization twisting
on Grg Ran is canonically tame. This is not the case for more general G.

More on quantum paramters.

From the perspective of the Langlands program, the role played by quantum parameters
in the D-module context is analogous to the Brylinski-Deligne data. The latter are central
extensions E of G by the big Zariski sheaf of the second algebraic K-group Ky and are used
to produce metaplectic coverings of the adelic group G(Ar) in the usual Langlands program
.

By Gaitsgory [24], the groupoid of Brylinski-Deligne data CExt(G, K2) admits a functor
Epic to factorization line bundles on Grg ran, which is futhermore an equivalence [48]. We
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shall explicitly identify the composition:

CExt(G,Ky) —= Spie PlcfaCt(GrG Ran)

v, - B
fad(GI‘G’Ran) % Parg.

— Tw
as a combination of the standard procedure of extracting a quadratic form from a central
extension by Ky and the functor of “taking the derivative” of E when restricted to the
center of G (Corollay 5.11). This expresses a kind of compatibility between the classification
theorem of Brylinski-Deligne [8] and our classification of factorization tame twistings.

Implementing tameness.

Let us now give a precise definition of TQW(X ) for an arbitrary finite type scheme X over
k. This turns out to be slightly technical, because we simultaneously want Tw to have
strong descent properties (like the usual twistings) and to retain the explicit description as
Zariski Q'-torsors over a smooth scheme.

Concretely, we first define Ge as the éh-sheafification of the classifying (2-)stack of the
stack of rank—1 regular local systems, in the sense of D-modules. We call Ge the stack of
tame gerbes. There is a canonical map from Ge to the derived éh-sheafification® of B? G,
and we let Tw be the fiber of this map. Analogous to their usual counterparts, we have a
fiber sequence relating line bundles, tame twistings, and tame gerbes:

Pic(X) — Tw(X) — Ge(X).

We are forced to work with derived schemes in defining Tovv7 as even usual twistings satisfy
derived h-descent but fail classical h-descent, a fact which ultimately boils down to the
derived h-descent of perfect complexes due to Halpern-Leistner—Preygel [30]. On the other
hand, there is no problem in building Ge on classical schemes because the resulting stack
is nil-invariant.

Instead of the h- topology, we choose to work with the weaker éh-topology because we need
the restriction of Tw to smooth schemes to recover Q2!-torsors. This relies on an éh-to-étale
comparison theorem for the cohomology of G, due to T. Geisser [28]. We will also need to
calculate the éh-cohomology groups of the sheaf Q. These turn out to be very calculable
after establishing the fact that ! is an Al-invariant h-sheaf with transfer.

In fact, O is just the first piece in a family of sheaves Qr , for all p > 0, which we call
“differential forms of moderate growth.” They are all Al-invariant h-sheaves with transfer
on the category of smooth schemes. Regarded as Zariski sheaves, they are related by a
Gersten resolution:

P = P ()@ > P @) @) o= P (a)ik

€ X (0) xeX @) rzeX(®)

whose existence can either be seen as a consequence of Mazza—Voevoedsky—Weibel [38] or
the Bloch—Ogus theorem [7] combined with elementary facts from mixed Hodge theory.

2We use bold characters to emphasize topologies defined on derived schemes.
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From factorization to ©-data.
We now sketch the proofs of Theorems A and B.

The first step in our proof of Theorem A is to recognize P;BIG as a kind of “enhanced
©-data.” Let us explain what these are. Recall that Brylinski-Deligne [8] classified central
extensions of a torus T by Ky over the base X by the following groupoid. It consists of
pairs (g, L()‘)) where ¢ is an integral quadratic form on A7 and £ is a Ap-indexed system
of line bundles over X. They are equipped with multiplicative structures:

Cap LN g o) L(Aﬂt)7

which are associative, but only commutative up to a k-twist, for x being the bilinear form
assocaited to g. The same groupoid showed up in the study of chiral algebras [5] and was
called even O-data. Since we do not need Z/2Z-grading, we shall refer to this groupoid
simply as O-data of the lattice Ar. The Brylinski-Deligne classification for a reductive
group G involves a ©-datum for the co-weight lattice as well as a certain isomorphism e of
two ©-data for the co-root lattice. We call the groupoid of such gadgets enhanced ©-data.

It is straightforward to see that Par¢; identifies with enhanced ©-data when we replace
the value group of ¢ by k, and the system of line bundles £ by a system of tame twistings.
Moreover, we shall formalize a general theory of gerbes to be an étale stack G valued in
strictly commutative Picard 2-groupoids, which receives a map (“first Chern class”):

¢ :Pic® A(-1) - G, (L£,a)~ LY,
Z

with A(—1) being a certain coefficient group associated to G. Then there is a sensible
notion of enhanced ©-data for a theory of gerbes G, denoted by O (Ar; G). This paradigm
applies to line bundles, twistings (tame or usual), as well as gerbes in various sheaf-theoretic
contexts.

Roughly speaking, we will build a functor from various factorization gadgets to their
corresponding groupoids of enhanced ©-data. The canonicity of the construction produces
a morphism of fiber sequences of Picard 2-groupoids.

PinaCt(GfG’Ran) —> TOVVfaCt(GrG,Ran) — defaCt (GrG,Ran)

\L\ijic \L Vorw \L\I’de

O¢(Ar; Pic) —— Og(Ar; Tw) —> O¢(Ar; Ge)

Then we will prove that W¥.p; is an equivalence on all homotopy groups, thereby deducing
Theorem A. This will follow from showing that ¥p;. and VU, are both equivalences and that
V., is surjective on mo. The joint work with J. Tao [48] shows that Up;. is an equivalence,
so a significant step of the proof already exists. A direct argument exploiting the k-linear

structure of tame twistings then shows that V. is essentially surjective.

At this point, it is tempting to use the aforementioned fact that tame gerbes form a
full subcategory of analytic C*-gerbes and reduce the statement about ¥ _ to Reich [41,
Theorem 11.7.3]. However, we avoid this input as the proof in loc.cit. relies on several errors
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and consequently yielded an incorrect classification statement.? Instead, we supply a proof
using a different strategy.

In fact, we will provide a uniform proof for gerbes in various sheaf-theoretic contexts. We
remove the restriction on char(k) but fix a sufficiently strong topology ¢ which allows for
resolution of singularities. Then we characterize those theories of gerbes which are “motivic.”
The properties included are purity, A'-homotopy invariance, t-descent, and a weak form of
proper base change. The following result appears as Theorem 5.5.

Theorem C. Let G be a motivic t-theory of gerbes. Then we have a canonical equivalence
of categories:
\I/G : GfaCt(GI‘GVRan) :—) @G(AT; G)

Besides tame gerbes and analytic C*-gerbes, Theorem C also applies to étale gerbes
valued in suitable torsion abelian groups. The latter has been used in Gaitsgory—Lysenko
[25] to define geometric metaplectic dual data.

Recently, various other sheaf theories have been studied in the context of the affine
Grassmannian and the Satake equivalence—there are the perverse IF,-sheaves of R. Cass [9],
the stratified mixed Tate motives of Richarz—Scholbach [12], among others. We hope that
our formulation would be useful for generalizing their results to the metaplectic setting.

In the case kK = C, we summarize the relationship between the various twisting agents in
the following diagram on the left. In the special case where G is a simple, simply connected
group, they form (discrete) abelian groups which are isomorphic to those on the right.

Picfact (GTG,Ran) A

| |

Tw (Gre ran) ¢

, id
PN 2N

TWfaCt(GI'G’,Ran) GefaCt(GrG,Raﬂ) C (C/Z exp(2mi—)
AN \ y
Gef*(Gre,ran) ©

The recent (unpublished) works of Chen-Fu and R.-T. Yang on representations of U,(g)
suggest that there is a paradigm of equivalences of factorization categories. Namely, one
starts with an object T of Twlact (Grg ran) and tries to relate certain factorzation categories
of T-twisted crystals with certain factorization categories of §-twisted constructible sheaves,
for G being its image in GefaCt(GrG’Ran). Our classification of these gadgets by enhanced

an
O-data can hopefully contribute to their line of research.

Thus, Theorem C is in part motivated by a desire to perform “community service.”

Having Theorem C at our disposal, we apply it to a theory of gerbes which is not used
to twist any category of sheaves. Namely, we consider the stack which associates to X the
groupoid of G,-gerbes on Xgr. The fact that this theory of gerbes is motivic follows from
usual facts about algebraic de Rham cohomology. Finally, Theorem B follows from this
result combined with the Borel-Weil-Bott theorem on affine Schubert varieties.

3Contrary to the assertion of [41, Theorem II.7.3], the fiber sequence has no canonical splitting and
its proof used an incorrectly defined splitting (Proposition 11.3.6, Proposition II.7.5). Furthermore, two
steps in the proof applied cohomological purity of divisors to non-(ind-)smooth schemes (Lemma I1.7.6 and
Proposition III.2.8).
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Organization of the paper.

The paper is roughly split into two parts. Sections §1-3 are devoted to developping the
notion of tame gerbes and tame twistings. These require the char(k) = 0 assumption to
allow for Hironaka’s resolution of singularities. Sections §4-6 formulate and prove the main
classification theorems, with applications to various sheaf-theoretic contexts.

We first record some preliminary facts about the éh-topology and its derived analogue
in §1. These do no go beyond the work of Geisser [28], Friedlander—Voevodsky [16], and
Halpern-Leistner—Preygel [30)].

In §2, we study the sheaves Qr systematically, for all p > 0. Their basic properties follow
from mixed Hodge theory. The h-descent is proved by comparing QP with the h-sheafification
of QP studied by Huber—Jorder [33]. Then a series of cohomological comparison results follow
from the theorems of Voevodsky and Scholbach [43], so we end up only needing to calculate
the Zariski cohomology of Qr , where a Gersten resolution supplies the required tools.

We gather these ingredients to define tame gerbes and tame twistings in §3. We prove
that tame twistings satisfy various expected properties and can be used to form a twisted
category of D-modules, which possesses a notion of regularity.

In §4, we formulate a motivic t-theory of gerbes for a sufficiently strong topology t. Then
we verify that étale mod-¢ gerbes, complex analytic gerbes, as well as tame gerbes are
examples of such motivic theories. By contrast, tame twistings form a theory of gerbes
according to our definition, but not a motivic one.

The next §5 contains all the main results of this paper. We first define enhanced ©-
data Og(Ar; G) attached to a theory of gerbes G. Then we recall the classification of
factorization line bundles by integral enhanced ©-data, established in [48]. Then we state
Theorem C and deduce Theorems A and B from it. The actual argument is less formal than
what we sketched above, because to define the functor W.p. . for an arbitrary reductive group
G requires knowledge about its behavior for tori and semisimple, simply connected groups.
We prove the compatibility statement between quantum parameters and Brylinski-Deligne
data alluded to above, although there seems to be more mathematics on this topic that
remains to be explored.

Finally, we prove Theorem C in §6. Roughly speaking, we use the classification of fac-
torization line bundles to supply enough factorization gerbes, and appeal to the motivic
properties of G to ensure that there are not too many of them.

Notations.

Throughout the paper, we work over a ground field k = k.

By a scheme we shall always mean a separated (classical) scheme over k, and we denote
by Sch/; the category they form. The notation Sch?tk will mean (separated) schemes of
finite type over k. We let Sm ;, denote its full subcategory consisting of smooth schemes.

Our convention on ind-schemes is as follows. We call an ind-scheme a presheaf on Sch

which can be represented as a filtered colimit colim X (*) where each X *) belongs to Sch ks

each morphism X® — X is a closed immersion, and the index category has cardinality
< [Ro|. The category of ind-schemes is denoted by IndSch;. It has a full subcategory

IndSchf/tk, which consists of ind-finite type ind-schemes, i.e., we can take each X®) to lie

in Sch?t;C in a colimit presentation as above.
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We will need to consider presheaves on Sch?ﬁl€ valued in 2-groupoids. However, we find
it convenient to import the theory of co-groupoids and use the well-developped theory of
algebras and modules in them [36] [37]. We will denote by Spc the oco-category of oo-
groupoids in the sense of Lurie. By a presheaf F on Schf/tk7 we will mean a Spc-valued

presheaf unless otherwise stated. The oco-category they form is denoted by PSh(Sch / k) For
a topology ¢ on Schf /k» We denote by Shv,(Sch /k) the full subcategory of t-sheaves. Given
Je PSh(Sch%)7 its t-sheafification is denote by J%.

Although most of this paper stays within classical algebraic geometry, for the definition of
a tame twisting we will need derived schemes. Thus we let DSch ;. denote the co-category of
(separated) derived schemes over k, locally modeled on simplicial commutative k-algebras.
The full subcategory DSch?tk denotes finite type derived schemes, i.e., X € DSch/, whose
underlying classical scheme is of finite type and O x is a coherent 7O x-module (in particular
eventually coconnective). Tautologically, we have inclusions:

Sm/k C SCh/k C DSCh/k,

where neither functor preserves fiber products.

In fact, we only need derived schemes when char(k) = 0, so one can take the equivalent
theory modeled on connective commutative DG algebras over k, as is done in [27]. The
theory of ind-coherent sheaves as well as left and right crystals have been developed in this
context [19] [26].

By a reductive group G, we always refer to a connected reductive group defined over k.
We will use Gger to denote its derived subgroup, and Gder its universal cover. Thus Gder is
a semisimple, simply connected group. The letter T" denotes a maximal torus of G, and B
denotes a Borel with nilpotent radical N.

We use “covariant notations” for the root data of G. More precisely, Ar := Hom(G,,,T")
is the co-character lattice, whereas Ar := Hom(T,G,,) is the character lattice. Let A
(resp. A%.) denote the sublattice spanned by co-roots (resp. roots). Then the algebraic
fundamental group of G is the quotient Ap/A%. We use ® and ® to denote the co-root and

root systems, and A and A to denote the choice of simple co-roots and roots determined by
B.

The objects associated to Gger and éder are decorated in the same manner. For example,
A~ is the co-character lattice of the maximal torus Tgqe; C Gger corresponding to 7. In
fact A .., canonically identifies with A7..
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emerged from one of these conversations.

I am grateful to James Tao for the collaboration [18] as the classification theorems in the
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I thank Ruotao Yang for pointing out an error in an earlier draft, and to Sasha Beilinson
for relating 2P to Bloch—Ogus theory. I also thank Dori Bejleri, Lin Chen, Elden Elmanto,
and Yuchen Fu for helpful conversations related to this work.
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1. SOME TOPOLOGIES

In this section, we recall the definition of the éh-topology and introduce its analogue
for derived schemes. The results which will be used in the sequal are the two comparison
lemmas between éh and étale cohomology (Lemma 1.2 and 1.3) and interactions between
the classical and derived éh-topology in §1.3.

1.1. Classical éh-topology.

1.1.1. Recall the h-topology on Sch?tk introduced by V. Voevodsky [50, §3]. Its coverings

are generated by universal topological epimorphisms. In fact, a presheaf & on Sch% is an
h-sheaf if and only if it satisfies descent with respect to Nisnevich (or étale) covers and
proper surjections®. By de Jong’s alteration, every scheme X € Sch?t,€ is h-locally smooth.

1.1.2. In this paper, we will extensively use the éh-topology on Schf/tk introduced by Geisser
[28]. Tt is generated by étale coverings and abstract blow-up squares.

The following diagram summarizes its relationship to several other topologies on Sch‘;tk7
where =< denotes the “coarser than” relation.
cdh < éh < h
1Y 1Y
Nis = ét
In fact, the éh topology bears the same relationship to the étale topology as the cdh topology
(c.f. Voevodsky [50]) does to the Nisnevich topology.

1.1.3. Let us recall the definition of éh. A Cartesian square in Schﬁtk:

EF—Y (1.1)
I
Z =X
is an abstract blow-up square if i is a closed immersion, p is a proper morphism and induces
an isomorphism Y\E = X\Z. Let ty denote the coarsest topology on Sch% including the

empty sieve of () and the sieve generated by {p,:} for every abstract blow-up square (1.1)
as coverings.

1.1.4. Abstract blow-up squares are obviously stable under pullback and given an abstract
blow-up square (1.1), the induced square:

E Y

R
(ixi)

ExE-—=YxY
z b'e

is again an abstract blow-up square [53, Lemma 2.14]. Thus the conditions of [2, Theorem
3.2.5] are satisfied and one sees that a Spc-valued presheaf F on Sch% is a tg-sheaf if and

4p, Gaitsgory has kindly pointed out that Nisnevich can be weakened to Zariski, thanks to a theorem of
Goodwillie-Lichtenbaum [29, Theorem 4.1].
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only if F(()) is contractible and for every abstract blow-up square (1.1), the induced square
is homotopy Cartesian:

F(E) < F(Y)

f

!
F(Z) < F(X)

1.1.5. The éh-topology on Sch?tk is defined as the coarsest topology contaning the étale
topology and tg. In the remainder of this section, we shall assume:

—The ground field k has char(k) = 0.
ft

Then by Hironaka’s resolution of singularities, every X € Sch /i 1s éh-locally smooth.

1.1.6. We note that the étale covering sieves together with tg define a quasi-topology on
Sch?t,67 i.e., if S is a covering sieve on X, then for every morphism f :Y — X, the pullback

f*S is again a covering sieve. The presheaves on Schﬁtk satisfying descent with respect to
this quasi-topology are precisely étale sheaves which turn every abstract blow-up square

into a homotopy Cartesian square. According to [32, Corollary C.2], this condition precisely

characterizes the éh-sheaves in PSh(Schf/tk).

