HALF-INTEGRAL LEVELS

YIFEI ZHAO

To James Tao

ABSTRACT. We construct equivalences among four notions associated to a reductive
group scheme G: factorization super central extensions of the loop group of G by G,
subject to a condition on the commutator, factorization super line bundles on the affine
Grassmannian of G, rigidified sections of a quotient of 2-truncated K-theory over the
Zariski classifying stack of G, and combinatorial data defined by Brylinski and Deligne
in a conjectural extension of their classification theorem.
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“Is this what it feels like to end?”
“I do not know, for this is not our end.”

—Kindred

INTRODUCTION

Let k((t)) denote the field of formal Laurent series with coefficients in a field k. Tate
[Tat68] discovered a remarkable central extension of its group of units k((t))* by k*:

1> k™ = Grate ~> k(1) > 1. (0.1)

The preimage of a € k((¢))* in %rate consists of nonzero elements of the relative determinant
line det(ak[[t]] | k[[t]]), where k[[¢]] c k((¢)) is the lattice of formal Taylor series.

If we think of k((¢))* as the k((¢))-points of the algebraic group G,,, then the follow-
ing question arises: for a reductive group G, what are the “natural” central extensions of
G(k((2))) by k*?

Brylinski and Deligne [BD01] parametrized a large class of central extensions of G(k((t)))
by k* using K-theory, as follows. Denote by Ko the Zariski sheafification of the second
algebraic K-group. Starting with a central extension on the big Zariski site of Spec(k):

1-Ky—>E->G-—1, (0.2)

evaluating at Spec(k((t))) and pushing out along the tame symbol Ko (k((t))) - k*, we find
a central extension of G(k((¢))) by k*. They went on to give a complete classification of
central extensions (0.2), valid over any regular base scheme of finite type over a field [BDO01,

Theorem 7.2]. However, no central extension of G,, by Ko produces Tate’s central extension
(0.1). This led Brylinski and Deligne to pose [BD01, Questions 12.13(iii)]:

“For V = k[[t]], not all natural central extensions by k™ are captured by 12.8. [..] We
expect that ‘natural’ central extensions of G(K) by k* are attached to data as follows: a
Weyl group and Galois group invariant integer-valued symmetric bilinear form [...]”

Our first goal is to find an enlargement of the groupoid of central extensions of G by Ko
and prove that it meets the expectation of Brylinski and Deligne. To this end, we introduce

a Zariski sheaf of connective spectra K?‘fp;]r and establish the following result.

Theorem A (Theorem 2.2.3). Let X be a regular scheme of finite type over a field and
G be a reductive group X-scheme equipped with a maximal torus T. The following Picard
groupoids are canonically equivalent:

(1) rigidified sections of K?fp;ir over the Zariski classifying stack BG;

(2) triples (b, A, ¢) defined in [BDO1, Questions 12.13(iii)].

super
7[172]
over BG a central extension of G(k((t))) by k. In fact, the result will carry a canonical

Given a k((t))-point of X, it is straightforward to produce from a rigidified section of
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Z/2-grading, hence a “super central extension”. This includes Tate’s central extension in
the special case G = G,,,.

The second goal of this article is to prove that this passage from K-theory to super central
extensions of the loop group is reversible if one remembers an additional piece of structure
called “factorization”.

As observed by Beilinson and Drinfeld [BD04, Dri06], the construction of %rat. globalizes,
over any smooth curve X, to a factorization super central extension of the formal loop group
ZLG,,. Intuitively speaking, this additional structure describes the behavior of %yt as one
formal loop on X “factorizes” into two. The following result shows that factorization super
central extensions of the loop group .ZG, subject to a “tame commutator” condition which
is automatic in characteristic zero, admit a parametrization parallel to Theorem A.

Theorem B (Theorem 3.4.5). Let X be a smooth curve over a field and G be a reductive
group X-scheme. The following Picard groupoids are canonically equivalent:
(1) factorization super central extensions of LG by G, with tame commutator;
(1°) factorization super line bundles over the affine Grassmannian Grg;
(2) triples (b,A,p) defined in [BDO1, Questions 12.13(iii)] up to a “twist”—if G is
equipped with a maximal torus.

Upon choosing a ¢-characteristic, i.e. a square root w'/? of the canonical line bundle of
the smooth curve X, the “twist” mentioned in (2) disappears. The Picard groupoids in The-
orem A then become canonically equivalent to those in Theorem B, forming a commutative
diagram:

A(1) —=— B(1)

E

B(1") (0.3)

E

A(2) —— B(2)

1

In fact, the equivalences in (0.3) are the “half-integral” generalizations of a family of
equivalences which are valid without the choice of a 1J-characteristic.

Corollary C (Corollary 3.4.7). Let X be a smooth curve over a field and G be a reductive
group X-scheme. The following Picard groupoids are canonically equivalent:

(1) central extensions of G by Ko on the big Zariski site of X;

(2) factorization central extensions of LG by G, with tame commutator;

(3) factorization line bundles over Grg;

(4) triples (Q,K,cp) in [BDO1, Theorem 7.2|—if G is equipped with a mazimal torus.

This corollary already improves the current state of knowledge. Indeed, an equivalence
between the Picard groupoids (1) and (3) was conjectured in Gaitsgory—Lysenko [GL18] and
established in [Gai20, TZ21] under the additional assumptions that G is split and a certain
integer N is invertible in the ground field. The equivalence supplied by Corollary C is valid
for any reductive group X-scheme.

In the literature on covering groups in the equicharacteristic setting, the existence of
factorization (super) line bundles over the affine Grassmannian Grg with favorable prop-
erties is sometimes stated as an assumption, see e.g. [Lysl6, Lys17] and [Lafl8, §14]. The
combination of Theorems A and B produces them unconditionally.
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It is worth mentioning that Theorem B is nontrivial already for G = G,,. Indeed, fibers
of the affine Grassmannian Grg,, over geometric points of X are highly nonreduced formal
schemes. The groupoid of (super) line bundles over Grg,, does not appear to have a clean
description, but the equivalence (1’) 2 (2) of Theorem B shows that the factorization ones
do. Moreover, the equivalence (1) 2 (1’) shows that factorization (super) line bundles over
Grg have canonical multiplicative structures over .ZG. Unless G is simply connected, this
assertion is not an obvious consequence of existing results.