1.1.7. The following Lemma describes a “normal form” of éh covers of a smooth scheme.

Lemma 1.1. Let X € Sm/,. Every éh-cover of X has a refinement of the form {U; —
X' — X} where {U; — X'} is an étale cover and X' — X is a composition of blow-ups
along smooth centers.

Proof. This is [28, Corollary 2.6]. O
1.2. Lemmas of Geisser and Friedlander—Voevodsky.

1.2.1. We note two results comparing cohomology groups calculated in éh-versus-étale
topologies. These results apply to sheaves valued in abelian groups, so we temporarily
assume the convention that presheaves are valued in sets instead of higher groupoids.

1.2.2. Let us consider the inclusion of sites:
p:Sm/, — Schi.

The éh-topology on Schf/'t,C induces an éh-topology on Sm/;, in the sense of [I, Exposé III,
§3.1], i.e., it is the finest topology for which presheaf restriction along p takes sheaves to
sheaves. Furthermore, since every X € Schf/t;€ is éh-locally smooth, restriction defines an

equivalence Shvéh(Sch%) = Shve,(Smy,) (Théoreme 4.1 of loc.cit.). We can summarize
the situation in the following commutative diagram:

Shven (Schl) = Shvey (Smyy.)

PSh(Sch,) - PSh(Sm ;)
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1.2.3. Passing to left adjoints, we obtain a commutative diagram:

Shven (Schl) < Shvey (Smyy.)

TL TL
PSh(Sch’,) <<% PSh(Sm,)

In particular, the functor of left Kan extension along p followed by éh-sheafification® identifies
with éh-sheafification within the presheaf category on Sm

L: PSh(Sm/k) — Shvéh(Sm/k).

Analogously, starting with an étale sheaf on Sm;, (or any topology weaker than éh), left
Kan extension along p followed by éh-sheafification identifies with the functor:

L: ShVét(Sm/k) — ShVéh(Sm/k)7 (1.2)

which is, in particular, exact.

1.2.4. Let G, ¢n be the éh-sheaf on Schf/tk associated to G,,. The following Lemma is a
special case of a theorem of Geisser [23].

Lemma 1.2. Suppose X € Sm;.. Then the canonical map is an isomorphism for all i > 0:
HL (X5 Grn) = Hip (X5 Gy en)-

Proof. Geisser [28, Theorem 4.3] proves the comparison result for all motivic complexes

Z(n). On the other hand, G,, ¢n[—1] is quasi-isomorphic to Z(1) as a complex of éh-sheaves

on Sch%, as follows from the analogous fact for complexes in Shvg; (Sm ;) and the exactness

of (1.2) (|28, Lemma 4.1]). O

1.2.5. We now turn to a comparison result due to Friedlander—Voevodsky. Let Sm%’r

denote the category whose objects are the same as Sm ;, but a morphism X --+ Y is given
by a k-linear combination of algebraic cycles W C X xY which are finite over X. The graph
construction gives a functor Sm ;, — Sm%’r7 and a presheaf of abelian groups on Sm;, has

a transfer structure if it comes equipped with an extension to Sm%’r. On the other hand,
a presheaf F on Smy,, is said to be Al-invariant, if the canonical map:

F(X) = F(X x Ab)
is an isomorphism for all X € Sm ;.

1.2.6. The following Lemma is the étale version of [16, Theorem 5.5(1)], whereas loc. cit. com-
pares Nisnevich and cdh cohomology of an Al-invariant presheaf with transfer. Since the
proofs are nearly identical, we only indicate the modifications needed.

Lemma 1.3. Let F be an A'-invariant éh-sheaf with transfer on Sm ;. valued in Q-vector
spaces. Then for X € Smyy, the following canonical map is an isomorphism for all i > 0:

HL (X5 5) & Hiy, (X3 ).

5This composition is denoted by ply in [28] (for d = 0o) and by F ~» Feqy in [16] for its cdh version.
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The assumption on rational coefficients guarantees that the forgetful functor:

oblv : Shvg (Sm /4; Q) — Shvis(Smy; Q) (1.3)
is exact, c.f. [51, Proposition 5.27].
Proof. Arguing as in [16, Theorem 5.5(1)], the Lemma reduces to the following statement:

given an étale sheaf F; of abelian groups on Sm /;, such that the éh sheafification (F7)en = 0,

then for any Al-invariant pretheory® G satisfying étale descent, one has:

Ext’(F,9) =0, foralli>0. (1.4)

Analogous to [16, Lemma 5.4], the proof consists of two steps:

(a) Establish (1.4) for 1 = Coker(Ze(U') — Zst(U)), where U’ — U is a composition of
n blow-ups with smooth centers. An induction argument reduces to n = 1, where the
result follows from the Nisnevich version [16, Lemma 5.3] together with the exactness
of (1.3).

(b) Reduction to case (a). Indeed, since F; is already an étale sheaf. Lemma 1.1 shows
that to each section a € F1(U), one can find a sequence of blow-ups with smooth
centers p : U’ — U such that p*a = 0. Thus the same argument as in [16, Lemma 5.4]
applies. O

1.3. Derived éh-topology.

1.3.1.  We introduce a variant of the éh-topology for derived schemes, based on the modified

version of abstract blow-up square introduced by Halpern-Leistner—Preygel [30]. We call a
homotopy Cartesian square of derived prestacks:
&E—=Y (1.5)
b
Z—X

a derived abstract blow-up square if X,Y € DSchf/'tk, i is the formal completion along a
closed subset in the topological space |X|, and p is proper and induces an isomorphism
Y\& = X\Z. We note that Z and & are thus objects of Ind(DSchﬁtk) ([30, Proposition
2.1.2)).

Remark 1.4. Derived abstract blow-up squares differ from its underived counterpart (see
§1.1.3) in two important aspects. They involve formal completions rather than closed sub-
schemes, and they are homotopy Cartesian (which an underived abstract blow-up square
typically is not.)

1.3.2. Let tg denote the coarsest topology on DSchf/tk such that the empty sieve covers
() and for every derived abstract blow-up square (1.5), the sieve generated by {p,i} is a
covering sieve of X.

To give an alternative description, let S denote the set of morphisms from the geometric
realization |C(U)] — X in PSh(DSchf/tk), where C(4) is the Cech nerve associated to i =

{p,i} for any derived abstract blow-up square. Then F € PSh(DSch%) is a to-sheaf if and

only if it is S-local. Indeed, the presheaf |C(4l)] is equivalent to the sieve generated by &I, so
the result again follows from [32, Corollary C.2].

6We remind the reader that presheaves with transfers are pretheories ([52, Proposition 3.1.11]).
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1.3.3.  We note that derived abstract blow-up squares verify the (co-categorical version of

the) conditions of [2, Theorem 3.2.5]. More precisely:

(a) Every derived abstract blow-up square is homotopy Cartesian.

(b) Derived abstract blow-up squares are stable under base change in DSchf/tk.

(c) For every diagram (1.5), ¢ is a monomorphism of presheaves. (To wit, an S-point of X
factors through Z if and only if the reduced classical subscheme S,.q factors through the
corresponding closed subset of | X]|.)

(d) Given (1.5), the induced square below is still a derived abstract blow-up:

E——Y

Vo 1

2,2

EXEY XY
2 X
Thus we have the following analogue of [2, Theorem 3.2.5].

Lemma 1.5. Let F be a presheaf on DSch%. Then it is a to-sheaf if and only if F(0)
is contractible and for every derived abstract blow-up square (1.5), the induced square is
homotopy Cartesian:

Hom(€, F) < F(Y) (1.6)

T f

Hom(Z,F) <— F(X)
Proof. The proof of loc.cit. applies verbatim. O

We remark that Condition (c¢) would fail if Z was a closed subscheme of X instead of a
formal completion.

1.3.4. We define éh to be the coarsest topology on DSCh?tk containing the étale topology,
the topology generated by surjective closed immersions, and ty. Thus, a Spc-valued presheaf
F on DSch}), is an éh-sheaf if and only if it satisfies:
(a) F is an étale sheaf;
(b) F satisfies descent along surjective closed immersions;
(c¢) F turns every derived abstract blow-up square into a homotopy Cartesian square.

Given a derived abstract blow-up square (1.5), the sieve generated by {p, i} can be refined
by a proper surjective cover (for instance, taking any closed subscheme Z of X with the
same underlying set as Z, we obtain a proper surjection Z 1Y — X). Therefore éh is
coarser than the derived h-topology (studied in [30]). We obtain relations analogous to the
classical situation:

étale < éh < h.

However, we caution the reader that the restriction of an éh-sheaf to the full subcategory
Sch% is not necessarily an éh-sheaf in the classical sense.

1.3.5.  We record some facts which will be used later.
Lemma 1.6. The presheaf Perf is an h-sheaf on DSchf/tk.
Proof. This is [30, Theorem 3.3.1]. O
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Lemma 1.7. Let F (resp. F) be an éh-sheaf on Schﬁtk (resp. éh-sheaf on DSch?tk).
(a) The tautological extension of F to DSCh?,€ is an éh-sheaf:

(DSchf/tk)Op — Spe, X ~ F(mpX)
(b) If F is nil-invariant, then its restriction to Schﬁtk is an éh-sheaf.

In particular, given a nil-invariant presheaf F on DSCh?t,€7 satisfying éh descent is equivalent

to its restriction to Sch?tk satisfying éh descent.

Proof. The étale descent is clear in both statements. To prove (a), we note that F is nil-
invariant so its extension has descent along surjective closed immersions. Let us now be
given a derived abstract blow-up square (1.5) where Z is the formal completion of Z C | X].
We represent Z as a filtered colimit of Z,, where each Z, is a closed subscheme of X with
underlying set Z. Then € identifies with colim F,, for E, := Z, x Y. The square (1.6) is
a X

equivalent to:

lim, F(moEqy) <— F(moY)

lim, F(m9Zy) =<— F(mo X)

which is a limit of homotopy Cartesian diagrams. To prove (b), let us be given an abstract
blow-up square (1.1). Let Z (resp. €) be the completion of Z inside X (resp. E inside Y).
Then we obtain a derived abstract blow-up square, so the following square is homotopy
Cartesian:

Hom(&,F) <— F(Y)

f T

Hom(Z,F) =— F(X)
Since F is nil-invariant, the left vertical map identifies with F(Z) — F(E). O
Lemma 1.8. Suppose F is an n-truncated presheaf on DSChf/t,C for somen >0, i.e. m;F(X) =

0 for alli >n and X € DSchﬁtk. Then Fgn is nil-invariant.

Proof. Any éh-hypersheaf is nil-invariant since the constant simplicial system X,eq is an éh-

hypercover of X € DSchf/tk. The n-truncation hypothesis implies that the éh-sheafification

and hypersheafification agree. 0

We let PShnil’S"(DSch%) denote the oo-category of nil-invariant, n-truncated presheaves

on DSchitk. Combining Lemma 1.7 and Lemma 1.8, we have commutative diagrams:

PSh""<"(DSchf; ) —> PSh™"="(Sch,) (1.7)
! o
Shviy="(DSch’,) —=> Shv}"="(Schf,)

In other words, for n-truncated nil-invariant presheaves, the éh and éh-topologies give rise
to the same sheaf theory with the same functorialities.
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2. DIFFERENTIAL FORMS OF MODERATE GROWTH

In this section, the ground field k is assumed algebraically closed with char(k) = 0.

Its purpose is to introduce another ingredient in the construction of tame twistings,
namely “differential forms of moderate growth.” We introduce the sheaves Qr for p > 0
on the category of (classical) finite type schemes Schf/t,~C7 study their descent properties, and
finally calculate their cohomology groups over a smooth curve in §2.3.3.

2.1. Point of departure.

2.1.1.  An effective Cartier divisor D in a smooth scheme X is said to be of normal crossing
if, étale locally on X, D is defined by the vanising of z1 - - -z (k < n) where z1,--- ,z, is a
system of coordinates on X. Although globally, D may not be a union of smooth divisors,
the normalization v : D — D always produces a smooth D. In the situation of a normal
crossing divisor with complement X:

XL x &b,

one may define a locally free O x-module QF (log D) for each p > 0. We refer the reader to
[13, §11.3] for its basic properties.

2.1.2. Let X € Sm/;. A good compactification of X is an open immersion X — X, where X
is proper, smooth, and D := X\ X is a normal crossing divisor. Hironaka’s desingularization
shows that a good compactification always exists. The complex Q'Y(log D) equipped with
the Hodge filtration (i.e., stupid truncation) yields a spectral sequence:

PERY = HY(X: Q% (log D)) = HP*I(X: Q5(log D). @1

which degenerates at E; ([12, Corollaire 3.2.13(ii)]). The vector space HP(X; Q% (log D))
and the Hodge filtration it carries are canonically independent of the good compactification;
in fact, they are functorially attached to X ([12, Théoreme 3.2.5(ii)]). Thus, the same holds
for its pth graded piece:

F GrP HP(X; Q%(log D)) = H(X; % (log D)). (2.2)

2.1.3. We are thus led to the following definition. For p > 0, define QP as the sub-
presheaf of P on Sm ;, consisting of those differential forms w € QP(X) which extend

to H(X; Q% (log D)) for a good compactification X — X. The isomorphism (2.2) implies
that QP (X) is functorially attached to X € Sm k- We extend Q” to Schf/t,c by the procedure
of right Kan extension:

OP(X) = Jim Qr(Y).
Y€§>m/;C

2.1.4. Let us note some quick consequences of the definition:

Lemma 2.1. The presheaves Qr (p > 0) satisfy:
(a) Q0 s canonically isomorphic to the constant sheaf k;

(b) For X € Smyy, the subspace SEZP(X) C QP(X) belongs to closed p-forms;
(c) QP is a sheaf in the Zariski topology on Sm;,.
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Proof. (a) is immediate. (b) is a consequence of the degeneration of (2.1) at E; ([12,
Corollaire 3.2.14]). For (c), it is clear that QP is a separated presheaf. To check gluing, we
cover X € Sm;, by opens U and V, the Mayer-Vietoris sequence on de Rham cohomology:

HP(X) — HP(U) @ HP (V) — HP(U N V)

is exact and strictly compatible with the Hodge filtration ([12, Théoréme 1.2.10(iii)]), so it
remains exact after applying pGr? ([12, Proposition 1.1.11(ii)]). O

2.2. h-descent.
2.2.1. In this section, we shall prove:

Proposition 2.2. For all p > 0, the presheaf Qr on Schf/tk satisfies h-descent.

Instead of giving a direct argument, we compare QP to the h-sheafification QF of the usual
differential p-forms, studied by Huber—Jérder [33]. Their theorem is that O identifies with
the right Kan extension of 2P from Sm

~

(X)) lim QP(Y).

1

Y—>X
YESm/k
This implies that QP can be regarded as a subpresheaf of Qf, characterized by the property
that a section w € OF (X) belongs to QP(X) if and only if its pullback to any smooth scheme

Y — X belongs to QP(Y).

2.2.2. Therefore, in order to prove Proposition 2.2, we only need to show that for 7 : X5 X
an h-covering in Schf/t,€7 if w € O (X) has the property that 7*w belongs to (?(X), then
w € (OZP(X ). By mapping a smooth scheme Y to X and considering a further smooth h-cover
of Y ;<( )?7 we may assume that X and X are both smooth. Fitting X — X into a map

between good compactifications, the Proposition follows from the Lemma below.

Lemma 2.3. Suppose there is a commutative diagram in Smy:
Y sY
o
XC s X
where X — X (resp. Y < Y ) is an open immersion whose boundary is a normal crossing

divisor D (resp. E). Assume furthermore that 7 is a proper surjection. Then given any
w € QP(X), it extends to Q% (log D) if and only if m*w extends to Q. (log E).

Proof. The “only if” direction is clear as 7~ !D is set-theoretically contained in E. Let
us argue the converse. The property that w extends to Q% (log D) is étale local on X.
Since Q% (log D) is locally free, it suffices to show that w extends to Q% (log D) away from
codimension > 2. Thus we will choose coordinates x1,--- ,z, € Ox such that D is defined
by x1 = 0 and QY is free on dxy,- -+, dzy,.

We will also replace Y by its formal neighborhood around some y € Y contained in
the smooth locus of an irreducible component F; of E which dominates D. Since the
normalization El — D is a proper surjection and El is connected and smooth, we see that
OP(D) — QP(Ey) is injective. In other words, we shall assume:
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(a) Y = Spec(k[y1, - ,ym]), B is defined by y1 = 0, and Y = Y\ By is the preimage of X;

(b) The map QP(D) — QP(E4) is injective.
Thus 7*x; = uy{ for some e > 1 and u € Oé. Hensel’s lemma finds an eth root of u, so
after an automorphism on Y fixing F7, we may further assume:

(¢) m7x1 = yi.

Let us now consider a meromorphic form w € QP(X)[z '] such that 7*w € QP(Y)[y; '] is
logarithmic along F;. Write
dl‘l
w=wi +wag A —,
T
where wi,wsy € QP(X)[:El_l} do not feature dry,. In what follows we assume w1, ws are both
nonzero (the case where either is zero being similar but simpler). Write w; = x‘{lld;l and

Wy = xfzcbg where @1 and w9 are holomorphic and not divisible by x1. Then:

d
m*w = (YD r*n + (y§) 2t A e N
Y1
e 1 2 e 1 dy,
= ) + 0 Adyy) + () =ns” Ne = (2.3)

where 701 = n§1) + 17§2) Adyy is its decomposition into parts where ngl), 7752) do not feature

dy; (and analogously for m*ws). Then assumption (b) implies that 7*@q, 7*@0y are nonzero
after pulling back to E;. Thus ngl) and nél) are not divisible by y;. Now, analyzing the
part of the expression (2.3) not featuring dy;, we see that d; > 0. Hence the first term
is holomorphic, so the second term is necessarily logarithmic along y;. Since nél) is not

divisible by y1, we see that dy > 0 as well. g
O(Proposition 2.2)
Corollary 2.4. The sheaf Or on Schf/tk takes values in finite-dimensional k-vector spaces.

Proof. 1t is clear that €2? (X) is finite-dimensional for X € Sm ;. The general case follows
from h-dscent of QP (Proposition 2.2). O

2.2.3. A particular consequence of the h-descent of QP is a canonical transfer structure on
the restriction of ” to Sm /k- We recall the category of correspondences Srn%)’r mentioned
in §1.2.5. According to J. Scholbach [13, Lemma 2.1], the representable presheaf Zi,(X) on
Sm%’r for any X € Sm/;, has the property that its h-sheafification identifies with that of
Z(X) on Sm

Zn(X) = (Zee(X)Ism ) )n-

Consequently, for any h-sheaf of abelian groups § on Sm ; there is an isomorphism:
?(X) = HomPSh(Sm/k)(Ztr(X); 35)7
so F acquires a canonical transfer structure.

Lemma 2.5. The restriction of QP (p>0) to Smyy, is an A'-invariant sheaf with a canon-
ical transfer structure.
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Proof. The Al—invariancg is a direct consequence of the identification of QP(X ) with the
pth graded piece of HP (X, Q5 (log D)) with respect to the Hodge filtration. The canonical
transfer structure has just been noted above. O

By construction, the transfer structure on Or is compatible with that of (2. For an
explicit formula of the latter, we refer the reader to the trace construction of Lecomte-Wach
[34]. In particular, the morphism dlog : G,, — 2! commutes with transfer.

2.3. Cohomological properties.

2.3.1. Suppose J is a presheaf on Sm;, valued in abelian groups. Following Voevodsky
[51, §3.1], we define F_; to be the presheaf:

F_1:X ~ Coker(F(X x Al) = F(X x (A"\0))).
The presheaf F_,, is then defined iteratively.

Lemma 2.6. There holds:
(a) The sheaf (Q°)_1 is identically zero;
(b) For any p > 1, there is a canonical isomorphism (QP)_; —» QP~L,

Proof. Part (a) is tautological. Part (b) follows either from the Hodge-theoretic interpreta-

tion of O or a direct calculation making use of the product formula for logarithmic forms
[13, §II, Proposition 3.2(iii)]. O

2.3.2. For notational convenience, we extend QP to smooth local schemes (i.e., localizations
of smooth schemes at a point) by the formula:

Qp(n) = C(%}im Qp(Ua),

where U, is a cofiltered limit presentation of n with each U, smooth, affine and each U, — Ug
an open immersion. The following Theorem summarizes the cohomological properties of 2P:

Theorem 2.7. Let p > 0 and 7 be one of the following Grothendieck topologies on Sm ;. :

Zariski, Nisnevich, étale, cdh, éh, qfh, h. There holds:

(a) For all n > 0, the presheaf X ~» H(X; fl”) on Sm y, is an A'-invariant presheaf with
transfer, and is canonically independent of the choice of T;

(b) For X € Smy;, the Zariski sheaf Qg( is quasi-isomorphic to the following complex
concentrated in degrees [0, p]:

P )@ = P (1)) = @ (n)ik.

zeX () zex@® zeX(P)
Here, X(") denotes the set of codimension-n points of X.

Proof. Statement (a) is valid for any Al-invariant h-sheaf of Q-vector spaces, by Scholbach
[13, Theorem 2.11]; the only choice of 7 not covered in loc.cit. is the éh-topology, which
follows from Lemma 1.3. For statement (b), Mazza—Voevodsky—Weibel [38, Theorem 24.11]
shows that an A'-invariant pretheory F satisfying Zariski descent admits a Gersten resolution
with terms given by @, ¢ () (iz)«F_n(x). We are done by the calculation of (QP)_, in
Lemma 2.6. ]
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Remark 2.8. A. Beilinson has kindly pointed out that the Gersten resolution in (b) also
follows directly from applying pGr? to the Gersten resolution of algebraic de Rham coho-
mology obtained from the Bloch—-Ogus theorem.

2.3.3. Ezxample. We calculate the cohomology of Q! on a smooth curve X. Since the coho-
mology groups will be independent of the chosen Grothendieck topology (Theorem 2.7(a)),
we may as well calculate them in the Zariski topology using the Gersten resolution (Theorem
2.7(b)). The answer is as follows:

(a) if X is affine, then H'(X; Q) = 0;

(b) if X is proper, then the canonical map RI'(X; Q') — RI(X; Q') is an isomorphism.
Indeed, the afﬁng case amounts to the problem of contructing y w with prescribed poles and
follows from H*(X; Q*(E)) = 0 for the boundary divisor F := X\ X in a smooth completion
X.

For the proper case, the nontrivial part is cohomology in degree 1. We reduce to X
connected (with generic point 7)) and remove one closed point X := X\z. The sum-of-
residue formula and the vanishing of H'(X,Q') shows that the cokernel of d is indeed
identified with k:

Q(n)

df TN

0—k—=@,ex kb —=@D,cxa k—0.

2.3.4. Tangential remarks. We conclude this section with some remarks concerning the in-
teraction between P and algebraic cycles. These facts will not play a role in this paper.

Let Kf,/[ denote the Zariski sheaf of the pth Milnor K-theory group on Sm ;. For a field
F, KM(F) is the pth graded piece of the tensor algebra T® (F*) modulo u®wv for u+v = 1.
More generally, Kg/[ is given by a Gersten resolution. When X is furthermore projective,
HP(X, K} identifies with the Chow group CHP(X) of codimension-p cycles [15, Théoréme
5]. In particular, the construction:

. d dfn
dlog K () @), fro-w e Donn e
1 n
for points 7 on X € Sm/;, defines a morphism of Zariski sheaves on Sm
dlog : KM @ k — QF. (2.4)
zZ

We obtain the following factorization of the algebraic de Rham cycle class map:

CHP(X) ® k > HP(X; KM © k) 7% HP (X; )
Z

Z
\ \Lcan
HP(X; QP)
Indeed, its factorization through dlog : HP (X; Ki\f ® k) — HP(X;QP) is already observed in
z

[14] and the further factorization through HP (X, QP) is tautological. The Gersten resolution
of QP (Theorem 2.7(b)) implies that the composition CH? (X)®k — HP(X; P) is surjective.
z

Thus the image of HP(X; ) in HP(X; OP) is precisely the span of cycle classes.



20 YIFEI ZHAO

3. TAME GERBES AND TWISTINGS

We continue to assume k = k with char(k) = 0.

The purpose of this section is to define tame gerbes and tame twistings. They will be con-
structed as derived éh-stacks valued in strict (i.e., strictly commutative) Picard groupoids.
We also compare tame gerbes with analytic C*-gerbes when the ground field is C (§3.3.7).
This section contains mostly definitions and very few statements that require proofs.

3.1. Picard n-groupoids.

3.1.1. In this paper, we refer to commutative group objects of Spc as Picard groupoids
(denote by ComGrp(Spc)). More precisely, Picard groupoids A form the full subcategory
of E..-spaces characterized by the property of being grouplike, i.e., moA is a group under
the commutative multiplication. A Picard groupoid A € ComGrp(Spc) with m;A = 0 for
i > 1 is thus a Picard groupoid in the classical sense (c.f. [1, Exposé XVIII]).

The oo-category ComGrp(Spc) is also equivalent to that of connective spectra (a version
of May’s recognition theorem):

ComGrp(Spc) — Sptr,.

We note that the forgetful functor from ComGrp(Spc) to Spe, which passes to 2°° on the
level of spectra, preserves limits and filtered colimits.

3.1.2.  We will also need to consider the more restricted notion of “strict Picard groupoids.”
Let HZ denote the Eilenberg—MacLane spectrum of Z. By definition, a strict Picard groupoid
is an HZ-module object in Sptr~,. The Dold-Kan correspondence (see [14, Theorem 5.1.6]):

DK : Z-Mod=" = HZ-Mod(Sptrs,)
identifies the co-categories of:
(a) nonpositively graded cochain complexes of abelian groups Z-Mod=";
(b) HZ-module objects in Sptr., or equivalently ComGrp(Spc).
Under this correspondence, the H™ of a cochain complex identifies with 7; of the HZ-

module, for all i > 0. We will denote this co-category by ComGrp®(Spc), often passing
without mention the Dold—Kan correspondence.

Remark 3.1. For every A € ComGrp™(Spc) and an object a € A, the commutativity
constraint c,g, applied to a ® a is homotopy equivalent to id,g,. For a Picard 1-groupoid
A, being strict is simply the condition c,5, = idsg, for all a € A.

We shall call a (resp. strict) Picard groupoid A with m;A = 0 for i > n a (resp. strict)
Picard n-groupoid. One of the main objects we shall be concerned with-—gerbes—form a
strict Picard 2-groupoid.

3.1.3. Let us note the sheaf-theoretic analogue of the above discussion. For X € Schﬁtk,
there is a functor from the oco-category of complexes of étale sheaves of abelian groups on
X to the co-category of ComGrp®*(Spc)-valued étale sheaves:

F* ~F, F(U):=DK((r="RI(U,T*)). (3.1)
Here 7<% denotes cohomological trunction and DK is the Dold-Kan correspondence. The

fact that F is again a sheaf follows from the preservation of limits under 7<% and DK. We
say that the étale sheaf of strict Picard groupoids F is represented by the complex F°.
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Lemma 3.2. Under the functor F* ~~ F (3.1), there holds:

(a) For any x € X, we have an isomorphism of stalks F, = DK(7<°F¢);

(b) Suppose f: X =Y is a morphism in Schf/tk, then f.F identifies with the ComGrp™ (Spc)-
valued sheaf associated to R f.F°.

Proof. Part (a) follows from the identification of F3 with co(lJimRI‘(U, F*), where U ranges

over étale neighborhoods of z, and the commutation of 7=° with filtered colimits. Part (b)

follows from the fact that for every étale V- — Y, the complex RT'(V, R f,.F*) identifies with

RI(V x X, F°). O
Y

3.2. Local systems.

3.2.1. Let X € Schitk. The de Rham prestack Xgr is the prestack whose value on S €
Sch% is given by Maps(Sied, X). By a rank-1 local system on X, we will mean a line

bundle on Xggr. Denote by Loc; the prestack which associates to X € Sch?t,C the strict
Picard (1-)groupoid of rank-1 local systems on X under tensor product (see Remark 3.1).

Lemma 3.3. The prestack Locy satisfies h-descent.

Proof. The oo-prestack Crys' which associates QCoh(X4gr) to X € DSch% satisfies (de-
rived) h-descent [26, Proposition 3.2.2, Proposition 2.4.4]. Since Crys' is nil-invariant, its
restriction to Schﬁt,C satisfies (usual) h-descent. We observe that Loc; (X) is the full subcat-
egory of Crysl(X ) consisting of invertible objects lying in the heart of the ¢-structure as an
object of QCoh(X).

Let us argue that Loc, inherits h-descent from Crys’. Indeed, an object £ of Crys'(X) is
invertible if and only if its pullback to Crys' (X ™), for each term X[} appearing in the Cech
nerve associated to an h-cover X — X , is invertible. Furthermore, this condition implies
that the object in QCoh(X) underlying £ is a cohomologically shifted line bundle. It lives
in the heart of the t-structure if and only if its pullback to X does. O

Every object in Loci(X) can be viewed as a line bundle £ on X equipped with an
isomorphism pr} £ = prj £ on the completion of the diagonal in X x X, satisfying a cocycle
condition [26, Proposition 3.4.3]. When X is smooth, this is equivalent to a connection
V:L— L@ 0%, but not in general.

3.2.2. Tt is clear that over Sm/j, the strict Picard groupoid Loc; is represented by the
complex of étale sheaves concentrated in degrees [—1,0] (in the sense of §3.1.3):

dlog : 0% — Qb
We recall the subsheaf Qﬁ( — Q;d of differential forms of moderate growth from §2.
Lemma 3.4. Let X € Sm;, the following conditions are equivalent for any o € Loci(X).

(a) o belongs to the subcomplex dlog : O% — Qﬁ(,
(b) o is regular as a D x-module.

Being regular as a D x-module means for any smooth curve f : €' — X, the pullback f*o
acquires a connection with at most logarithmic poles at points of C\C.
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Proof. The implication (a) = (b) is clear. Conversely, suppose o is regular. To check
that it belongs to the subcomplex 0% tlog, (02&, it suffices to do so locally on X, so we may
assume that the underlying line bundle of ¢ is trivial. Thus the connection 1-form is given by
d+w for some w € QL (X). We need to argue w € Q(X). Consider a good compactification
X — X. The line bundle extends trivially to X. The Lemma thus becomes the implication

(i) = (iv) in [13, §II, Théoreme 4.1]. O

3.23. Let X € Sch?tk. Then a local system o € Loc;(X) is said to be tame if for all
morphisms f : Y — X with Y smooth, the pullback f*o satisfies the conditions of Lemma
3.4. We let Loc; denote the prestack of tame rank—1 local systems on Sch%.

Lemma 3.5. The prestack Loc, satisfies h-descent.

Proof. Since_ Loc; is a full subfunctor of Locy, we only need to prove the following: for an

h-cover m: X — X, if o € Locy(X) has the property that 7*o € Locy (X)) is tame, then so
is 0. By definition, we may assume X — X is a dominant morphism of smooth curves, and
the result is straightforward (in fact, a special case of Lemma 2.3). O

3.3. Gerbes.

3.3.1. For any prestack of (strict) Picard groupoid A, let B(A) denote the geometric real-
ization of the simplicial prestack A® formed using the multiplication on A. It is called the
classifying prestack of A and inherits a (strict) Picard groupoid structure from A.

3.3.2. Let us recall the éh—topoology defined in §1.1. We define Ge as the éh-sheafification
of the classifying prestack of Loc;:

(ie = Béh LE)Cl.
Informally, a tame gerbe § on a scheme X can be described by Cech data as follows. For

some ¢h-cover X — X, we are a given transition tame local system o on the double overlap
X x X. On triple overlaps, we are supplied with isomorphisms relating distinct pullbacks
X

of 0. These isomorphisms must satisfy a cocycle condition on quadruple overlaps.

For X € Sch?tk, we call Ge(X) := Maps(X, Ge) the category of tame gerbes on X. It
has the structure of a strict Picard 2-groupoid as noted above. Lemma 3.5 guarantees that

the loop prestack pt x pt identifies with Loc;.
Ge

3.3.3. The following result shows that tame gerbes on a smooth scheme can be defined
using the weaker étale topology.

Lemma 3.6. Suppose X € Sm ;. Then the following canonical map is an isomorphism:
Maps(X, Be; Locy) = Ge(X).
In particular, Ge is represented by the complex dlog : 0% — Qﬁ( in degrees [—2, —1].

Proof. Let Fg, denote the fiber of éh-sheaves L(o)cl — Ben Gy on Smyy. Evaluating at
X € Sm/;, produces a fiber sequence:

Fen(X) = Locy (X) = Maps(X, By Gpn).
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The comparison Lemma 1.2 shows that Maps(X, Bg, G,,,) identifies with Maps(X, B¢ G,y ).
Thus Lemma 3.4 implies that Fg, identifies with Q. On the other hand, Lz)cl — Ben Gy,
is a surjection of éh-sheaves, so Lz)cl is an éh Ql-torsor over BenGy,- This gives us another
fiber sequence:

LE)Cl — Bc’h Gm — Béh Ql.

Delooping and taking sections over X € Sm ;, we obtain a fiber sequence:

Maps(X, Be, Locy) — Maps(X, B3, G,,,) — Maps(X, B3, Q).
Thus the desired result follows from the comparison Lemma 1.2 for G,, and Theorem 2.7(a)
for QL. O
3.3.4. Note that there is a morphism of sheaves of strict Picard groupoids on Schﬁtk:

Gm 2 k/Z — Loc, (f,a)~ f° (3.2)

Indeed, given f € O% and a € k/Z, we will construct a tame local system f® on each smooth

Y mapping to X in a compatible way. This process will construct an object of LQOC(X ) by
Lemma 3.5. We choose a lift @ € k£ of a. The local system f® on Y is set to be

f%:= (Oy,d+ adlog f).

Indeed, another choice of the lift @’ must differ from @ by an integer n, and the local systems
f® and f are canonically isomorphic via multiplication by f* € O;. This shows that
f@ € Loc(Y) is well-defined. It is obviously compatible with change of Y.

3.3.5. From (3.2), we obtain a morphism of sheaves of strict Picard 2-groupoids on Schﬁtk:
Pic® k/Z — Ge, (L,a) ~ L (3.3)
z
We call (3.3) the divisor class map for tame gerbes.