From a differential geometric perspective, one could trace the conceptual origin of Corol-
lary C to works on Chern—Simons theory. Indeed, Dijkgraaf and Witten [DW90] first rec-
ognized that the quantization parameter, or integral “level”, of Chern—Simons theory for a
compact Lie group G is best understood as an element of the reduced cohomology group
H%(BG,Z). Suitably categorified, such an element transgresses to a central extension of the
loop group of G by U(1). A recent theorem of Waldorf [Wall7] showed that this transgres-
sion procedure is reversible if one remembers the “fusion” structure of the target.

In the algebraic context, H2(BG,Z) should be replaced by the reduced weight-2 motivic
cohomology group of BG, which classifies central extensions of G by Ko via the isomorphism
of [EKLV9S] (see also [Gai20, Theorem 6.3.5]):

H! (B, Zunor (2)) > H2(BG,Ko). (0.4)

Hence, a central extension of G by Ko can be thought of as the algebraic notion of an integral
level and Corollary C provides four equivalent descriptions of it.! The equivalence (1) = (2)
of Corollary C is a direct analogue of Waldorf’s theorem.

With this understanding, we propose to encode the algebraic notion of a half-integral
level by the Picard groupoids in (0.3). In fact, Dijkgraaf and Witten [DW90, §5] already
observed that on spin manifolds, formally dividing a class in H2(BG, Z) by 2 sometimes leads
to physically meaningful quantities. To interpret these “half-integral characteristic classes”
as rigidified sections of K?fp;jr over BG, we note that the natural inclusion of abelian groups
below has a 2-torsion cokernel:

HZ(BG,K,) e mol'e (BG, K[\, (0.5)

In the example of Tate’s central extension, we have the equality 2-[Tate] = [¢;]?, where
[c1] denotes the first Chern class of the universal line bundle over BG,,, so [¢1]? generates
the abelian group H?(BG,,,K>), while [Tate] is half-integral.

Another example is the “critical level”, i.e. Beilinson and Drinfeld’s Pfaffian [BD91, §4],
representing half of [c2] of the adjoint bundle over BG. It is half-integral precisely when
the half sum of positive roots p is not an integral weight. Indeed, one of the applications
of Theorem A is that it gives a new construction of the Pfaffian line bundle on the moduli
stack of G-bundles on a spin curve (see §2.5).

Half-integral levels in our sense give rise to super conformal blocks on spin curves, as
predicted by [DW90], although we do not attempt to fully develop this notion here.

Let us now explain the structure of this article and comment on the proofs.

Structure of the article. This article is divided into two parts which can be read inde-
pendently. The first part proves Theorem A and the second part proves Theorem B.

I This algebraic notion is naturally associated to the chiral Wess—Zumino-Witten (WZW) model. We
also mention that Henriques [Hen17] proposed a definition of integral levels for the chiral WZW model via
vertex algebras, while our notion is more directly related to chiral algebras, see [BD04, Roz21].
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In §1, we define KETPZ? using a small but essential amount of homotopy theory. Namely,

it is set to be the cofiber of a morphism of Zariski sheaves of connective spectra:
Sq: BK1 - K1 2)- (0.6)

Here, Ky and K[y o) are the Zariski sheafified truncations of the K-theory spectrum. We also
explain how to integrate sections of Kﬁf’;r over a global spin curve.

In §2, we prove Theorem A. The proof combines [BD01, Theorem 7.2] with our description
of K[1,2] obtained in §1.

In §3, we formulate Theorem B. To define the notion of “tame commutator”, we make
essential use of the Contou-Carrere symbol over the Ran space, as constructed in Campbell—
Hayash [CH21]. One of the phenomena we observe here is that the condition of having “tame
commutator” is automatic in characteristic zero. This fact turns out to be equivalent to a
new universality statement for the Contou-Carrere symbol.

Corollary D (Corollary 3.3.9). Let X be a smooth curve over a field k with char(k) = 0.
Then any pairing £G,, ® LG, > Gy, compatible with factorization is an integral power of
the Contou-Carrere symbol.

We deduce this corollary from a surprising theorem of Tao [Tao21a], which asserts that
the presheaf Grg,, over the Ran space is reduced in a suitable sense, provided char(k) = 0.
The assertion of Corollary D is false if char(k) > 0. We do not use it in the proof of Theorem
B, which is valid in arbitrary characteristics.

In §4, we prove Theorem B. Our strategy is to first construct functors among the Picard
groupoids in Theorem B:

(1) = (1) = (2). (0.7)
Our previous work [TZ21] shows that the second functor is fully faithful. Here, we prove
that the composition (0.7) is an equivalence by exploiting the group structure inherent in
(1). In our approach, each of the equivalences (1) 2 (2), (1’) = (2) is established using special
cases of the other in iteration, so we do not obtain one without the other.

Finally, we mention a shortcoming of this article: the top horizontal functor appearing in
(0.3) is defined ad hoc as the composition of the other functors. It should have a conceptually
transparent description as a “transgression” along the space of formal loops:

. supery - _super
/(ﬁ’wl/z).re(BG,K[m]) Hom(ZG, Pic"Per), (0.8)

as in the differential geometric context, but we are unable to find such a description. One
difficulty seems to be that we do not understand the behavior of Zariski-sheafified K-groups
over singular spaces such as ZG. An attempt at defining (0.8) as a “transgression” in the
integral case, i.e. for sections of K5[2] over BG, was made in Kapranov—Vasserot [KV07],
but it relies on [KV07, Proposition 4.2.1] which is false as stated. A different strategy was
carried out in Gaitsgory [Gai20], but it requires the hypothesis that Ng be invertible in the
ground field, which we wish to avoid.

Acknowledgements. James Tao has made the most important contibution to all problems
considered in this article. This includes not only his published works on this topic [Tao21a,
Tao21b, TZ21], but also numerous ideas communicated to me during our collaboration. It
is with profound gratitude and humility that I dedicate this article to him.

I thank Michael Finkelberg for fruitful e-mail exchanges and for his interest in Theorem
B in relation to [BDF*22]. I thank Jodo Lourenco for the proof of Lemma 4.3.4.

Finally, I thank Dennis Gaitsgory for initiating me into factorization structures and for
teaching me many things along the way.
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Part 1. K-theory

LG

The main goal of this section is to introduce the Zariski sheaf of connective spectra Ki?pﬁr

The first section §1.1 reviews necessary notions concerning algebraic K-theory. In §1.2, we
give a “hands-on” description of the truncation Kp; ;. Using this description, we are able
to define KETp;]r in §1.3. The material of §1.4 is not needed in the sequal: its goal is to show
that sections of K725 can be integrated over a global spin curve relative to a regular base

scheme S to yield a’super line bundle over S.
1.1. Connective K-theory.

1.1.1. Let Spc denote the co-category of spaces. It is a symmetric monoidal co-category
under the Cartesian product.

Write Mong_, (Spc) for the co-category of Eo-monoids in Spe. It contains a full subcate-
gory Grpg_ (Spc) consisting of grouplike Eo-monoids. The forgetful functor Grpg_ (Spc) —
Mong_ (Spc) admits a left adjoint, called group completion:

QB : Mong_ (Spc) - Grpg_ (Spc). (1.1)

Let Sptr denote the oo-category of spectra. We use homotopical grading and denote by
Sptr,, the full subcategory of connective spectra.
There is a canonical equivalence of co-categories [Lurl7, Remark 5.2.6.26]:

Grpg_ (Spc) = Sptry. (1.2)
We shall also use without explicit mention the equivalence between Picard groupoids and
1-truncated connective spectra.

1.1.2. Let R be a commutative ring. Denote by Vect(R) the category of finitely generated
projective R-modules and Vect(R)# its maximal subgroupoid. The operation of direct sum
equips Vect(R)® with a symmetric monoidal structure. Its image under (1.1) is by definition
the connective K-theory K(R) of R.

We shall view K(R) either as a grouplike E.-monoid or as a connective spectrum, using
the canonical equivalence (1.2).

Note that the unit of the adjunction between (1.1) and the forgetful functor supplies a
morphism of E..-monoids:

Vect(R)* = K(R), &~ [&]. (1.3)

1.1.3. We equip Mong_ (Spc) and Grpg_(Spc) with the canonical symmetric monoidal
structure of [GGN15, Theorem 5.1]. With respect to these symmetric monoidal structures,
(1.1) is symmetric monoidal. Hence it lifts to a functor of E.-monoids:

OB : Mong_ (Mong,__ (Spc)) - Mong_ (Grpg_ (Spc)). (1.4)

The right adjoint of (1.1), being lax symmetric monoidal, also lifts to a functor of E.-
monoids and supplies the right adjoint of (1.4), see [GGN15, Lemma 3.6].

The operation of tensor product upgrades Vect(R)= into an E.-monoid in Mong_, (Spc).
Thus K(R) acquires an Eo-monoid structure in Grpg_(Spc) (i.e. K(R) is a connective
Ec-spectrum) such that the unit (1.3) is symmetric monoidal.

Remark 1.1.4. Informally, the symmetric monoidal structure on (1.3) says that for each
pair of objects &1, & € Vect(R)%, [61 ® &] is canonically equivalent to [&1]-[&2], together
with the homotopy coherence data.
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1.1.5. For any integer a, we write Ky,(R) (resp. Ko (R)) for the truncation 75,K(R)
(resp. 7<oK(R)). For a pair of integers a < b, we write K[, ] := 7247t K(R). We also use
K4 (R) to denote Q%K q1(R) = 1, K(R).

The association S = Spec(R) — K(R) defines a presheaf K of connective Eo,-spectra on
the category of affine schemes. Let K denote its sheafification in the Zariski topology.

Zariski sheafification of the truncated presheaves above define K., K<, K, 57, and K,.
Since sheafification is t-exact, the forgetful functor from presheaves of spectra to sheaves of
spectra is left t-exact. Hence K., is a-truncated as a presheaf of spectra, i.e. its value at
any R has vanishing homotopy groups above degree a.

Remark 1.1.6. For example, the map sending & € Vect(R)= to its determinant line bundle
det(&) induces an isomorphism of sheaves of Picard groupoids:

K[0,1] > PiCZ,

where Pic” sends R to the Picard groupoid of Z-graded line bundles on Spec(R), see [BS17,
Proposition 12.18].

1.2. The sheaf K[; 5].

1.2.1. The goal of this subsection is to give an explicit description of K[y o3.
More precisely, we consider the fiber sequence defined by truncation:

B2K2(R) - K[1,2](R) - BKi(R)
for each ring R, which induces a fiber sequence of Zariski sheaves of connective spectra:
B’K2 - K191 > BK1. (1.5)
Our description will be that of the fiber sequence (1.5).

1.2.2. Denote by Pic(R) c Vect(R)* the full subcategory of line bundles over Spec(R).

The map (1.3) induces a morphism of the underlying pointed spaces Pic(R) — K(R)
sending .Z to [.£] - [€]. Thus, we obtain a morphism of Zariski sheaves of pointed spaces,
without changing the same notation:

Pic-K, Z~[Z]-[0] (1.6)

Since the class of [.Z]-[0] in Ko(R) vanishes Zariski locally on Spec(R), the morphism
(1.6) factors through K.; and we may compose it with the truncation map K. — Kf; o] to
obtain a map of Zariski sheaves of pointed spaces:

s:Pic —» K[1,2]' (17)
The description of Ky 1] via determinant (Remark 1.1.6) shows that (1.7) is a section

of (1.5) on the underlying sheaves of pointed spaces, i.e. the composition of (1.7) with the
truncation map Kp; o) - BK; is the canonical isomorphism Pic 5 BK;.

1.2.3. Let & be a site and A1, Ay be sheaves of abelian groups over €.
Consider the following two groupoids:

(1) the groupoid of extensions A of B(A1) by B?(Ay) as sheaves of connective spectra,
equipped with a section s: B(A1) = A of the underlying sheaves of pointed spaces;
(2) the (discrete) groupoid of anti-symmetric pairings A; ® A; - As.
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Let us construct a functor from (1) to (2):
B(A1)
e L fo el (1.8
B*(A2) — A — B(A1)
Indeed, the section s defines a “cocycle” morphism of sheaves of spaces:
B(A1) xB(A1) - B*(Az),  (z,9) = s(z +y) - s(x) — s(y). (1.9)

The morphism (1.9) is bi-rigidified in the following sense: it is equipped with trivializations
along B(A1) x e and e x B(A1), which are isomorphic over ¢ x e.