3.3.6. When the ground field kK = C, there is a Riemann—Hilbert correspondence relating
tame gerbes to analytic C*-gerbes. Given a scheme X € Schf/t(c7 we let X*" denote its
analytification. For X smooth, the solution functor:

R Homyp , (Ox, —)[dim(X)] : D x-Mod™&"°" — Shy,(X?") (3.4)

defines an equivalence of stable co-categories between regular holonomic (left) D x-modules
and complex constructible sheaves Shv.(X?"). (Indeed, it suffices to check that the induced
functor on the homotopy category is an equivalence, which is done in [31], for example.)
The Riemann—Hilbert correspondence is symmetric monoidal with respect to the !-tensor
product on Shv.(X?").

3.3.7. Let An% denote the category of separated analytic spaces of finite type over C. We
write Torscx (resp. Gecx ) for the presheaf of strict Picard 1-groupoid of analytic C*-torsors
(resp. 2-groupoid of C*-gerbes) on Ang.

Lemma 3.7. Let X € Schf/tc. Then,
(a) there is an equivalence of Picard 1-groupoids

Loc; (X) =5 Torscx (X*);
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(b) there is a fully faithful functor of strict Picard 2-groupoids whose image consists of those
C* -gerbes trivialized over X*" — X" for an éh-cover X — X:

C:e(X) — Ge(cx (Xan).

Proof. (a) Recall that Loc, satisfies h-descent (Lemma 3.5). On the other hand, the asso-
ciation X ~» RT'(X?";C*) is also an h-sheaf by cohomological descent of proper surjections
of topological spaces [10, Theorem 7.7]. Since Torscx (X?") is the groupoid corresponding
to 7SO(RT(Xa; C*)[1]), the association X ~» Torscx (X®") is also an h-sheaf.” Thus the
problem reduces to the case of smooth X. There, Lz)cl(X ) is the category of invertible
objects inside regular, holonomic D-modules on X, which lie in the heart when considered
as objects of QCoh(X).

Since the Riemann—Hilbert correspondence (3.4) is symmetric monoidal, it preserves in-
vertible objects. On the other hand, the invertible objects in Shv.(X?®") with respect to
! and #-monoidal structures agree via tensoring with the dualizing complex. Thus, we see
that Loc; (X) identifies with -invertible objects in Shv(X®®) lying in the heart. The latter
category identifies with Torscx (X2").

(b) The analytification functor Sch% — Anf/tc defines a map
i : PSh(Anjj.) — PSh(Sch/f;).
By the observation above, i, Torscx and i,(Gecx are h-sheaves on Sch%7 so in particular
are éh-sheaves. On the other hand, part (a) gives an equivalence:
Loc; = i, Torscx.
By delooping, we obtain a sequence of functors:
Bean Lz)cl =5 (ix BTorscx )en < (is Ban Torsex )en — i.Gecx.
The middle functor is fully faithful and its image consists of éh-locally trivial objects. [

3.4. Twistings.

3.4.1. The definition of tame twistings require us to work with the co-category DSchﬁtk. We
first extend Loc; and Ge to DSchf/tk by evaluation on the underlying classical scheme. By

the commutative diagram (1.7), we see that Ge is the éh-sheafification of B Locy, regarded
as a presheaf on DSchl;tk. Next, we consider the éh-sheafification B%,, G,,. Define Tw as
the fiber:

Tw := Fib(Ge — B3, G,,).
Thus Tw is an éh-sheaf of strict Picard groupoids on DSch?tk whose sections are called

tame twistings. Furthermore, since Tw identifies with Ben applied to:
Fib(Loc; — Be Gpn) < Fib(Locy — Bg Gn),
which admits a k-linear structure [26, §6], we see that Tw is in fact valued in H k-module

objects in ComGrp(Spc). Furthermore, the fiber of the canonical map Tw — Ge identifies

"More generally, for an h-hypercovering X - X, the geometric realization of ()}')a“ has homotopy
type equivalent to X, by a theorem of Blanc [0, Proposition 3.21].
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with Bgn G,,,, but the tautological map B¢ G,, — Ben Gy, is an equivalence by the éh-
descent of line bundles (Lemma 1.6). We thus obtain a fiber sequence:

Pic » Tw — Ge. (3.5)
3.4.2. Extension by scalar defines the divisor class map of tame twistings:
Pic® k — Tw, (£, a)~ L% (3.6)
Z
This map can also be constructed in a way analogous to §3.3.4 by first building a map:
Gy @ k — Fib(Locy — Be Gpn),  (f,a) ~ f©
zZ
using the dlog construction over smooth schemes. Consequently, (3.6) is compatible with

the divisor class map of tame gerbes (3.3) in the sense that the following diagram canonically
commutes:

Pic® k — Pic® k/Z (3.7)
7 Z
. /
Pic J/ ¢
\

Tw—— > Ge
3.4.3. We now give an explicit description of tame twistings over a smooth scheme.
Lemma 3.8. Suppose X € Sm/. There is an equivalence:
DK(7=° R g (X, Q1)) = Tw(X).

Proof. Write provisionally TOVVét for the sheaf on Sm ;, defined by Fib(Bes L(Q)cl — Bgt Gm)-
Then we have a canonical map TOVVC’t — Tw making the following diagram commute:

. - @ °
Pic — Twyg — Bg; Locy

= b e

Pic Tw Ge

The comparison Lemma 3.6 for tame gerbes shows that -5 is an equivalence. Since « is an
étale local surjection, we see that y; must also be an equivalence. The fact that Twy is
represented by the complex 2![1] is a direct consequence of Lemma 3.4. ([

3.4.4. We now produce a morphism from Tw to the usual presheaf of twistings Tw defined
in [26]. Recall that the value of Tw on X € DSch% can be given equivalently as:

Tw(X) :=Fib(Maps(X4r, B, Gn) — Maps(X,BZ G,,))
= Fib(Maps(Xar, B% Go) — Maps(X,B% G,)).

Lemma 3.9. The presheaf Tw on DSchﬁt,€ satisfies h-descent.

Proof. Since the formation of de Rham prestack commutes with limits and given any h-cover
X —- X in DSch?tk, the induced map Xqr — Xgr is surjective in the h-topology, it suffices
to show that BZ, G, satisfies h-descent. On the other hand, Maps(X, B, G,) identifies with
7<%Hom(Ox, Ox[2]) calculated in Perf(X), so the result follows from Lemma 1.6. O
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Let us now construct the promised morphism:
Tw — Tw. (3.8)

We let Gegr denote the étale stack which associates to X € DSch?t,€ the strict Picard

groupoid Maps(XdR,th G,,). Taking the fibers along the vertical maps in the following
commutative diagram:

B¢i Loc; — B¢ Loc; —= Gegr

i i

B% G,, ~ B2 G,,

one obtains a morphism from Bg; Fib(L(o)cl — B¢ Gy) to Tw. One then obtains (3.8) by
noting that Tw satisfies derived éh-descent (Lemma 3.9).

3.4.5. Finally, we note that tame twistings can be used to produce a twisted category of
D-modules equipped with a forgetful functor to ind-coherent sheaves (as studied in [19]).
Note that any object £ € Loc(X) acts as automorphism on Crys” (X):

MM L, (3.9)
and if the object in Pic(X) induced by £ is trivialized, the underlying ind-coherent sheaves
of M and M ® £ become canonically isomorphic.

Since both Crys” and IndCoh are éh-sheaves on DSch?tk [19, Theorem 8.2.2], the pro-

cedure of [25, §1.7.2] defines for every T € Tw(X ) a twisted category Crys’(X) equipped
with a forgetful functor:

oblv : Crys:(X) — IndCoh(X).
This construction agrees with the usual twisted category defined by the twisting attached
to T under the map (3.8). On the other hand, the full subcategory Crys"(X) C Crys"(X) of

regular D-modules form an éh-subsheaf. Since (3.9) preserves regularity (thank to tameness
of £), the same construction produces a full subcategory:

Crysh(X) < Crysh(X).

In other words, the notion of regularity makes sense for a crystal twisted by a tame twisting
(or even a tame gerbe.)

4. MOTIVIC THEORY OF GERBES

In this section, we assume k = k but we remove the restriction on char(k).

We define the notion of a “motivic theory of gerbes” and note some consequences of the
definition. Then we verify that étale, analytic, and tame gerbes are examples of such. We
also include the example of “additive” de Rham gerbes which will be used in studying usual
factorization twistings on the affine Grassmannian.

4.1. Definitions.
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4.1.1. Let G be an étale stack on Schﬁtk valued in strict Picard 2-groupoids (c.f. §3.1). We
write A(—1) for the fiber of the restriction map G(A') — G(A'\{0}) and think of it as a
“Tate twist” of some coefficient group A (although we do not define A). Note that a priori
A(—1) is a strict Picard 2-groupoid as opposed to an abelian group. We define a theory of
gerbes to be such G, equipped with a map of stacks of strict Picard groupoids:

Pic® A(—1) = G, (L,\) ~ L, (4.1)
Z

which we shall call a divisor class map. We will often refer to G as a theory of gerbes,
the datum of (4.1) being tacitly included. For X € Schf/tk, the notation Gy means the
restriction of G to the small étale site of X.

4.1.2. Let us fix a topology t on Schﬁtk which is finer than the étale topology and such
that every X € Sch?tk is t-locally smooth. Examples of ¢ include the éh-topology when
char(k) = 0 and the h-topology in the general case. We call a theory of gerbes G a t-theory
of gerbes if G furthermore satisfies t-descent.
4.1.3. Here is a list of properties that we shall consider for a theory of gerbes G.
(RP1) A(—1) is discrete, and for any X € Sm/; and i : Z — X a smooth divisor, the map
of étale stacks induced from the divisor class map is an equivalence:
A(—1) S Fib(Gx — j.Gx\z), a~ 0x(2)".
Here, A(—1) denotes the constant étale sheaf with values in A(—1).
(RP2) For any X € Sm;, and i : Z < X a closed subscheme of pure codimension > 2, the
morphism is an equivalence:
Gx = j«Gx\z.
(A) For any X € Sm;, the pullback morphism is an equivalence:
G(X) = G(X x AY).

(B) For any proper morphism p: Y — X in Schﬁtk and every k-point z € X, the étale
stalk (p« Gy ), maps fully faithfully to the fiber G(Y x {z}).
b'e

The names of these properties are relative purity in codimension 1 (RP1), relative purity
in codimension > 2 (RP2), Al-invariance (A), and weak proper base change (B). We call a
t-theory of gerbes G satisfying all the above properties a motivic t-theory of gerbes.

4.1.4. We note that although property (B) refers only to k-points, the assumption k = k
guarantees that we have enough of them.

Lemma 4.1. Let F be an étale sheaf on X € Sch?tk valued in strict Picard n-groupoids. If
the stalk Fy, = 0 for all k-points x € X. Then F = 0.

Thus a morphism F — G is an isomorphism if and only if its stalks at all k-points are.

Proof. It suffices to show m;F, the sheafification of U ~» m;F(U), vanishes. Since (m;F)z; =
m;(F5) for every geometric point 7 — X, the problem reduces to the case where F is valued
in abelian groups. The problem then reduces to the fact that the étale neighborhood of any
geometric point 7 — 1 € X contains a k-point in the closure of 7. ([l

4.2. Immediate consequences.
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4.2.1. Relative purity in codimension 1 can be generalized to the situation of multiple
divisors.

Lemma 4.2. Let G be a theory of gerbes satisfying (RP1). Then for any X € Sm/
together with a closed immersion i : Z — X where Z is a finite union of smooth divisors
la : Zo = X. Then the following map is an equivalence:

Plia)-A(-1) = Fib(Gx = j.Gx\z), (aa) ~ X) Ox(Za)"
« «
The conclusion is, of course, trivial if G also satisfies (RP2).
Proof. For notational simplicity, we only prove the case Z = Z; U Z3. Factor the open
immersion j : X\Z < X as such:

X\z % x\z, 5 X,

where the complement of js is the locally closed subscheme Zo 1= Z5\Z1. Applying relative
purity to the open immersion jo, we obtain a fiber sequence:

(iz,)+A(=1) = Gx\z, = (J2)+Gx\z-

Applying (j1)« to this fiber sequence. Using the fact that A(—1) is a constant sheaf so its
pushforward under j; oiy identifies with (i2)«A(—1), we find a fiber sequence:

(i2)«A(=1) = (j1):Gx\z, = J«Gx\z. (4.2)
On the other hand, relative purity applied to the open immersion j; yields:
(i1)+A(-1) = Gx = (j1):Gx\z,- (4.3)

Combining (4.2) and (4.3), we see that the fiber of Gx — j.Gx\z is an extension of
(i2)+A(=1) by (i1)+A(—1). The symmetry of the situation implies that this extension canon-
ically splits. U

4.2.2. We now explain that property (A) can be enhanced in the presence of t-descent.
Namely, G is trivial on “A’-contractible” ind-schemes of ind-finite type. This property will
be used later in our analysis of the affine Grassmannian. (It is safe to be skipped now and
returned to when needed.) Note that by our convention, X € IndSchﬁtk has the property
that X — X x X is a schematic closed immersion. The sheaf G extends to ind-schemes of
ind-finite type by right Kan extension from the full subcategory Schﬁtk — IndSch%.

Given X € IndSch% equipped with a G,,-action, the action is called contracting if it
extends to an action of the multiplicative monoid A'. Such an extension is unique if it
acty
exists. Indeed, given two action maps A! x X —= X , the locus on which they agree maps
acta
to Al x X via a schematic closed immersion. Therefore, if the locus contains G,, x X, it is
all of A' x X.

Let X° < X be the fixed-point locus of a contracting G,,-action. Then X° is again an
ind-scheme of ind-finite type. We have a commutative diagram:

{0} x X 2~ x0

Lok

Al x X 24 x
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Furthermore, the composition X % {0} x X & X0 is the identity map. This is because
G, acts trivially on X°, so it extends uniquely to the trivial A'-action.

Lemma 4.3. Suppose G is a motivic t-theory of gerbes satisfying (A).

(a) For any X € IndSch%, the pullback morphism is an equivalence:

G(X) = G(X x AY).

(b) Suppose X € IndSch‘;tk 1s equipped with a contracting G,,-action. Then restriction to
the fized-point locus is an equivalence:

i*: G(X) = G(XO).

Proof. For part (a), we first prove the result for X € Schf/tk. Indeed, take a t-hypercovering

of X consisting of smooth schemes )?'7 the pullback X*xAlisa t-hypercovering of X xA!, so

we win by t-descent. For the general case, we represent X by colim X ) with X*) ¢ Schﬁtk.
v

Then X x A! agrees with colim (X*) x A'), so the result follows from the schematic case.
v
For part (b), we note that Al-invariance gives a canonical isomorphism of functors:
pr* & act® : G(X) — G(A! x X).

Composing with the pullback to {0} x X, we find that the identity functor on G(X) is
equivalent to ¢* oi*. On the other hand, i* o ¢* is the identity functor on G(X?) as observed
above, so the result follows. O

4.2.3.  'We now show that property (B) implies a Kiinneth type formula when some rigidity
is assumed of one of the factors. For any X € Schl;tk, write G(X/pt) as the cofiber of

G(pt) — G(X) calculated in the co-category of strict Picard groupoids. Any choice of a
k-point « € X identifies G(X/pt) with the fiber G(X;z) of 2* : G(X) — G(pt), i.e., gerbes
rigidified at . In particular, G(X/pt) is still a 2-groupoid.

Lemma 4.4. Let G be a theory of gerbes satisfying (B). Let X1, X5 € Sch% be connected
schemes and furthermore suppose:

(a) Xy is proper, and
(b) G(X1/pt) is discrete.

Then the external product defines an equivalence:
X : G(X/pt) x G(Xo/pt) = G(X1 x Xo/pt). (4.4)

Proof. We let G(X1) be the étale sheafification of the constant presheaf with value G(X7)
on X, (and similarly for G(pt)). Let p : X1 x X5 — X5 denote the projection map. External

product defines a morphism:

X : G(Xl) G(Upt) GX2 — p*GX1XX2~ (45)

(We use the notations from §4.1.1.) Here, the push-out is calculated in the co-category
of étale sheaves valued in strict Picard groupoids. We claim that (4.5) is an equivalence.
Indeed, it suffices to check that the stalks at every k-point x5 € X5 agree (Lemma 4.1).
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Consider the stalk Gx, », of Gx, at xo. We first note that G(pt) = Gx, 4, is an
equivalence since the restriction Gx, 4, — G(z2) is fully faithful (Property (B)). Thus the
composition:

G(Xl) Gl(_I;l)t) GX2,$2 - (p*le ><X2)1‘2 - G(Xl X {xQ})

is an equivalence. Since the second map is fully faithful (Property (B)), the first map is an
equivalence. This proves that (4.5) is indeed an equivalence.

To prove that (4.4) is an equivalence, we can fix points 27 € X; and z2 € X5 and instead
prove that the external product is an equivalence for rigidified gerbes:

X : G(Xl,lil) X G(XQ,IQ) — G(Xl X XQ; (l‘l,Ig)). (46)
The splitting of G(X) as the bi-product® G(X1;z1) x G(pt) implies that G(X;) U Gy,

is isomorphic to G(X7;21) X Gx,. Since G(X7;x1) is discrete and X5 is connected, the
global section of (4.5) yields an equivalence:

G(X1;21) x G(X2) = G(X1 x Xy).