To such a morphism, we may apply the loop space functor in the first, then the second
factor, to obtain a map:

Al XAl —>A2. (110)

Lemma 1.2.4. The map (1.10) is bilinear and anti-symmetric. The resulting functor (1.8)
18 an equivalence of groupoids.

1.2.5. The proof of Lemma 1.2.4 proceeds by first giving an alternative definition of the
functor (1.8) which is evidently an equivalence, and then showing that it coincides with the
construction above.

First, we observe that groupoid (1) is equivalent to the groupoid (1’) of extensions A’
of Ay by B(Az) as sheaves of connective spectra, equipped with an E;-monoidal section
A; - A’. The equivalence is given by the functors  and B.

Put differently, the groupoid (1’) consists of symmetric monoidal structures on the sheaf
of associative monoids B(As) x A; such that the inclusion and projection functors:

B(AQ) C B(Ag) X A1 g Al

are symmetric monoidal.
Such symmetric monoidal structures are in turn given by commutativity constraints on
B(A2) x Ay vanishing on B(Aj), which are anti-symmetric bilinear pairings:

A1 ®A1 —>A2. (111)

Indeed, the commutativity constraint for two objects x,y € B(A3) x A; is an isomorphism
TY 5 y ® x which depends only on the classes of z,y in A;. Such an isomorphism is the
multiplication by a unique element of As. The hexagon and inverse axioms translate to the
bilinearity and anti-symmetry of the resulting map A; x A} - As.

The procedure above establishes an equivalence between the groupoid (1) and such pair-
ings. Hence, it remains to prove that the pairing (1.11) extracted from any object of the
groupoid (1) concides with (1.10). This follows from the observation in topology below.

1.2.6. Let M, N be E;-monoids in Spc and let s: M — N be a morphism of pointed spaces.
Then we may construct two maps of spaces:

Q(M) x Q(M) :; Q2(N). (1.12)

The map s; is given by applying 2 to the first, then the second factor, to the bi-rigidifed
map of spaces:

MxM->N, (z,y9)~s(z+y)-s(z)-s(y). (1.13)
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The map s3 uses the E;-monoidal morphism Qg : Q(M) - Q(N) induced from s and sends
two loops a,b € Q(M) to the following loop in Q(N):

15 Q(a+b) - ((a) + Qs(b))

5 Qu(b+a) - (2(b) +Qs(a)) = 1. (1.14)
where the first and last isomorphisms are defined by the E;-monoid structure on €2, and the
middle one is defined by the braidings? on Q(M) and Q(N).

Claim: there is a homotopy equivalence s; 5 5.

To prove the claim, we choose as our model for “spaces” topological spaces having the
homotopy type of a CW complex, see [Lurl8, 012Z] for its equivalence with the standard
model using Kan complexes.

The monoidal operation on Q(M) can be viewed as concatenation of loops and the braid-
ing is given as follows. For two loops a,b € Q(M) we find a morphism:

[071] X [011] _>Ma (tlat2) Ha(t1)+b(t2)a (115)
where the sum is the E;-monoid product on M. Then (1.15) can be viewed as a homotopy
from its restriction to ([0,1]x{0})u ({1} x[0,1]) to its restriction to ({0} x [0,1]) u([0,1] x
{1}), exhibiting the braiding a + b — b+ a in Q(M).

The same description holds for the braiding in Q(N).

Now we come to the morphism s;. It carries a,b to the element of Q*(N) which is
represented by a map S? — N fitting into the following diagram:

[0,1] % [0,1] “% Mx M

l l(ms) (1.16)

2 —— N
where the left vertical map collapses the outer edges of the square.

Reading (1.16) as a homotopy from its restriction to ([0,1] x {0}) u ({1} x [0,1]) to its
restriction to ({0} x [0,1]) u ([0,1] x {1}) (both equivalent to the trivial loop in N), we see
that it is precisely the loop (1.14) defined by the braidings on 2(M) and Q(N).

The proof of the claim, and thus Lemma 1.2.4, is concluded.

1.2.7. We shall now use the equivalence of Lemma 1.2.4 to classify the fiber sequence (1.5)
together with the distinguished section s (1.7).
Namely, its image under the functor (1.8) is an anti-symmetric form:

K; 9 K; — Ko. (1.17)
Proposition 1.2.8. The map (1.17) equals the product pairing x,y — {x,y}.

Proof. Let &, % be sections of B(K1) 2 BG,,. The image of (.%,.-%) under the “cocycle”
morphism, i.e. the special case of (1.9) for A; = Kj, As = Ks:

B(K1) x B(K1) - B*(K») (1.18)
is the section in B? (K2) obtained from:
([“ e L]-[10])-([A]-10]) - ([£]-[0]) (1.19)

under the truncation map Kso - B?(K»).

2We use the term “braiding” to refer to the isomorphism a ® b Z b®a in an Eo-monoid and the term
“commutativity constraint” to refer to the same isomorphism in an Ee-monoid.
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Using the fact that (1.3) is symmetric monoidal, the section (1.19) is equivalent to ([-£]]-
[0]) - ([£] - [€]), where - denotes multiplication on K.

The map Pic - K; induced from £ ~ [£] - [0] coincides with the map B(K;) — K51
defined by truncation. Thus, (1.18) renders the following diagram commutative:

B(K:) x B(K;) " B2 (K»)

| |

Ko oKsi —— Koo

Here, the bottom horizontal arrow is the multiplicative structure on K and the vertical maps
are defined by truncations. However, the only bi-rigidified morphism B(K;) x B(K;) —
B?(K5) rendering this diagram commutative is the product pairing. O

Remark 1.2.9. Let us view the map defined by the product pairing z,y — {z,y} as a
morphism of Zariski sheaves of connective spectra:

PiC®PiC—>BQ(K2), (gl,gg) — {gl,gg}. (1.20)
Then Proposition 1.2.8 exihibits a canonical isomorphism of sections of Ky 23:
(L1 L) - s() - (L) 2 {4, Lo}, (1.21)

where s : Pic - Ky o7 is the morphism (1.7) of sheaves of pointed spaces. One may therefore
view s as a “quadratic refinement” of the product pairing (1.20).