Adding the rigidification at x4, respectively (x1,x2), implies the equivalence (4.6). d
4.3. Etale context.

4.3.1. 1In this subsection, we fix a torsion abelian group A the order of whose elements are
indivisible by p := char(k). We shall describe a motivic h-theory of gerbes with coefficients
in A. In practice, this gerbe theory can be used to twist the DG category of constructible
étale Q-sheaves and A will be a subgroup of @@X (well chosen so that A has no p-torsion).
In the context of metaplectic Langlands program, this gerbe theory has been considered by
Gaitsgory—Lysenko [25].

4.3.2.  We define the sheaf Geg of strict Picard 2-groupoids on Schﬁtk by:
Gegs (X) := Maps(X, B3, A).

The homotopy groups m;Geg (X) are given by Hit_ i(X ,A). Moreover, the fiber of the
restriction map:

Geg (AY) — Geg (AM\{0})
is identified with the usual Tate twist:
A(=1) = colim Hom(u, (k), A),

n|n’
where for n | n’, the transition map g (k) — p,(k) is given by raising to (n'/n)th power.
As A has no p-torsion, we may take n to be indivisible by p in this colimit. Since k = k, the
map fin (k) = fy, is an isomorphism of étale sheaves on Schﬁtk. Therefore A(—1) is also the

colimit of Hom-groups of étale sheaves co‘lim Hom (g, A).
n|n’

8Recall: G takes values in strict Picard groupoids, which are by definition connective HZ-module spectra.
They form an oco-category with bi-products (see §3.1.2).
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4.3.3. The divisor class map:
Pic® A(—1) = Geg, (L,a) ~ L
z

can be constructed as follows (c.f. [25, §1.4]). The Kummer exact sequence gives rise to a
map 6,, : Pic — Bét i, for each n indivisible by p, such that for n | n’ the following diagram
commutes:

0 Bgt Hn
y
Pic& (=)' /n
Bgt Hn

Therefore, a pair (£, a) gives rise to a section of B, A, to be denoted by £.

4.3.4. The properties (RP1), (RP2), (A), and (B) are all standard facts of étale cohomology.
Finally, we claim that Geg; satisfies h-descent. This follows from the fact that proper
coverings satisfy cohomological descent for étale sheaves of A-modules [10, Theorem 7.7].

Alternatively, by a theorem of Suslin—Voevodsky [17], A is a sheaf in the h-topology and
one has canonical isomorphisms:
Hi (X;A) = Hi(X; A), foralli>0.

In particular, this shows that étale A-gerbes agree with A-gerbes in the h-topology. In
conclusion, Geg is a motivic h-theory of gerbes.

4.4. Analytic context.

4.4.1. We now fix k = C. Let Ge,, denote the presheaf of strict Picard 2-groupoids on
Sch?,C which associates C*-gerbes over the analytification:

Gean(X) := Gegx (X*).

Equivalently, Ge,y, (X) is the space of maps from the homotopy type of X?" to the Eilenberg—
MacLane space K(2;C*). We have already noted (in §3.3.7) that Ge,y is an h-sheaf on
Sch?k. Its coefficient group A(—1) identifies with C*.

4.4.2. The properties (RP1), (RP2), and (A) are standard facts. To verify the weak proper
base change property (B), we shall show that the restriction map:

colljimHi(Yan x UM C*) —» H (Y™ x {z};C*), i>0, (4.7)
Xan

Xan

where U ranges over étale neighborhoods of z € X, is in fact an isomorphism. Note that
there is an exact sequence of abelian groups:

0—-C,s—C*—=C/Q—0,

where C[ . denotes the torsion subgroup of C*. By Artin’s comparison theorem, the map

(4.7) is an isomorphism for coefficients in C{5 . and Qy for any prime ¢. The same statement

must also be true for coefficients in QQ as the operation —®Qy is conservative. Thus it remains
Q

true for C/Q as it is a direct sum of copies of Q. This implies the result for coefficients in
C*. We conclude that Ge,, is a motivic h-theory of gerbes.
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4.5. De Rham context.

4.5.1. Fix k = k with char(k) = 0. The naive theory of de Rham gerbes sending X € Sch%

to Maps(Xar, B, G,,) is not motivic; it fails, for instance, A'-invariance. This can be seen
as the raison d’étre of the theory of tame gerbes.

4.5.2.  We shall verify that the sheaf of tame gerbes Ge defined in §3.3 is a motivic éh-
theory of gerbes. In fact, the properties (RP1), (A), and (B) follow immediately from the
analytic comparison Lemma 3.7 and the corresponding properties of Ge,,. Indeed, take
k to be C and (RP1) is verified because Ge is a full subfunctor of Ge,,. To see (A), we
consider the commtutive square when k£ = C:

o

Ge(X)— Gey (X)

¢ g

Ge(X x A Ge,n (X x AY)

Thus Ge(X) — Ge(X x Al) is fully faithful. It is essentially surjective since there is a
retraction Ge(X x A!) — Ge(X) and two objects 1,52 € Ge(X x Al) are identified
once they are identified in Ge,,(X x Al). To prove (B), we observe that the commutative
diagram below consists of fully faithful embeddings:

(p+Gey), — Ge(Y xiz})

[

(p*Gean,Y)z — Gean(y X {:L’})
X

Below, we shall present algebraic proofs of (RP1), (RP2), and (A). They are based on the
calculation of cohomology of Q2! and several known facts about the Brauer group. Unfortu-
nately, we have not found an algebraic proof of (B).

4.5.3. (RP1). Over X € Sm/;, the étale sheaf dex is represented by the complex
Gx = Cofib(0% — QY)[1]. (4.8)

It suffices calculate the (derived) restriction 7<%i'G. Note that i' is a left-exact functor on
étale sheaves, so (4.8) gives rise to a long exact sequence:

0—H2i'g -H'0% = HY 'Y - HLi'g
S utitor Lui'ak - HOi'g - H2 0% (4.9)
We make the following observations based on the tautological triangle for an étale sheaf JF:
10T = T = Rj(F] . 5)-
(a) H°'0% =0 and Hi'QL = 0;
(b) H'4'0% =5 Z, since this group identifies as the cokernel of 0% — j*O)X(\Z; the analo-

gous consideration gives H* Z'Q}( = k, and the morphism 8 passes to the tautological
inclusion Z — k.
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¢) H2i'0% = 0, since this group identifies with R' j,0%, ,, which vanishes because every
b'e X\Z
line bundle on X\ Z extends across Z.

Combining the above observations, we obtain H 2i'G =0, H *4'G =0, and H ' = k/Z.
It is straghtforward to see that this isomorphism agrees with (3.3).

4.5.4. (RP2). The descent property of Ge allows to assume X is affine. We again use the

complex Gx (4.8), and the result reduces to the following calculations of cohomology groups:

(a) H (X;0%) = HL (X\Z;0%) for i = 0,1,2. The nontrivial part is i = 2 which follows
from purity of the Brauer group for smooth schemes over a field (see Gabber [17, §2]);

(b) Hi (X;0%) = HL(X\Z;QL) for i = 0,1,2. This follows from the étale-to-Zariski
comparison and the Gersten resolution (Theorem 2.7).

4.5.5. (A). Proceeding as above, it suffices to establish Al-invariance of the following groups:

(a) Hét(X;O)Xf) for ¢ = 0,1,2. The case for i = 0 is immediate. For ¢ = 1, this is the
Al-invariance of the Picard group over a regular base. For i = 2, one first identifies
Hgt (X;0%) with the Brauer group using Gabber’s theorem [11], and then appeals to
the theorem of Auslander-Goldman [3, Proposition 7.7] (this requires char(k) = 0.)

(b) Hi (X;QL) for i = 0,1. These have been established in Theorem 2.7.

4.5.6. Finally, we remark that the additional player in the de Rham context—tame twistings—
is a theory of gerbes by construction (c.f. §3.4). Its coefficient group A(—1) identifies with
k. However, Tw does not satisfy éh-descent since it is not nil-invariant. On the other hand,
Tw verifies properties (RP1), (RP2), and (A). Indeed, by the fiber sequence (3.5) and its
compatibility with the divisor class maps (3.7), these properties follow from the correspond-

ing ones for Pic and Ge.? It is worth pointing out that Pic is also theory of gerbes according
to our definition, with A(—1) = Z. It satisfies properties (RP1), (RP2), and (A).

4.6. Additive de Rham context.

4.6.1. We remark on another theory of gerbes supplied by algebraic de Rham cohomology
valued in G,. These gerbes are not used to form any twisted category of sheaves.

We remain in the setting where k = k with char(k) = 0.

4.6.2. We define GejR as a presheaf of strict Picard 2-groupoids on Sch?tk by:
Geli (X) := Maps(Xar, B2..G,).

Therefore, Ge_ (X) is calculated by the truncated complex 7<°RI'za,(Xar, O[2]). The h-
descent of perfect complexes (Lemma 1.6) implies that Gej‘R is an h-stack. Indeed, for every

h-cover X — X , the Cech complex of )N(dR — Xq4r is canonically the same whether formed
as classical or derived prestacks.'’

9n fact, the previous discussion already includes a direct proof of these facts for Tw.
101y particular, we can replace the Zariski topology in the definition of Ge;’R by the étale topology.



34 YIFEI ZHAO

4.6.3. The value group A(—1) canonically identifies with k. The divisor class map:
Pic® k — Gely, (£,a)~ L°
Z

is the “first Chern class” construction. Over a smooth scheme X, it is induced from dlog :
0% — 7520%. For general X € Sch?tk, there is a morphism from Pic(X) to usual twistings
Tw(X) (c.f. §3.4.4) which has an underlying G,-gerbe on Xgr. One then extends the
construction by k-linearity.

4.6.4. For k = C, the theory of gerbes Gej{R is equivalent to analytic C-gerbes, up to a Tate
twist of the divisor class map. More precisely, we let Gein denote the presheaf on Schi‘“,C
which associates to X the strict Picard 2-groupoid of C-gerbes on X2". In other words,
Ge (X) is calculated by the truncated complex 7<°C*(X?"; C[2]) of topological cochains

valued in C. The same argument as for C* shows that Ge, is an h-sheaf.

The coefficient group A(—1) is easily seen to be C. There is a topological Chern class
map:
Pic® C — Ge/, (L£,a)~ L%,
Z

where the image of Pic lies in 7=0C* (X1 Z[2]).

4.6.5. Applying Grothendieck’s comparison theorem in the smooth case and using h-descent,
we find an equivalence making the following diagram commute.

Pic® C — Gej{R
Z

o

. 2mi-
Pic ® C % Ge],
z

i.e., the divisor class map for Ge, has to be multiplied by a factor of 2mi.

4.6.6. The theories of gerbes Gelr and Ge}, satisfy the properties (RP1), (RP2), (A),
and (B). One can either prove these properties directly for algebraic de Rham cohomology,
or use the argument in §4.4 for Ge and transfer the results to Ge;fR. In summary, they
are both motivic h-theories of gerbes.

5. FACTORIZATION STRUCTURE AND ©O-DATA

In this section, we assume k = k. We further fix a smooth, connected curve X over k.

After a review of factorization structures and the affine Grassmannian Grg ran, our first
goal will be to define the combinatorial gadget of “enhanced ©-data” (§5.3.) Then we state
the classification of factorization gerbes on Grg ran (for any motivic theory of gerbes) and
deduce from it the classification of factorization tame twistings (Theorem 5.9). This fulfills
the task of assigning an intrinsic meaning to quantum parameters.

Finally, we address the question of factorization (usual) twistings on Grg ran and classify
them for semisimple, simply connected G.

5.1. Factorization gerbes.



TAME TWISTINGS AND ©-DATA 35

5.1.1. Let Ran denote the prestack on Schf/tk whose S-points are finite sets of maps z(" :

S — X. Write fSet™™ for the category of finite nonempty sets I together with surjective

maps I — .J. The the canonical map colim X’ — Ran is an equivalence of prestacks.
TefSetsuri

5.1.2. Forn > 1, we let Ranggj denote the open sub-prestack of Ran*" consisting of points
{fﬂ(i)}iefk,gkgn such that z(® and 2\ are disjoint as long as 7, j belong to I, and [ for
k # k’. There is a morphism of “disjoint union”:

Uny : Rangg — Ran.

We shall only be concerned with classical (i.e., non-derived) factorization prestacks valued
in sets. Let us recall that a factorization prestack over X is a prestack Y over Ran equipped

with the additional data, called a factorization isomorphism over Ran(ﬁj:

foy :Uin¥ = (Y X Y)aisi-

Here, (Y x H)disj denotes the restriction of Y*2 along the open immersion Ran(ﬁj C Ran*?
(and similarly for the notation (Y x Y x Y)ais;j, etc.)

. . . . . .- %3 .
The isomorphism f() is required to satisfy a coherence condition over Raundisj expressing

that the three ways one can form an isomorphism UZ‘S)H = (YxYx Y)aisj out of f2) are
identical. A convenient way to express this is as follows. Let us consider an additional
isomorphism:

fay Ui = (9 x Y x Y)aisj,
such that for each surjection ¢ : {1,2,3} — {1, 2}, the map L, : Randxi‘:j — Ran(ﬁj of taking
unions along ¢ makes the following diagram commute.
N f)
Uigy 9 —=> (4 x Y X Y)aisj (5-1)
= ng@),w

o

L f
L% Uiy ¥ ——= U5 (Y X Y)ais

Here, f(2),, means applying f(2) on the factor corresponding to the element of {1, 2} with two
preimages. When this condition is satisfied, f(3) is uniquely determined by the commutative
diagram (5.1) for any choice of ¢. Namely, it is not an additional piece of structure, but
rather expresses the compatibility of f() with the morphisms U, for various ¢.

5.1.3. Let us be given a presheaf F on Schf/t,C valued in strict Picard 2-groupoids. We
extend F to prestacks by the process of right Kan extension:
FY) = 1 .
()= Jim F(Y)
XeSchl,

Suppose Y is a factorization prestack over X. Then a factorization section 8 € Ff<t(Y) is a
section 8 € F(Y) equipped with factorization isomorphisms:

U S = 8% in F(U7,) Y = (Y™ )ais),
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for n = 2,3. Furthermore, for each surjection ¢ : {1,2,3} — {1,2}, we are supplied a
2-isomorphism witnessing the commutativity of the following diagram:

Ufg)8 —>8SRSKS Uipy ¥ — (4 x Y X Y)ais;
z\L /%T in F zi/ %T
U Ufy) 8 — L% (8XS) L% Uiy Y — L5 (Y % Y)ais;

These 2-isomorphisms are required to satisfy a coherence condition over Rangigj which we
shall not specify.

Thus Ffct(Y) naturally forms a strict Picard 2-groupoid, and the forgetful map Ff<t(Y) —
F(Y) is a morphism of such. In the particular case where G is a theory of gerbes, we call
sections of GfaCt(lé) factorization gerbes on Y.

5.2. The affine Grassmannian.

5.2.1. We shall now introduce the main example of a factorization prestack: the affine
Grassmannian Grg ran associated to X and a linear algebraic group H.

It is defined as the (classical) prestack over Ran whose fiber at an S-point () : § — X
is the set of pairs (P, a) where Py is an étale H-torsor over S x X and « is a trivialization
of Py on the complement of the graphs:

. ~, p0
(67 ‘:PH — (PH|S><X\U7;€IF:E(7;) .

The Beauville-Laszlo lemma shows that Gr g ran has the structure of a factorization prestack
over X (c.f. [50]).

Furthermore, the projection:

7 : Gr g Ran — Ran (5.2)

is ind-schematic and of ind-finite type, i.e., for every S — Ran with S € Schﬁtk, the fiber
product Grgran X S is representable by an ind-scheme of ind-finite type. When H is
Ran

reductive, 7 is furthermore ind-proper [56, Theorem 3.1.3]. For a finite set I, we will denote

by Gry x: the fiber product:

GI‘H XI = GrH,Ran X XI.
’ Ran

The morphism (5.2) admits a unit section, defined by sending z(* to the trivial H-torsor
PV, equipped with the tautological trivialization:

e : Ran = Gry ran -
5.2.2. Fixing a k-point x € X and a uniformizer ¢ of the completed local ring 0) Xz, the

fiber of Grp ran &t x identifies with the étale quotient of the loop group by the arc group
H((¢))/H[t]. This is the “classical version” of the affine Grassmannian.

For G reductive, let I C G[t] denote the Iwahori subgroup associated to the Borel B.
Then the quotient G((¢))/I is the affine flag variety Flg. The projection:

FIG — GI‘G,I

is an étale locally trivial fiber bundle with typical fiber G/B.
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5.2.3. For G semisimple and simply connected, Grg x: admits a colimit presentation by
I .

Schubert varieties. It is a closed subscheme Gré’\X ; associated to any I-tuple A := (A\(¥)) of

dominant cocharacters \(V) € A;. The ind-scheme Grg x: is identified with the colimit of

Gré)‘;(, over A, using the reducedness of Grg x: (see [56, Theorem 1.3.11].)

I
The Schubert varieties GréAX , are flat over X!. Furthermore, for every ¢ : I — .J, the re-
I J . .
striction of Gré}‘X, to the diagonal Aj_, ; identifies with Gré?x‘, where A\ .= Zi@p_l(j) A

(see [55, Proposition 1.2.4] for the case I = {1,2}; the general case is similar).