1.2.10. Combining Proposition 1.2.8 with the alternative construction of the pairing given
in §1.2.5, we obtain an explicit description of the loop space of (1.5):

BK> — Q(K[1,27) » Ki. (1.22)

Namely, it splits as sheaves of E;-monoids, given by (1.7). The commutativity constraint
on (K 27) is described by the anti-symmetric pairing:

Kl ®Kl _)527 l’,y'—>{l',y}

1.2.11. Let R be a ring and .# be a line bundle over S := Spec(R). We shall temporarily
work over the big Zariski site of Spec(R).

Multiplication by the object [.#] € K(R) induces a morphism of sheaves of connective
spectra [.# ] : K - K, hence a morphism:

] K21~ Ko (1.23)

Since the image of [.#] in I'(Spec(R),Kp) is the multiplicative unit, multiplication by
[#] induces the identity map on the homotopy sheaves K,, for each n > 0. In particular,
we obtain an automorphism of the triangles (1.5):

B’Ky — K21 — BKy

lid l.[,/,] lid (1.24)

B°K, —— K21 — BKy

Claim: (1.23) is the sum of the identity on K[ o) with the shearing map BK; = Pic — B%K,
defined by £ — { &, .#} (in the notation (1.20)).

To see this, we may lift a section .2 of BK; to s(£) = [.£] - [0] of K1 21. The section
s(L) M2 L & M]-[A] is then the sum of s(.¥) with {&,.#} by (1.21).
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1.3. The sheaf KETI’;]Y

1.3.1. Let Pic®™P®" denote the Zariski sheaf of super (i.e. Z/2-graded) line bundles. As a
sheaf of connective spectra, it coincides with the cofiber of the map:

Z - Pic%, ne (0,2n). (1.25)

er

We could suggestively denote Pic®"P* by K?&pl] , viewing (1.25) as a morphism Ko = Ko 1
lifting the squaring map on Kj.

The goal of this subsection is to introduce the Zariski sheaf Kalp;]r
defined as the cofiber of a map lifting the squaring map on BK;:

of connective spectra,

Sq: BKy _’K[1,2]~ (1.26)

1.3.2. Let us first define (1.26) as a morphism of sheaves of pointed spaces. To do so, we
interpret BK; as Pic and define (1.26) by the formula:

Pic>Kpq, Z+~[Z]-[27"] (1.27)

More precisely, the formula . + [£] - [.£ '] defines a map Pic(R) - K(R), which induces
(1.27) upon Zariski sheafification and truncation as in §1.2.2.

We argue that the structure of a morphism of connective spectra on (1.27) is unique,
if it exists. Indeed, since (1.27) has l-connective source and target, it is equivalent to a
morphism of sheaves of E;-monoids:

[ G > QK[ 2)- (1.28)

Since (K[ 1) is 1-truncated, an E.-monoid structure on (1.28) is equivalent to the con-
dition that it preserves the commutativity constraint.
In particular, the following assertion involves no additional structure.

Proposition 1.3.3. The morphism of sheaves of pointed spaces (1.27) lifts to a morphism
of sheaves of connective spectra.

1.3.4. The proof of Proposition 1.3.3 proceeds by explicitly identifying the morphism (1.28)
using the description of Q(Kp 27) in §1.2.10.

Namely, under the E;-monoidal splitting Q(K[; 27) 2 B(K2) x Ky, (1.28) corresponds to
two [E;-monoidal morphisms:

fl :Gm _>Kl7
f2: G, = B(K2).

Lemma 1.3.5. The following statements hold:
(1) fi1 is the squaring map x ~ x*;

(2) fa is trivial as a morphism of sheaves of pointed spaces, and its Eq1-monoid structure
1s defined by the automorphism of the trivial Ko-torsor:

f2(2) ® fa(y) — fo(zy), 1w 2-{z,y},
for each x,y € G,,.

Proof. As the section (1.7) lifts the identity map on Pic  B(K; ), statement (1) follows from
the isomorphism ¥ ® (£ 1)™! 2 %2
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For statement (2), we first apply the isomorphism (1.21) to the pairs of sections ., £ €
Pic and .2, Z € Pic to obtain isomorphisms in K{; :
s(L)+s(L )2 {2,271,
2-5(2) = s(L?) - {L, %3,

where s denotes the section (1.7).
Their difference yields an isomorphism in K o):

(Z]-[ZL 7 2s(ZL?)-2-{2, 2} (1.29)
In particular, this shows that fo is given by (-2) times the loop space of the self-pairing:
Pic » B*(K,), £+~ {2, 2} (1.30)

According to [PR11, Theorem 2.5], the loop space of (1.30) is the map G,, - B(Ks2)
which is trivial as a morphism of sheaves of pointed spaces, with E;-monoid structure given,
for any x,y € G,,, by the automorphism 1 — —{z,y} of the trivial Ko-torsor. The desired
conclusion follows. O

Proof of Proposition 1.3.3. Tt suffices to prove that (1.28) preserves the commutativity con-
straint. In other words, given x,y € G,,, we must show that the following diagram of sections
of Q(K[1,2]) commutes:

f@)e fly) — f(zy)
le(m,f(y) lf(cz,y) (1.31)
fw)e f(x) — f(yx)

Here, the horizontal morphisms are given by the E;-monoid structure of f and the vertical
morphisms are the commutativity constraints of Q(Kp; 27), respectively G, (identity).

By Lemma 1.3.5, the commutativity of (1.31) is equivalent to the following equality of
sections of Ks:

2-{z,y} = {a, 9"} +2- {y, 2},
This follows at once from the bilinearity and anti-symmetry of the pairing. O

Remark 1.3.6. From the proof of Proposition 1.3.3, we see that if we replace (1.27) by the
“obvious” lift of the squaring map .Z — 2-s(.¥), it would not define a morphism of sheaves
of connective spectra.