5.24. Let Picg, , denote the étale sheaf on X' which associates to S — X the abelian
group of line bundles on Grg xr x S trivialized over the unit section e. The following exact
X1

sequence is a mild generalization of [56, Lemma 3.5.3] to G semisimple, simply connected:
0= Pics, , > ®ierBy » P (Ar-y). Bjes By, (5.3)
I—J
[J|=|1]-1

where B is the abelian group Maps(S,Z) for S the set of simple factors of G.

5.2.5. We will also mention the construction of determinant line bundles on Grg ran- Let S
denote the set of simple factors of Gaer. Then for each s € S, the corresponding Lie algebra
gs can be regarded as a G-representation. Consequently, we may define a line bundle detg,
over Grg ran by specifying its fiber at an S-point (%), P, a) to be the relative determinant
of the vector bundles (gs)p, and (gs)po,, identified outisde (J;c; I'pr. Then detg, has the

il
canonical structure of a factorization line bundle over Grg ran (c.f. [25, §5.2]). Thus we have
a map:

det : @ Z — PinaCt(GrG,Ran)y ((13) ~ ® det Cglz . (54)
sSES sES

5.3. Enhanced O-data.

5.3.1. Suppose we are given the following data:

(a) a smooth, connected algebraic curve X;
(b) a reductive group G over k with maximal torus T' C G;
(c) atheory of gerbes G such that A(—1) is a divisible abelian group (in particular, discrete).

Then we shall attach a strict Picard 2-groupoid ©¢(Ar; G) called enhanced ©-data. It will
consist of triples (g, 3*), ) to be specified below.

5.3.2. Quadratic form. Let W denote the Weyl group of (G,T). It acts on the cocharacter
lattice A7. Let Q(Ar; A(—1))" denote the abelian group of W-invariant A(—1)-valued

quadratic forms on Ap. Any such quadratic form gives rise to a W-invariant bilinear form
K defined by:

KA 1) = q(A+ 1) — a(X) — a(p).
In particular, K(A, A) = 2g(A).
Following Gaitsgory—Lysenko [25], we shall specify a subgroup

QA7; A(=1))rter © QA3 A(=1)Y,

restr
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w i
restr lf'

k(a,\) = (@, Nq(a), forallaed e Ar, (5.5)

where & denotes the root associated to a. We note that there always holds 2x(a, A) =
2(&, A)g(a); indeed, this is because k(a, \) = k(—a, $o(A)) by W-invariance, where s, (\) =
A — (&, A)a. Analogously, if each co-root is twice a co-character (e.g. G = PGLy), then (5.5)
always holds. Let A%. C Ar denote the co-root lattice and m G := Ar /A% be the algebraic
fundamental group of G.

called restricted quadratic forms, by the property that ¢ € Q(Ar; A(—1))

We note an elementary fact.
Lemma 5.1. Suppose q € Q(Ar; A(—1))W.... Then there is a (non-canonical) decomposition
g = q1 + g2 where:

(a) qu is an A(—1)-linear sum of Killing forms gs ki, attached to each irreducible component
O, (s €8S) of the coroot system ® (g 1y by the formula:

1 < 2
%muyzgégmxw

(b) g2 descends to a quadratic form on mG.

Proof. For each s € S, let a5 be a short coroot of ®,. Since A(—1) is divisible, there exists
some by € A(—1) such that ¢(as) = bsqs ki (es). We set g1 = Zses bsqs ki1 and g2 == g—qi.
Thus ¢» still belongs to Q(Az; A(—1)))Y,,.. The identity (5.5) implies that the AZ. lies in the

restr-
kernel of the bilinear form attached to ¢o, so it descends to a quadratic form on 71 G. O

Consider the injective map:

oA, Z)V ® A(=1) = Q(A; A(—1)I (5.6)

restr-

Lemma 5.2. Suppose Gaer is simply connected. Then (5.6) is bijective.

Proof. The hypothesis shows that 71 G is torsion-free. Hence every A(—1)-valued quadratic

form on m G lives in Q(m G;Z) @ A(—1). O
z

5.3.3. Integral ©-data. Given a lattice A, we let ©(A;Pic) denote the strict Picard 1-
groupoid consisting of an integral quadratic form ¢ € Q(A;Z), and a A-indexed system
of line bundles L& over X equipped with multiplicative structures:

e £V @ L) 2y LOFR) @ (FA), (5.7)
satisfying associativity and the following k-twisted commutativity condition:
(—1)"*ey L(a®b) = cur(b®a).
Objects of O(A; Pic) are called integral ©-data.
5.3.4. Integral enhanced ©-data. For a semisimple, simply connected group G with split

maximal torus T', we have a morphism (c.f. [18, §2.4.7]) which attaches a Ar-indexed system
of line bundles to a W-invariant form:
Q(Ar:Z)" — O(Ar; Pic), ¢~ (¢,£™). (5:8)

For a reductive group G, we shall use construction (5.8) for the simply connected cover
of its derived subgroup Gger (with maximal torus Tye ). The integral enhanced ©-data
O¢(Ar; Pic) are defined to be the strict Picard 1-groupoid of triples (¢, L™, &) where:
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(a) q € Q(A7;Z)"W, whose bilinear form is denoted «;

(b) £ is a Ap-indexed system of line bundles, equipped with multiplicative structure (5.7)
which makes (¢,£")) an object of ©(Ar; Pic);

(c) € is an isomorphism between the restriction of L) to Afder and the system of line
bundles attached to the restriction of g to Az via (5.8).

5.3.5. ©-data for G. We temporarily relax the condition: A(—1) is only assumed discrete
in this paragraph. Given a lattice A, we let ©(A; G) denote the strict Picard 2-groupoid
consisting of a quadratic form ¢ € Q(A; A(—1)), and a A-indexed system of gerbes G €
G(X) equipped with multiplicative structures:

e GV @ G Xy g g i) (5.9)

together with associativity constraint and k-twisted commutativity constraint, i.e., a homo-
topy h,, witnessing the commutative diagram:

G @ g 2L gOHR) g (M) (5.10)

|2 e
G @ g 22 gut)) g w’;((ﬂv*)

satisfying the usual coherence conditions for every triple GV, G G ag well as an
additional condition expressing that strictness ought to be respected. Namely, for A = p, as
the automorphism:

(1) 2 (1)) 2 (1))
is canonically trivialized, we require that hy » be the identity 2-homotopy. The strict Picard
2-groupoid O(A; G) is called ©-data for G.

Remark 5.3. In fact, given a commutative diagram (5.10) for A = u, the 2-homotopy hx x
determines conversely a square root of k(A ) € A(—1). Indeed, hy ) defines a trivialization
of (=1)**A) whose square is the tautological trivialization of (—1)2#(A),

On the other hand, for any a € A(—1), a trivialization of (—1)* which squares to the
tautological trivialization of (—1)2% is equivalent to the choice of a square root of a, since
both data are torsors for the 2-torsion subgroup of A(—1) and there is an obvious map from
the latter to the former (c.f. [25, §4.2]).

5.3.6. Enhanced ©-data for G. For G semisimple, simply connected, the morphism (5.8)
coupled with the divisor class map for G gives rise to a morphism:

O(A7; 2)" @ A(=1) > O(Ar; G),  (g,0) ~ (g, (L)), (5.11)

We reinstall the assumption that A(—1) be divisible. For a reductive group G, define the

enhanced ©-data ©g(Ar; G) for G as the strict Picard 2-groupoid of triples (g, 3™, ¢)

where:

(a) q € Q(Ar; A(—1))W. is a restricted quadratic form in the sense of §5.3.2, whose bilinear
form is denoted k;

(b) G is a Ap-indexed system in G(X), equipped with multiplicative structure (5.9),
associativity constraint, and s-twisted commutativity constraint, making (q,S(’\)) an
object of ©O(Ar; G);



40 YIFEI ZHAO

(c) € is an isomorphism between the restriction of 5N to ATd and the system of gerbes

9((1)‘) attahced to the restriction of ¢ to Af“d via (5.11), compatible with the associativity
and k-twisted commutativity constraints.

Therefore, we have a fiber sequence of strict Picard 2-groupoids:

Hom(m G, G(X)) = O¢(Ar; G) — Q(Ar; A(—=1)), (5.12)

restr?
where Hom(mG, G(X)) denotes the groupoid of morphisms mG — G(X) as strict Picard
2-groupoids.

5.3.7. w-shift. We note a variant in the definition of enhanced ©-data where we incorporate
shifts by a power of wx. Define the shifted enhanced ©-data @J{;(AT; G) for G to be the
strict Picard 2-groupoid of triples (¢, ), e) where:
(a) q € Q(Ar; A(—1))WV,  is as before;
(b) W is a Ap-indexed system in G(X), equipped with multiplicative structures:
Cj\—,u : 6N © g =y gOAtw)
together with associativity constraint and x-twisted commutativity constraint:
C+
g\ @ g g GA+n)
h+
| 2 levew

Caa

g(u) ® 9(/\) 2 9(M+/\)

satisfying coherence conditions for every triple G, G(#) G(*) and respects strictness.
(c) € is an isomorphism between the restriction of 5N to A,fd\ and the system of gerbes

95(;‘) ®wg<(>‘), where 95(;‘) is the system attahced to the restriction of ¢ to Az via (5.11),
compatible with the associativity and x-twisted commutativity constraints.

Clearly, there is an equivalence between the two kinds of enhanced ©-data:
Oc(Ar3G) = O5(AriG), (0,5V,0) ~ (¢,5Y @iV e).
5.4. Classification: statements.

5.4.1. We continue to fix X, G as in §5.3.1. The basis of our classification theorem is the
equivalence between factorization line bundles over Grg ran and integral enhanced ©-data,
established in [18]. We let Ng > 1 be the integer attached to G as in [24, §0.1.8]."

Lemma 5.4. There is a canonical functor:
Upic : Pic™"(Grg ran) — Og(Ar; Pic)
with the following properties:

(a) Upic is an equivalence for G a torus or a semisimple, simply connected group;
(b) For any reductive group G with char(k) {1 Ng, the functor ¥pic is an equivalence.

We shall refer to Wp;c as the classification functor for factorization line bundles on Grg ran.
Sometimes we denote it by ¥p;ic ¢ to emphasize the group G.

" The Lemma will only be used when char(k) = 0, where the hypothesis char(k) f N¢ is trivially satisfied.
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Proof. The functor Up;e 1 for the torus T is constructed and proved to be an equivalence
in [418, §1]. For Gy semisimple and simply connected, with maximal torus Ty, Upic.q,, is
constructed and proved to be an equivalence in [418, Proposition 2.5]. Since the composition:

ol )
QA Z)W FieCe, pichet(Gre ) o Pic™t (Gry, ) —2T, 9(Ar,; Pic)

identifies with (5.8), one constructs the functor ¥p;. for any reductive group G.'? Finally,
statement (b) is [48, Theorem 3.1]. O

5.4.2. Let us now also fix a topology ¢ on Schf/t,c as in §4.1.2. The following classification
statement will be proved in §6.

Theorem 5.5. Let G be a motivic t-theory of gerbes whose coefficient A(—1) is a divisible
abelian group. Then there is a canonical equivalence between strict Picard 2-groupoids:

Vg : GPY(Crg pan) — Oc(Ar; G),

which makes the following diagram commute:

PinaCt(GI'G’Ran) ® A(—l) s GfaCt(GrG,Ran)
Z

\L‘I}Pic \L‘PG

O¢(Ar;Pic) (%) A(=1) —— O¢(A1; G)

We call ¥q the classification functor for factorization gerbes on Grg ran. As before, we
denote it by ¥ ¢ sometimes to emphasize the role of the reductive group G.

Remark 5.6. In particular, for G a simple, simply connected group, Theorem 5.5 shows
that Gt(Grg ran) is equivalent to the discrete abelian group A(—1).

5.4.3. Let us first clarify the nature of the functor Ug. In fact, we shall consider an
arbitrary theory of gerbes G satisfying property (RP1), so it includes G = Pic as a special
case. The upshot will be that as long as Vg .. is an equivalence for semisimple, simply
connected Gy, the functor ¥ ¢ can be defined for general G.

Remark 5.7. Since Pic is not motivic in the sense of §4, Theorem 5.5 does not imply
Lemma 5.4. The proof of Lemma 5.4 in [48] uses nontrivial input from K-theory.

5.4.4. For a torus T, we introduce an auxiliary object Grr comb. As a prestack, it is defined
as the colimit:

GI7,comb = colim X1
(IAMD)

where the index category consists of pairs (I, A(1)) for I a finite set, A} = (A());c; an
I-family of elements in Az, and a morphism (I, \()) — (J, \()) in this category consists of
a surjection ¢ : I — J such that A0) = Eiew—l(j) A Then Gr7,comb has the structure of
a factorization prestack over X. It is equipped with a map:

Grrcomb = Grrran, 2~ (21, @iefO(NT,0), @), (5.13)

where « is the tautological trivialization. The closed subscheme X7 < Gr7,comb correspond-
ing to (I, A1) will be denoted by X*'.

12The definition of Upjic will be explained below in §5.4.3.
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Lemma 5.8. Suppose G is a theory of gerbes satisfying property (RP1), then we have an
equivalence of strict Picard 2-groupoids:

G (Qrr comb) — O(Ar; G).
Proof. The Ap-indexed family of gerbes GV will be the restriction of § € GfaCt(GrTwcomb)
to the closed subscheme X of Gr7,comb-
We construct a bilinear form « : Ay ® Ay — A(—1) as follows. Given A\, € Ar, we
z

consider the subscheme X ) of GI7,comb, and denote by G the restriction of §. Then
factorization isomorphism together with (RP1) shows that we have an isomorphism:

GV R g =y g g @A) (5.14)

for a unique element k(\, p) € A(—1). The compatibility between factorization and the
swapping map X M#) =y X (A shows that (5.14) is Ya-equivariant, in the sense that the
following diagram commutes.

G R G —~ 5 gm) g O(—A)AH) (5.15)

!

o* (G KGN Zs 5 GN) @ g*O(—A)FN)

This already implies that s(\, ) = &(u, A). Considering the restriction of G to XA #¥) for
a triple (A, u, v) then establishes the bilinearity of .

Finally, restriction of (5.15) to the diagonal produces a commutative diagram:

G @ G 25 GO @ (iAW)

G @ G 25 GUutA) @ ()

We note that for A = i, the 2-homotopy h) » amounts to a trivialization of (—1)"‘0")‘) whose
square identifies with the tautological trivialization of (—1)2%(**). Hence hy ) defines an
element ¢(\) € A(—1) with 2¢(A\) = x(X, \) (see Remark 5.3). With respect to the resulting
trivialization of (—1)*(*A) afforded by g()), we see that hy_y is the identity 2-homotopy.
This completes the definition of a functor from G2 (Grr comn) to O(Ar; G). Checking
that it is an equivalence is straightforward, hence omitted. O

5.4.5. Therefore, for G any theory of gerbes satisfying (RP1), pulling back along Gry gan —
Grg, ran and then along (5.13) defines a map from:

G (Grg ran) — O(A7; G). (5.16)

Below, we summarize the definition of the classification functor ¥ of Theorem 5.5, re-

lying on results to be established in §6. The purpose of doing so now is to make various

compatibility statements apparent, so we may deduce corollaries from Theorem 5.5.

(a) For G =T a torus, U is precisely (5.16);

(b) For G = Gg. a semisimple, simply connected group, Wg is the composition of (5.16)
with the forgetful functor to Q(Ar; A(—1));
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(¢) For G a reductive group, in order to construct ¥ we will need the conclusion of Theo-
rem 5.5 to hold for the case (b), i.e., for Gger the functor above defines an equivalence:

Ve g, G (Crg, pa) = QA 2)Y ® A(-1), (5.17)

which is furthermore compatible with W, Guor- Then the functor
Ve : G~ (0,5%,¢)

is specified by the application of g to the restriction of § to Grr Rran, obtaining
(q,9™N) € ©(Ar; G), and then using the inverse of (5.17) to obtain the identification e.

5.5. Application to quantum parameters.

5.5.1. Suppose k = k with char(k) = 0. Thus Theorem 5.5 classifies factorization tame
gerbes on Grg ran by its enhanced ©-data, as Ge is a motivic éh-theory of gerbes (8§4.5).
We shall use this result to obtain a classification of factorization tame twistings and explain
their relations to quantum parameters.

5.5.2. Let Parg denote the k-linear groupoid consisting of:

(a) a W-invariant bilinear form & : t % t—k;

(b) an extension E of 3 by Qﬁ( as Zariski sheaves of k-vector spaces on X.

Let Parg denote the analogously defined k-linear groupoid where we replace E by an exten-
sion F of 3 ® Ox by wx as coherent sheaves. The k-linear stack associated to Parg is the
non-compact space of quantum parameters studied in [54].

5.5.3. The following Theorem summarizes the relationship between factorization tame
twistings and quantum parameters.

Theorem 5.9. There are three canonical equivalences between k-linear groupoids:

fact

Tw  (GrgRran) %ﬁ O (Ar; Tw)
gi@w%”
@g(AT; TW) s Parg s Parg,
and the last functor j is an equivalence if and only if X is proper.

The proof of Theorem 5.9 occupies the remainder of this subsection. The functor W will
be built according to the paradigm of §5.4.5. Both the construction and the proof that it
is an equivalence require Lemma 5.4 and Theorem 5.5, as well as the k-linear structure on
Tw.

5.5.4. First note that the equivalence between Og(Ar; Tw) and @g(AT;TOW) is already
noted in §5.3.7, the functor being given by a wx-shift.

To show the equivalence between the latter with Par, we observe that TOW(X ) is k-linear
and 3 2 m G ® k, so we may rewrite the fiber sequence (5.12) as follows:
Z

Hom(3, Tw(X)) — O%(Ar; Tw) — Q(Ar; k). (5.18)

On the other hand, the automorphism (—1)**#) on Tw(X) is trivial since dlog annihilates
all constant sections. Thus an element of ©F(Ar; Tw) consists of the data of ¢ together
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with a commutative multiplicative system TV i.e., a k-linear morphism t — TOW(X ), whose
restriction to tger is determined by ¢. In particular, (5.18) canonically splits. It remains to
observe:

(a) Q(Ar; k)" identifies with the space of W-invariant bilinear forms on t;

(b) Hom(3, Tw(X)) is the space of k-linear maps 3 — RT¢(X;Q'[1]) (Lemma 3.8). On
the other hand, we have R (X;Q'1]) = Rz (X;Q1]) (Theorem 2.7), and we
have:

R Hom(3, RTza: (X3 Q[1])) = R Hom(s, Qx[1]),
by adjunction of Zariski sheaves.

The functor j is induced from the tautological inclusion Qk — wyx of Zariski sheaves.
Our assertion follows directly from the comparison of cohomology groups:

RT 70 (X; Q) — RI(X;w),

observed in §2.3.3 using the Gersten resolution of Qﬁ( The only remaining part of Theorem
5.9 is to produce a canonical equivalence, to be denoted by:
o fact ~ °
Vi : Tw  (Grgran) — Oa(Ar; Tw).
5.5.5. Tori. We first define Wy .. for a torus 7" by the functor (5.16). Thus we have a

commutative diagram:

o fac o
Pic™ (Gry ran) —= TW  (GI7.Ran) —= Ge(Gr7 ran)

%l/q’Pic,T i/‘l’"r"w.T %\L‘llde,T

O(Ar; Pic) O(Ap; Tw) — O(Ar; Ge)

where the rows are fiber sequences of strict Picard 2-groupoids and ¥pjc 7 and ¥, ;. are
both equivalences (Lemma 5.4 and Theorem 5.5). In order to show that W . is also an
equivalence, it remains to prove that it is essentially surjective. By the calculation of TDW(X )
for X a smooth curve, we see that the divisor class map:

Pic(X) @k — Tw(X), (£,a)~ L%
Z

is essentially surjective; indeed, this is clear for X affine, and for X proper, TOW(X ) is
1-dimensional and is spanned by the image of any line bundle of nonzero degree.

Let Picfza:CB(GrT)Ran) denote the subgroupoid of PicfaCt(GrT,Ran) consisting of factoriza-
tion line bundles whose associated quadratic form vanishes. From the commutative diagram:

fact o fact

(GrT,Ran) @Zg k——Tw (GrT,Ran)

- |

Hom(Ar, Pic(X)) ® k —= Hom(Ar, Tw(X)),
Z

Pic,Z,

we see that objects of the full subgroupoid Hom(A7, Tw(X)) inside ©(Az; Tw) admit lifts.
It thus remains to show that the composition of W«  with the forgetful functor to Q(Ar; k)
is surjective.
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Now, every ¢ € Q(Ar; k) is a k-linear combination of integral forms ¢; € Q(Ar;Z). Scaling
allows us to assume that each ¢; is valued in 2Z. Since ©(Ar; Pic) — Q(Ar;Z) surjects onto
even-valued forms, we find that the bottom arrow in the following diagram is surjective:

o f
PicfaCt<GrT7Ran) Rk —Tw aCt(GrT,Ran)
Z

& l

O(Ar; Pic) ® k —— Q(Ar; k).
Z
This concludes the proof that V. .. is essentially surjective, hence an equivalence.

5.5.6. Simply connected groups. We now turn to the case of a semisimple, simply connected
group Gg.. We note that the image of Wi o in Q(Ar,; k) is W-invariant. Indeed, by
the compatibility between Wi o —and \I'Gﬂ,; ., we see that any form ¢ in the image is
W-invariant modulo Z. On the other hand, if Z]C belongs to the image, so does c - ¢ for all
c € k*, so ¢ must itself be W-invariant.

Therefore, we again have a commutative diagram of fiber sequences:

PicfaCt (Gerc ,Ran) — ']:‘OVVfaCt (GrI‘GSC ,Ran) — defaCt (GI‘GSC ,Ran)
%i\vmc,cm \L\PTW,GSC %i‘l’de,csc

QA7 2)W ——— Q(Aq; k)Y ——— QMg k/Z))Y

restr
We are done because Upic;,, and U , are equivalences and Q(Ar, ;Z)" @ k surjects
9 sc Z
onto (in fact, is isomorphic to) Q(Ar, ; k).
5.5.7. General case. The paradigm of §5.4.5 now implies that a functor W.p, = exists for any
reductive group G. An analogous argument reduces the problem to showing that W is es-

sentially surjective. Recall that every ¢ € Q(Ar; k)" splits into the sum of ¢; = D ses bss kil
and a form ¢ induced from 7 G (Lemma 5.1). We first claim that the composition:

TrivvfaCt(GI'G7Ran) \Ili) @G(AT; Tovv) — Q(AT, k)W

surjects onto the span of Killing forms. Indeed, this is because the determinant line bundles
construction (5.4) gives a section:

fact
(GrG,Ran)

f i

®SES k Q(ATvk)W

Pic™*"(Grg ran) 2 k — Tw

Therefore, it remains to show that W surjects onto the full subgroupoid of ©¢(Ar; Tw)
where the associated quadratic form descends to m1G. This is in turn the space of quadratic
forms on the lattice of Zg. Thus the problem reduces to showing that:

fact o fact

Tw  (Grgran) = TW  (Grze Ran) — O(Azg; Tw) (5.19)
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is essentially surjective. Let T} := G/Gger. Then Zg — T is an isogeny of tori, so we have
the following equivalence by the k-linear structure on tame twistings:

@(AZG; TOVV) Gch,Ran

I

GrG7Ran

~

O(Ar,; Tw) Gr7) Ran

1R

This provides a splitting of (5.19). Hence W is essentially surjective.  O(Theorem 5.9)
5.6. Relation to Brylinski—-Deligne data.

5.6.1. We explain how quantum parameters are related to central extensions by Ko con-
sidered by Brylinski-Deligne [8]. Let Ko denote the Zariski sheafification of the second
algebraic K-group, regarded as a sheaf on Sch,x. On the other hand, the reductive group
G also defines a Zariski sheaf on Sch,x. By a Brylinski-Deligne datum, we shall mean a
central extension:

12Ky —E—>G—1 (5.20)
Brylinski-Deligne data form a strict Picard groupoid, to be denoted by CExt(G, K»).

5.6.2. We reinstall the assumption k = k and char(k) = 0. For a Zariski sheaf F of
groups on Sch/x, denote by F* the presheaf which sends S to F(S[e]) where S[e] := S x
Spec(k[e]/e2). Then F¢ is again a Zariski sheaf and is equipped with a tautological map to
F. The derivative of DF is the kernel of F¢ — F, restricted to the small Zariski site of X.
It is clear that DF is a sheaf of Ox-modules. Over the small site of X, the morphism:

G;, ® G}, — Qﬁqgl/k Zwx Nde, f®g~ dlogf Adlogg
induces an isomorphism DKy — wy (see [19]). Given any short exact sequence (5.20) (i.e.,
K is not necessarily central), we obtain an extension of O x-modules:

0—>wx >DE —-g®0x — 0.
k

5.6.3. For G =T a torus, we shall give an alternative description of DE, which is in line
with the Brylinski-Deligne classification of CExt(7T,Kj). Let p : X x G,,, — X be the
projection map. There holds R' p, Ky = 0 and p, Ky = K, @ K; (c.f. [3, §3.1]), so (5.20)
gives rise to an extension together with a morphism:

1—p.Kg—p,E—p, T —1

|

K,

Further inducing along dlog : K; — wx, we obtain an extension of p,T by wx. Then the
map A — p.T determines an extension of A by wy, or equivalently of A7 @ Ox — t®0x
Z k

as O x-modules. We denote the resulting wx-extension of t® Ox by E.
k



TAME TWISTINGS AND ©-DATA 47

Lemma 5.10. For a torus T and a short exact sequence of big Zariski sheaves of groups:
1Ko —-E—>T —1,
the extensions of Ox-modules E and DE are canonically identified.

Proof. Tt suffices to assume T' = G, and compare the wx-torsors associated to E, respec-
tively DE, over 1 € t® Ox. Consider the (small) Zariski Ko-torsor E; over X x Gy,
k

associated to E. Denote its restriction to the first infinitesimal neighborhood of the identity
section in X x G,, by E5. Namely, it is defined over a copy of X|e]:

X[e] — X x Gy,

N

X

The problem is to compare the following w x-torsors:

(a) The pushforward p.Eq, which is a p,Ks-torsor oweing to R!'p,Ky = 0, produces an
wx-torsor via inducing along the composition:

dlo
p*KQ — K1 —)g wx.

(b) The pushforward pSE$, which is a pSKs (i.e., K§)-torsor, produces an wx-torsor via
inducing along the composition:

K5 — DKy =5 wy.

We note that there is a commutative diagram of split short exact sequences:

0 K, 7O k. K, 0
! ! Jia
0 DK, K; Ko 0

where t is the coordinate on X xG,,, regarded as a section of K;. In particular, the morphism
K; — DK is given by {—, 1+ ¢}. Hence the composition K; — DKy — wx identifies
with dlog. This proves that the wx-torsors of (a) and (b) are canonically identified. O

5.6.4. Since dlog : K; — wx factors through Qﬁ(, we can canonical factorize the derivative
construction D through:

D : CExt(T,Ks) — Ext(t, Q%).

Here, Ext(t, Q&) is the Picard groupoid of extensions of t by Qk as Zariski sheaves of k-
vector spaces. For any reductive group G, we obtain a functor from Brylinski-Deligne data
to the space of tame quantum parameters Parg (§5.5.2):

D : CExt(G,Kj) = Parg, E ~ (k,E),

where k is the bilinear form attached to E by the construction of [3], together with the
derivative E of the restriction of E to the torus Zg.



48 YIFEI ZHAO

5.6.5. On the other hand, we have a functor of D. Gaitsgory [24]:
Epic : CExt(G,K3) — Pic™"(CGrg ran).-

It is proved to be an equivalence (in char(k) = 0) in [18]. The following commutative
diagram summarizes the relationship between quantum parameters and Brylinski—Deligne
data.

Corollary 5.11. The following composition canonically identifies with D.
CExt(G,Kj) =2 Pic™(Grg.ran)
o v, - o
— TWfaCt(GI"G’Ran) — Ty Parg.

Proof. By the classification of factorization tame twistings (Theorem 5.9) and its compability
with the classification of factorization line bundles, it suffices to show that the following
composition identifies with D:

CExt(G,K;) —2<°=Fic, . (A1; Pic)
— @G (AT; TDVV) = P;rg.
By definition of enhanced ©-data, it suffices to do this for G = T a torus. There, the problem

reduces to Lemma 5.10 and the fact that WUpj. o =pj. identifies with the Brylinski—Deligne
classification functor CExt(T, Kz) — ©F (A7;Pic) after an w-shift ([13, §2]). O

5.7. Usual factorization twistings.

5.7.1. We now fix a semisimple, simply connected group Gs.. The goal is to classify usual
factorization twistings on Grg,, rRan- We will deduce the following Theorem from a combi-
nation of Theorem 5.5 and the affine analogue of the Borel-Weil-Bott theorem.

Theorem 5.12. There is a canonical equivalence of strict Picard 2-groupoids:
WTW7GSC : waaCt(Gerc;Ran) ; Q(ATbC’ k)W

Proof. We use the interpretation of twistings on Y € Schﬁt,C as étale G,-gerbes on Yygr
equipped with a trivialization over Y (c.f. [26, §6]). In other words, there is a fiber sequence:

waaCt(GrGSC,Ran) — Ge:gaCt(GrGSC,Ran) — Geggjt (Gerc,Ran)7

where Ge;ﬁ;fa“ denotes the theory of additive de Rham gerbes of §4.6, and Geg, the sheaf

of étale G,-gerbes. By Theorem 5.5, we have an equivalence:

Vaeha. * Geli™ (Gra,.man) = QA7 i k).

scH

Thus it remains to prove that Ge%ft(GrGSC,Ran) is contractible.

We consider the projection 7 : Grg,, ran — Ran, and claim that each G,-gerbe canon-
ically descends to Ran. Indeed, over X! — Ran, we consider the base change of 7 as a
colimit of the Schubert stratification (c.f. §5.2.3) < Gréj‘:X, — X!. By the affine
Borel-Weil-Bott theorem, we have Hi(Gré:‘C’w, 0)=0fori>1 and HO(Gré:‘C’I, 0) 2k at
any k-point x € X (c.f. [18, Lemma 2.6]). Thus the same holds for fibers of <A at every
)\I

I
k-point. Since 7=*" is proper, flat, and X7 is reduced, the canonical map O xr — Rre> Ogr
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is an isomorphism by cohomology and base change. The same argument applies to products
of . Thus pullback defines an equivalence:

Gel*(Ran) = Geff"(Grg,, Ran)-

Finally, we argue that factorization G,-gerbes on Ran are canonically trivial. By Lemma
5.13 below, such a Gg-gerbe G is pulled back from G; along p : Ran — pt. We choose
distinct k-points z,y € X. The pullbacks z*G, y*G, (z,y)*§ all identify with G;. However,
factorization implies (z,%)*G = 2*G ®y*§ so we obtain a trivialization of G; which one can
see to be canonical. d

5.7.2.  We supply a quick calculation of the cohomology of Ran with values in G,.
Lemma 5.13. Pullback along Ran — pt induces an isomorphism k — RT'(Ran;0).

Proof. We note that RI'(Ran;O) is by definition lim; RT'(X?;0). Suppose X is proper.
Then each RT'(X?;0) is dualizable. Hence we have:

RT'(Ran x Ran; 0) 2»1}1?RF(X1 x X7;0)
= lim RI(X1;0)® lim RT(X7;0) = RI'(Ran; O) ® RI'(Ran; O).

In the second isomorphism, we have used the fact that tensoring with a dualizable object

commutes with limits. The argument of [20, §6] thus applies.
Suppose X is affine. Then RI'(X’;0) =5 I'(X!;0) and the problem reduces to the fact
that global functions on Ran are constant ([50, Proposition 4.3.10(1)]). O

6. PROOF OF THEOREM 5.5

Throughout this section, we fix a topology ¢ on Schf/tk stronger than the étale topology

and such that every object of Schﬁt,€ is t-locally smooth. Let X be a smooth curve, G a

reductive group, and G be a motivic ¢-theory of gerbes whose coefficient group A(—1) is
divisible.
The goal of this section is to prove Theorem 5.5.
6.1. Tori.
6.1.1. To prove Theorem 5.5 for tori, we recall the definition of g r as the composition:
G(Grr ran) — G (Gry comp) — O(Ar; G),
where the equivalence is already proved in Lemma 5.8.
Lemma 6.1. The canonical map Grr.comb — GIT Ran %5 an isomorphism after t-sheafification.

Proof. The map is clearly a monomorphism of prestacks.!® It suffices to check that it is
surjective in the t-topology, and we reduce immediately to the case T' = G,,,. Consider any
S-point (gc(i),L, a) of Grg,, Ran- It belongs to Grg,, compb if and only if L is isomorphic to
O(>; Mil'y@) for some \; € Z, and « identifies with its canonical trivialization. This is
indeed the case after passing to any 7-cover S — S with S smooth. O

13We are within classical algebraic geometry.
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6.1.2. Since G satisfies t-descent, the Lemma implies that we have an isomorphism:
G(GrT,Ran) l> G(GrT,comb)~ (61)

On the other hand, the map Gr;}{an — Gr7", ., is an isomorphism after t-sheafification for
all n > 1. Therefore the isomorphism (6.1) lifts to one between factorization sections, so we
have proved that ¥ r is an equivalence.

6.2. Semisimple, simply connected groups.

6.2.1. For any reductive group G with a fixed maximal torus 7', we consider the composi-
tion:

QG,G : GfaCt(GrG,Ran) %GfaCt(GrT,Ran)
= O(Ar; G) — Q(A; A(—1))

Thus Qg ¢ associates a quadratic form to any factorization gerbe. This functor will be the
basis of the classification of factorization gerbes for semisimple, simply connected groups.

6.2.2. Let Gy be a semisimple, simply connected group with maximal torus Ts.. We let S
denote the set of its simple factors. The analogous procedure to §6.2.1 defines an equivalence
of Picard groupoids:

Opic.a.. : Pic™(Grge) = Q(Ar,; Z)". (6.2)

In fact, Q(Az, ;Z)" canonically identifies with Maps(S,Z). For each s € S, the mapping
which sends s to 1 and all other elements to zero passes to the minimal quadratic form gmin,s
on Ar,, which has gmin,s(es) = 1 for a; a short coroot in @, and vanishes on components
associated to other simple factors. Under (6.2), this passes to the minimal line bundle ming
(c.f. [15]) which has a factorization structure by [48].