1.3.7. Having constructed (1.27), thus Sq (1.26), as a morphism of sheaves of connective
spectra, we define K?'llpﬁr to be the cofiber of Sq.
The following diagram summarizes four cofiber sequences of Zariski sheaves of connective

spectra relevant for us:
B(K1) —% B(K))
lsq |2
B*(K2) — K12 — B(K1) (1.32)

LT

B*(K2) — K{}% — B(K1)/2
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1.4. Integration on curves.

1.4.1. Given a quasi-compact and quasi-separated scheme S, we write K(S) for the non-
connective K-theory spectrum of the stable co-category Perf(S) [BGT13, §9]. The associa-
tion S~ K(S) is a Zariski sheaf of spectra [TT90, Theorem 8.1].

If S is regular, then the restriction of K to the small Zariski site of S takes values in
connective spectra, so K(S) coincides with I'(S,K) [TT90, Proposition 6.8].

1.4.2. Let S be a regular affine scheme of finite type over a field. This assumption guarantees
that each Zariski sheaf K,, over S has cohomological amplitude < n by the Gersten resolution.
Let p: Xg = S be a smooth, proper morphism of relative dimension 1 with connected
geometric fibers.
The functor Perf(Xg) — Perf(S), & — Rp.& induces a morphism of spectra K(Xg) —
K(S). By regularity, this amounts to a morphism of connective spectra:

I'(Xs,K) - I'(S,K). (1.33)

Lemma 1.4.3. Forn=0,1, the morphism (1.33) fits into a commutative diagram:

r(Xs,K) 22 1(8,K)

l l (1.34)

F(XSa KSn+1 ) — F(S7 Ksn)
where the vertical arrows are defined by truncation on K.
Proof. We treat the case n =1, as the case n =0 is similar but simpler.
For n =1, it suffices to trivialize the composition of maps of connective spectra:

P(Xs, Kss) — T(Xs, K) "2 T(S,K) — T(S.Ka), (1.35)

where the last arrow is defined by truncation on K.

Since K<; = Pic” (Remark 1.1.6) and S is regular, a section of T'(S, K< ) is trivialized once
it is trivialized away from codimension > 2. Hence we may replace S by the spectrum of a
discrete valuation ring R with field of fractions F.

In this case, Xg is Noetherian of Krull dimension 2, so for each ¢ > 0, the complex
I'(Xs,K;[i]) is concentrated in cohomological degrees < —i + 2. Triviality of (1.35) thus
amounts to the condition that its induced map on H™! below vanishes:

H?(Xg,K3) - H(S,K;) = R*. (1.36)

However, the formation of (1.35) is of Zariski local nature on S, so (1.36) fits into the
commutative diagram:

H2(XSaKS) — R’X

!

Hz(XFVKS) — >
Here, X = X xg Spec(F) has Krull dimension 1, so H?(Xr,K3) = 0 and (1.36) vanishes. [
1.4.4. We may now define a morphism:

fx :T(Xs, K[1.9) > T'(S, Pic?), (1.37)
S
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to be the composition:
I'(Xs,K[1.27) > I'(Xs,Ke2) - T'(S,Kap) 2 T(S, Pic”).

where the first morphism comes from the inclusion K; o) > K2, and the second morphism
is the bottom arrow of (1.34) for n = 1.

Comparing the cases n =1 and n =0 in (1.34) shows that (1.37) induces a morphism of
fiber sequences:

I'(Xs,B’Ks) — I'(Xs,K[1,2) — T'(Xs,BK1)

2 I 5 (1.39)

I'(S, Pic) — I'(S,Pic”) —— I'(S,Z)

Here, the rightmost vertical arrow has the following explict description: it associates to a
line bundle over Xg its degree, viewed as a locally constant function over S.

Remark 1.4.5. The first vertical functor in (1.38) is constructed by Gaitsgory in [Gai20,
§2.4] using the Gersten resolution of K.

1.4.6. Let us now define the “super” variant of (1.37), which requires a spin structure over
Xg. From now on, we fix a square root w'/? of the relative canonical bundle WX /S
Define the morphism:

T(Xs,K (s, Pic” 1.39
ey DX K 27) > TS, Pic”) (1.39)
to be the composition of (1.37) with the multiplication -[w!/?] : K21 = K19 (d.e. the
morphism (1.23) for .4 = w'/?).

The following observation shows that the w
twines the squaring maps (1.25) and (1.26).

1/2_twisted integration morphism (1.39) inter-

Lemma 1.4.7. The following diagram is canonically commutative:

P(Xs,BK)) — % I(S,2)
Sq n—(0,2n) (140)
[ |

(Xg,wl/2)

I'(Xs,Kp10)) —— I'(S, Pic”)

Proof. By construction, the lower circuit of (1.40) sends a line bundle £ over Xg to the
Z-graded line bundle:

det(Rp. (£ ® w'/?)) ® det(Rp. (£ @ w'/?)) ™,

This is the trivial line bundle by Grothendieck—Serre duality. It is placed in degree 2 deg(.¥)
by the Riemann-Roch formula. O

1.4.8. Since Xg is regular, the Zariski cohomology group H?(Xgs, G,, ) vanishes. Thus, taking
cofibers of the vertical arrows in (1.40) yields a morphism:

. super . _super
f(xs,wlm (X, Ky ) = TS, Pic™™). (1.41)
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The morphisms of fiber sequences (1.24) and (1.38) induce a morphism of fiber sequences:

I'(Xs,B°Ks) — I'(Xs, K%)= I'(Xs, B(K1/2))

lfxs lf(xw/z) lfxs (1.42)
I'(S, Pic) — I(S, Pic™™) — T(S,Z/2)

Here, the term I'(Xg, B(K1/2)) is identified with the cofiber of the multiplication by 2 map
on I'(Xs,BK1), and the rightmost vertical arrow has the following description: it sends a
line bundle over Xg to its degree mod 2.

1.4.9. We now explain how sections of KE“pe]r over the Zariski classifying stack of a split
reductive group scheme define super conformal blocks, at least in the vacuum case.

Let .#*P™™ denote the moduli stack of spin curves. Namely, an S-point of .Z*P™" consists of
a morphism p: Xg - S of smooth, proper morphism of relative dimension 1 with connected
geometric fibers together with a square root w'/? of the relative canonical bundle.

Given an affine group scheme G, denote by BG the stack classifying Zariski locally trivial
G-torsors.?

Denote by Bung the stack over .#°P™ whose S-points are triples (Xs,wl/ 2 P), where
(Xs,w'/?) is an S-point of .Z*P™ and P is a G-bundle over Xg.

If G is split reductive, we shall define a functor:

I(BG,KJ%) - T(Bung, Pic™*"). (1.43)

Given a section & of Killlp;jr

M*P™ to be the pushforward along Bung — .#°P™" of the image of x along (1.43).

over BG, we define the Z/2-graded quasi-coherent sheaf V,; over

Construction of (1.43). Consider an S-point (Xg,w'/?,P) of Bung where S is regular and
affine. Etale locally over S, we may assume that P is Zariski locally trivial [DS95, Theorem
2], so it defines a morphism P : Xg - BG.

Pulling back along P and applying (1.41) yields a functor:

T(BG, KT > T(S, Pic™™). (1.44)

Since Bung — Spec(Z) is smooth, a super line bundle over Bung is equivalent to a compat-
ible system of super line bundles over S, for all regular affine schemes S over Bung. Using
functoriality of (1.44) in S, we obtain (1.43). O

Remark 1.4.10. Let us work over an algebraically closed field k.

If G is split simple and simply connected with a split maximal torus T c G, the Picard
groupoid of sections of B’K, over BG rigidified along the base point e : Spec(k) - BG
is discrete and isomorphic to the abelian group of Weyl-invariant quadratic forms on the
cocharacter lattice A of T [BD01, Theorem 4.7].

This abelian group has a canonical generator: the Weyl-invariant quadratic form Q with
Q(a) =1 at any short coroot a. To each integer k, the quadratic form & - Q thus defines a
section of B*K, over BG.

The quasi-coherent sheaf V,; defined by this section, via the construction of §1.4.9, is
identified with the space of (vacuum) conformal blocks at level k in the usual sense, see
[BL94]. They are known to be finite locally free if char(k) =0 [TUY89].

We have not undertaken a serious investigation of V,; in the generality of §1.4.9.

3This is in accordance with the notation B used elsewhere in this section, but our BG is different from
the usual stack classifying étale or fppf locally trivial G-torsors.
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Remark 1.4.11. Let us note an analogue of (1.42) for surfaces. Suppose that X is a proper
smooth surface over an algebraically closed field k. Consider the composition:

fx :T(X,B%K,) - H2(X,K») = CH*(X) 2% 7. (1.45)

Suppose that the dualizing sheaf wyx/, admits a square root w2, Claim: the morphism
(1.45) canonically extends to a morphism F(X,K?Tp;jr) - 7.
This extension will be defined as an analogue of the morphism (1.41) for surfaces. Namely,

we note that (1.37) has an analogue for surfaces: the map I'(X,Kf; 21) = Z induced from
[£]~ x(RT(X,&)). To see that it factors through I‘(X,K?‘fgﬁr) when w'/? exists, we appeal
to the equality:

X(RO(X, 2 ® w'?)) - x(RI(X, £ ' @ w'/?)) =0, (1.46)

for every line bundle .# over X, which follows from the Riemann—Roch formula:
1
X(RI(X, Z ©w!’?)) = x(RT(X, 0)) + (£ £ -w!/?-w!f?),
where - denotes the intersection pairing, i.e. the composition of (1.20) with (1.45).

2. BRYLINSKI-DELIGNE CLASSIFICATION

In this section, we classify rigidified sections of Kf‘fgﬁr

BG of a reductive group scheme G over a base scheme S, assumed regular and of finite type
over a field. The main result is Theorem 2.2.3.

We begin in §2.1 with a classification of rigidified sections of Ky o7 over BG (Proposition
2.1.8). Using tools developed in §1.2, we reduce this result to the Brylinski-Deligne theorem
[BDO1, Theorem 7.2]. In §2.2, we state the main result. The next subsection §2.3 is a
technical interlude classifying central extensions of G by G,, over an arbitrary base scheme.
The results of §2.1 and §2.3 are combined in §2.4 to prove Theorem 2.2.3.

over the Zariski classifying stack

2.1. Classification: K 2.

2.1.1. Let S be a regular scheme of finite type over a field.

Let G — S be a reductive group scheme equipped with a maximal torus T ¢ G. Cochar-
acters of T form an étale sheaf of abelian groups A over S.

Denote by Gg. the simply connected form of G. The preimage of T in Gg. is a maximal
torus Tg. ¢ Gge, whose sheaf of cocharacters is denoted by Ag.. The algebraic fundamental
group m1 G may then be realized as A/Aq.

2.1.2. Denote by BG the stack of Zariski locally trivial G-torsor. Denote by e: S — BG the
unit section. For a Zariski sheaf .# of connective spectra, we write I'.(BG, .#) for the fiber
of the morphism:
e’ :T'(BG,#) >T(S, 7).
We also denote by I'.(BG,.%#) the presheaf over S whose section over an Si-scheme is
I'e(BG x5 S1,.%#). It is a sheaf in the Zariski topology.
In this subsection, we describe I'c(BG, K[ 9]) in terms of the combinatorics of G.

2.1.3. We first recall Brylinski and Deligne’s description of T (BG, B?K>). Indeed, [BDO1,
Theorem 7.2] constructs a canonical equivalence of sheaves of Picard groupoids:

L.(BG,B’Kz2) = vc (M), (2.1)
where sections of ¥ (A) are triples (Q, A, ) defined below:
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(1) Q is a Weyl-invariant integral quadratic form on A;

(2) A is a central extension of A by G,,, whose commutator pairing A ® A - G,,, equals
A Az o (=1)PO22) for b(Ag, ) = Q(A1 + A2) = Q(A1) - Q(A2);

(3)  is an isomorphism between the restriction of A to Ag. and the central extension
induced from Qg (in the sense of Remark 2.1.4), the restriction of Q to As..

The Picard groupoid structure on 9 (A) is defined by sum in Q and Baer sum in A.