6.2.3. The inverse of (6.2) paired with the divisor class map defines a functor:

Q(Ar_; 7))V % A(—1) = G™*(Gre,, Ran)- (6.3)

By construction, the composition of (6.3) with Qg ¢ is the forgetful map from Q(Az,_; Z)"V ®
Z
A(-1) to Q(Ar,; A(-1)).

6.2.4. Fix a point z € X. By Lemma 5.8 applied to the trivial group, we see that every
factorization gerbe on Grg, Rran is canonically trivialized when pulled back to the unit

section. Thus the functor of restriction to x factors through the category of gerbes rigidified

at the unit point:
Res, : G (Crg.. ran) — G¢(Cra., o). (6.4)

sCs

Lemma 6.2. The composition of (6.3) with Res, is an equivalence:

sC»

QA1 2)" @ A(-1) = G(Grg,, z)-
Z

In particular, G¢(Grg,, o) is discrete.
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Proof. By the product decomposition (Lemma 4.4), we reduce to the case S = {1}, i.e., G
is simple and simply connected. We shall denote it simply by G. Choose a uniformizer ¢
of O x,¢ and identify Grg , with the étale quotient G((¢))/G[¢t]. Recall that the morphism
p: Flg = Grg ¢ is an étale-locally trivial fiber bundle with typical fiber G/B.

We first observe that G°(G/B) is canonically isomorphic to Maps(A, A(—1)) for A the
set of simple roots. Indeed, a gerbe rigidified at the unit point e of the big Bruhat cell N~ e
must be trivialized over N~ e (Property (A)). The complement of N~ e is an effective Cartier
divisor whose irreducible components are labeled by A. An appliction of Properties (RP1)
and (RP2) shows that G¢(G/B) — Maps(A, A(—1)).

Therefore, the product decomposition and étale descent shows that

p*: G*(Grg ) — G*(Flg)

is fully faithful, and its image identifies with fiberwise trivial objects. Since Grg , is con-
nected, the condition on fiberwise triviality is equivalent to triviality along the unit fiber
G/B <= Flg.

Next, we classify gerbes on Flg using a geometric descrlptlon given in Faltings [15, The-
orem 7). To recall, let e € Flg denote the unit k-point. Write I~ for the subgroup of G [t=1]
which is the preimage of N~ under the quotient map G[t~1] — G. For each n > 1, write
I~ (n) for the subgroup of I~ whose projection mod ¢~ is contained in T[t~!]. Then the
I~ -orbits on Flg are parametrized by the affine Weyl group W2 and

I~we C [-w'e <= w' < w in the Bruhat ordering.
Consider a subset A C W with the property that w € A implies w’ € A for all v’ < w.
Then Q4 := U,ea wl~eis an open, I~ -invariant subset of Flg. For sufficiently large integer
n, the quotient (as étale sheaves) Q4 /I (n) is represented by a smooth scheme (Lemma 6
of loc.cit.), and furthermore, the I~-orbits in 24 are preimages of affine spaces:

[~ wel— Q4

l !

Adc—>QA/IO_(TL)

and I~ we is of codimension I(w).

We now make the observation that I- (n) has a contracting G,,-action by scaling t
(c.f. §4.3). Indeed, G[t~!] already admits a contracting G,,-action which preserves I~ (n).
The fixed-point locus in G[t™!] is the subgroup G and we have I~ (n)NG = {1}. By Lemma
4.3, G(24) identifies with G(Q4 x IQ_(n)'), so étale descent implies an equivalence:

G(Qa/I"(n)) = G(Qa).

On the other hand, for A sufficiently large, the complement of the big cell f*e/f’ (n)

in Q4/I(n) is the union of effective Cartier divisors corresponding to the set of simple
affine roots A = A LU {f}. Thus an argument as for the usual flag variety implies that
Ge(Q4/1(n)) = Maps(A*T A(—1)). Summarizing, we have:

Ge(GI‘G,w) — Ge(Fl(;) 1) GG(QA)
& GE(Qa /1 (n)) = Maps(A*, A(—1)).
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It remains to observe that the restriction G¢(Flg) — G¢(G/B) to the unit fiber passes to
the restriction of functions Maps(A®f, A(—1)) — Maps(A, A(—1)), and furthermore, the
gerbe § € G¢(Grg) corresponding to the function with value a € A(—1) at 6 is precisely
the ath power of the minimal line bundle on Grg ;. O

6.2.5. We now analyze the process of restriction to x € X. Let A’ denote the abelian group
Q(Ar,,Z)V @ A(—1) = Maps(S, A(—1)). Write GG, /xn for the (small) étale sheaf on
Z sC

X" whose value at S — X" is the strict Picard 2-groupoid of gerbes on Grg, ran X S
Ran
trivialized at the unit section. For n = 1, the functor (6.3) defines a morphism of étale

sheaves on X:
A/)( - GEFGSC/X' (65)

By Lemma 6.2 and Property (B), the stalks of (6.5) at any k-point x € X are mutual
retracts. Hence (6.5) is an isomorphism. Now, the divisor class map and (5.3) induces a
morphism:

0 —Picg,, /x1 @ A1) — Rierdy o@D 1y (Arlg).Rjes Ay (6.6)

\Ldiv l% lJ[=IT1-1 )

é

Garcsc/xz ——— Wi Ay — @IJII:_\)}‘\I—I(AI_»J)* Mjcs Ay
Here, the morphism Garcsc /X1 X1 A’y is defined by restriction away from all diagonals
using (6.5). By checking on stalks using Property (B), we see that div is also an equivalence.
This implies that G¢,, - /X1 identifies with kernel of the map 4.

Since ¢ is defined by taking difference along each diagonal, we see that restriction to
r € X defines an equivalence:

Ge(GrGSC,Ran) = Ge(GI'G m)

scs

Tautologically, the functor Res, (6.4) factors through the above equivalence.
Lemma 6.3. The functor Res, is fully faithful.

Proof. 1t remains to prove that the forgetful functor:
GfaCt(GermRan) — Ge (GermRan)

is fully faithful. Since rigidified gerbes on (GermRan);igj are classified by the discrete abelian
group A’ x A’, a factorization structure is unique if it exists. g

6.2.6. We now finish the classification for G..

Lemma 6.4. Let Gy be a semisimple, simply connected group. Then Qg,c has image in
Q(Ar.,., A(=1)W. and defines an equivalence:

restr
Vg 6. : GP(Gre,.) = QA ; A(=1))re.

restr-

Proof. Recall that Q(Az,; A(—1))W,, identifies with Q(Az, ;Z)" @ A(—1) (Lemma 5.2).
z

restr
We have seen that there is a factoring of its embedding inside Q(Ar._; A(—1)) as follows.

Qa,c

QA7,.; A(-1)iser — GP(Gre,.) = QA7 A(-1)).

restr c

The first functor is an equivalence by combining Lemma 6.2 and Lemma 6.3. O
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6.3. Construction of Vg.

6.3.1. We start with a mild generalization of the classification result for semisimple, simply
connected groups. Let G be a reductive group whose derived subgroup Ggey is simply
connected. Denote by T; the quotient torus G/Gge:. We know by [48, Lemma 3.4] that
the projection Grg ran — GI'7y Ran is an étale fiber bundle with typical fiber Grg,,, Ran- In
other words, to every S-point of Grr, ran One can associate an étale cover S — S and an
isomorphism:

S x Grg,, =S x Grggram- (6.7)

Ran Grr; Ran

6.3.2.  We will now identify the fiber of Qg ¢ (see §6.2.1) when Gge, is simply connected.

Lemma 6.5. Suppose Gyer is simply connected. Then pulling back along Grgran —
Gr7, Ran defines a fiber sequence of strict Picard 2-groupoids:

GfaCt(GrThRan) - GfaCt(GrGyRan) - Q(ATder; A(-1)).
Proof. Let Ggyg/Gry, denote the étale sheafification of the presheaf on Grr:
S ~ Cofib(G(S) — G(S W GrG Ran))-

I'T; ,Ran
Let Picg,, /Grr, be the analogously defined étale sheaf where we replace G by Pic. We
claim that the divisor class map Picgrq/Gry, (%) A(-1) — GGrg/Gry, 18 an isomorphism.

Indeed, it suffices to show the map on presheaves is an étale local equivalence. Take any
S-point of Grp,, an étale cover S together with an isomorphism (6.7) reduces the claim to
identifying the cofibers of the horizontal maps:

Pic(S) ® A(—1) — Pic(S x Grg,, ) ® A(=1)
Ran Z

Z
| !
G(S5) G(S X Cra,.)

This in turn follows from the identification Picarcder/X’ %) A(-1) — GEercr/XI of (6.6).

In particular, G /Gry, 18 étale locally isomorphic to a subsheaf of KA’y (see §6.2.5).
Then the argument of [48, §3.4.3] applies. Namely, starting with a section g of Gg,, /Grr,
over Grry Ran, the hypothesis shows that g vanishes over the unit section. To obtain the
vanishing of the restriction ¢ to the connected component Gr%l, we consider the section

-)

g™ over Gr% . The fact that ¢(»~*) vanishes over the diagonal in X? implies that

g™~ hence g™, vanishes. The vanishing of the sections g()‘l) with || > 2 then follows
by restriction away from the diagonals (see [18, §3.4.3] for details). O

6.3.3. Let us control the type of quadratic forms that can arise from factorization gerbes.
We remove the assumption on Gger and instead consider any reductive group G.

Lemma 6.6. The image of Qg is contained in Q(Ar; A(—1))MV.

restr-

Proof. Let § € G''(Grg ran) and ¢ := Qg.c(3). We need to establish the following
identities for each simple co-root «; and co-character A € Ar.
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(a) q(sa,(A) = q(N);

(b) K(a,A) = (s, A)g(ai).

Consider the parabolic subgroup P C G generated by T and «;. The quotient of P by its
nilradical Np is a reductive group M of semisimple rank 1. We have the following maps:

GrpRan
N

GrG,Ran GrM,Ran .

We observe that q is an étale fiber bundle with typical fiber Gry, ran. On the other
hand, there is a contracting G,-action on Gry, ran given by the co-root o; whose fixed
point locus is the unit section. By Lemma 4.3 and étale descent, we see that p*G canonically
identifies with q*Gj, for some Gy € GfaCt(GrM’Ran). Regarding «; as a co-root of M, we
reduce the problem to reductive groups of semisimple rank 1, with unique simple co-root a.
Such a group G must be the direct product of a torus T with G; = SLy, GLo, or PGLs.

To verify (a), we exhibit two paths 71,72 : Al — G such that:

7110) =€, M(1)=7(1), 72(0) =34

where 5, a lift of s, € W to G. For instance, we may set 71,72 to be identity on the factor
T1 and be given by the following matrices for the G; factor:

wo=(g ) o=, 7Y

As G acts on itself by inner automorphisms, we have action morphisms A x Grg ran —
Grg,Ran defined by vy, and 72. Pulling back § produces two factorization gerbes G, , G, on
A! X Grg Ran. Thus Al-invariance (Lemma 4.3) gives isomorphisms:

§ = m(1)'G = 12(1)"G = 5.8
This proves identity (a).

For identity (b), we only need to consider the case G = Tj x SLy as the other two cases
are vacuous (c.f. §5.3.2). We claim that external product defines an equivalence:

GfaCt(GrTl,Ran) X GfaCt(GrSLQ,Ran) ; GfaCt(GrG,Ran)'

Indeed, given § € Gf*(Grg), pulling back along Grg Ran — GrsL, Ran — GT@.Ran and
taking the quotient, we obtain a gerbe §; € Gf°t(Grg) whose associated quadratic form
vanishes on Ar, . Since SLy is simply connected, Lemma 6.5 applies and we see that G is
pulled back from Gry, ran. Having the product decomposition, the desired identity follows
from the classification for semisimple, simply connected groups (Lemma 6.4). (]

6.3.4. We now combine the above ingredients to build the classification functor:
\IIG : GfaCt(GrG,Ran) — @G(AT; G)

Indeed, given G € Gf“t(GrG,Ran), the procedure of §6.2.1 produces a ©-datum (¢, §™) €
O(Ar; G). Lemma 6.6 shows that ¢ indeed lies in Q(Ap; A(—1))

restr-
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It remains to produce the isomorphism €. Indeed, the restriction of G to Gréd Ran 18 the

Al
factorization gerbe classified by q| A via Lemma 6.4. Thus we obtain an isomorphism
T,

of ©-data for the lattice ATder by furf&oriality of pullback along the following diagram.
G

rfder,Ran Gréder,Ran

: ’

GrT,Ran E—— GrG,Ran
6.4. Vg is an equivalence.

6.4.1. Our final goal is to prove that the classification functor g, constructed in the
previous subsection, is an equivalence of categories. In order to do so, we will first perform
a reduction using the following geometric input.

Lemma 6.7. Suppose G’ — G is a map of reductive groups whose kernel is a torus. Then
the morphism Grg: Ran — GIg Ran 15 Surjective in the t-topology.

Proof. One takes an S-point of Grg represented by ("), P, «). By the Drinfeld-Simpson
theorem, we may assume that P¢ is Zariski-locally trivial after an étale cover of S. A reduc-
tion of the datum (Pg, a) to the structure group G’ is thus equivalent to the trivialization
of a section of i'T'[2] in the Zariski topology of S x X, where i denotes the closed immersion:

U Fw(i) i) S x X <i U{a:(i,)}.
i€l
We shall show that over a t-cover S — S with S smooth, every section of i'T[2] admits

a trivialization. To prove this statement, one reduces to T' = G,,,. The canonical triangle
i'Gyy = Gy, — R, G,, induces a long exact sequence:

Pic(S x X) = Pic(Ug,wy) = HA(S x X;i'G,n) — 0.
The map on Picard groups is surjective by smoothness of S. Thus H2(§ xX:i'G,,)=0. O

6.4.2. Recall that a z-extension of G is a short exact sequence of reductive groups:
12T, =G =G —=1.

where the derived subgroup G/, C G’ is simply connected. Its existence is assured by the
combinatorics of root data (c.f. [39, Proposition 3.1]). We fix a z-extension of G and let T}
be the quotient torus G'/GY,,. Then the quotient of lattices Ap, /Ap, identifies with 7 G.

6.4.3. One sees directly that T, is central in G’. Thus the Cech nerve of G’ — G is in
fact a co-simplicial system of group schemes G’ x Ty. Since the formation of the affine
Grassmannian commutes with product of groups, we see that the Cech nerve of Grg/ Ran —
Grg Ran is co-simplicial system of prestacks Grg/ w13 Ran-

We have a commutative diagram of strict Picard 2-groupoids:

\JeNel

G (Grg Ran) ' Oc¢(Ar; G)

\L \IIG,G/XTQ. \L

lionp GfaCt(GrG/XTQ',Ran) — > lionp eg(ATle20 ) G)
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Lemma 6.7 shows that the left vertical arrow is an equivalence. A direct argument shows
that the right vertical arrow is an equivalence as well. Therefore, in proving that ¥g ¢ is
an equivalence, we may assume:

—the derived subgroup Gaer is simply connected.

6.4.4. Under this assumption, we can write T3 = G/Gger and Ap, is isomorphic to mG.
Lemma 6.8. Suppose Gqer 15 simply connected. Then Vg g is an equivalence.

Fully faithfulness. Since Vg ¢ is a morphism of strict Picard 2-groupoids, it suffices to show
that ¥ has contractible fiber at 0 € ©¢(Ar; G). Let (G;a) be an object of the fiber, so
G € G (Grg ran) and a is a trivialization of its image (¢, 3™, e) € O¢(Ar; G). Since
g =0, Lemma 6.5 implies that § descends to a factorization gerbe G; over Grr, Ran-

By the classification for tori (§6.1), we see that G; corresponds to an object in O(Ar; G)

with vanishing quadratic form, i.e., an object of Hom(Ar,, G(X)). In particular, the datum
of the trivialization « is equivalent to a trivialization of Gi. O

Essential surjectivity. We have a morphism between fiber sequences of strict Picard 2-
groupoids, where the top fiber sequence comes from Lemma 6.5 and the classification for
tori.

Hom(Ar,, G(X)) — G (Grg gan) - Q(A7; A(—1)).

restr

HOI’II(AT1 y G(X)) E—— @G(AT; G) — Q(AT; A(*l))W

restr

By the 4-lemma, it is enough to show that « is surjective. We note that the determinant
line bundle construction (5.4) gives a section:

Dies A1)
det
/ \LKil

G"!(Grg Ran) == Q(AT; A(=1)){sir
Thus, by Lemma 5.1, it remains to consider quadratic forms pulled back from Q(Az, ; A(—1)).
However, each such form ¢ lifts to some ©-datum (g, ) € ©(Arz,; G) after choosing a
square root %q. Indeed, such choice is possible because Ar, is free and A(—1) is divisible.
We are thus done by the section v:

O(Ar; G)
|

GfaCt(GrG7Ran) —(I) Q(AT; A(—l))w

restr

constructed by composing the equivalence W'y : ©(Ar; G) = G (Gry, ran) with the
pullback along Grg ran — Gr7; Ran- O

O(Theorem 5.5)
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