Remark 2.1.4. To be more explicit, [BDO01, §3] first shows that ', (BT, BQKQ) is canonically
equivalent to the sheaf of Picard groupoids ¥(A) whose sections are pairs (Q,A), where Q
is an integral quadratic form on A, and A is as in (2).

Then [BDO1, §4] shows that I (BGgc, B2K2) is the sheaf of discrete groupoids whose
sections are Weyl-invariant integral quadratic forms on Ag.. Restriction along Ty, ¢ G
and applying the description of T (BT, BQKg), we obtain a functor from Weyl-invariant
quadratic forms on Ag. to 9(Agc):

Quad(Ag)VY > 9(Ag). (2.2)

In particular, any Qg € Quad(Ag.)Y induces a central extension of Ay, by G,y,.

The functor from I'.(BG, B’K,) to Yc(A) is given as follows. The pair (Q,[\) is defined
by its restriction along T c G, and the isomorphism ¢ comes from functoriality with respect
to the commutative diagram:

Tse < Gee
|
T c G

Remark 2.1.5. Both sides of (2.1) are étale sheaves over S. Indeed, it is clear that J¢(A)
satisfies étale descent. The étale descent of ES(BG,B2KQ) is established in [BDO1, §2],
logically prior to proving that (2.1) is an equivalence.

2.1.6. Let us define an enlargement 95 (A) of Jg(A). Namely, a section of ¥5(A) is a
quadruple (Q, A, p,x) where (Q, A, @) is a section of Jg(A) and:
(4) x: A - Z is a character vanishing on Ag. (i.e. a character of m;G).
Therefore, as a sheaf of pointed spaces, 9%4(A) is the product ¥ (A) x Hom(m,G,Z). As
a sheaf of Picard groupoids, we demand that it fits into a fiber sequence:
da(A) - 9% (A) - Hom(m, G, Z). (2.3)
Specifying the Picard groupoid structure on 19%(A) thus amounts to specifying a sym-
metric cocycle, i.e. a morphism of Picard groupoids:
Hom(m G,Z) ® Hom(m G,Z) - Yg(A), (2.4)

together with a null-homotopy of its precomposition with the anti-symmetrizer.

Construction of (2.4). Given sections x1,x3 of Hom(mG,Z), the morphism (2.4) assigns
to 21 ® x5 the triple (Q, A, ¢), where Q(A) := 21 (A)x2()\), A is the central extension defined
by the cocycle A1, Ay = (=1)®1(1)22(32) "and ¢ is the identity automorphism of the trivial
central extension of Ag. by G,,.

In order to construct a null-homotopy of the image of 1 ® x5 —z2®x1, we need to trivialize
the central extension of A by G, defined by the cocycle:

)\1’ )\2 s (_1)931()\1)12()\2)*%2()\1)11()\2). (2.5)
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In other words, we need to find a map ¢ : A - G,, such that g(A; + A2)g(A1) tg(A2) 7!
coincides with (2.5). The desired map is set to be g(\) = (=1)%1(M@2(), O

Remark 2.1.7. By associating to each X € A its fiber £ c A viewed as a G,,-torsor, the
central extension A in a section (Q, A, @) of Ig(A) can be viewed as a monoidal morphism
A — Pic which preserves the commutativity constraint up to the factor (-1)°.

Likewise, an object (Q, A, ¢, z) of 9% (M) defines a monoidal morphism:

A= Pic%, Ao (L2 2(N),

which preserves the commutativity constraint up to the factor (—1)5 (viewed as a G,,-valued
bilinear form on A), where b is defined by:

)\1,)\2 Hb(A17>\2)+I()\1)$()\2). (26)
Proposition 2.1.8. There is a canonical equivalence of sheaves of Picard groupoids:
L.(BG,Kp 5) = 96 (A). (2.7)

It is related to the Brylinski—Deligne equivalence by a commutative diagram:

T.(BG, B2Kz) c Ee(BG,K[m])

l(Z.l) l(z.?)

da(h) o UG

Proof. As a presheaf of pointed spaces, I'.(BG, K1 21) is the direct product I'.(BG, BQKQ) x
L. (BG,BK;) thanks to the section (1.7). In particular, . (BG, K[y 1) satisfies étale descent,
see Remark 2.1.5.

The desired functor (2.7) is defined to be the Brylinski-Deligne equivalence (2.1) on the
first factor and the canonical isomorphism:

I'.(BG,BK;) = Hom(G,K;) = Hom(m G, Z) (2.8)

on the second factor.

It thus remains to lift this functor to one between Picard groupoids. We appeal to the
description of K; 7] using the symmetric cocycle BK; ® BK; — B?K, associated to the anti-
symmetric pairing {-,-} : K1 ® K; - Ko (Proposition 1.2.8). Indeed, it suffices to construct
an isomorphism between the L. (BG, BQKQ)—valucd pairing it induces on I'.(BG,BK;) and
the pairing (2.4):

I.(BG,BK,;) ® I.(BG,BK,) "} I'.(BG, B2K»)

l(z.s) (2.1) (2.9)
Hom(mG,Z) ® Hom(71G,Z) *>(2'4) da(A)
compatibly with null homotopies of their pre-composition with the anti-symmetrizer.
By definition of ¥¢(A), it suffices to treat the case G =T as long as the isomorphism we
construct is functorial in T.
In this case, any pair of characters x1, x5 of T defines under the top horizontal arrow of
(2.9) the central extension:
1-Ko>E->T->1
corresponding to the cocycle T ® T - Ko, (t1,t2) = {z1(t1),z2(t2)}. The null-homotopy
the central extension defined by the cocycle (t1,t2) = {z1(¢1),z2(t2)} — {z2(t1),z1(t2)} is
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exhibited by the map T — Ko, ¢ = {x1(t),22(t)}. These data correspond to the description
of (2.4) (for G =T) under the equivalence of [BDO1, Theorem 3.16]. O

2.2. Classification: K?fp;ir

2.2.1. Let us define another enlargement 9¢,** (A) of ¥ (A) which fits into a fiber sequence
of sheaves of Picard groupoids over S:

Ja(A) - 957" (A) - Hom(m G, Z/2). (2.10)

Namely, an object of 93P (A) is a triple (b,/~\,<p) where:
(1) bis a Weyl-invariant integral symmetric bilinear form on A, such that b(\,\) € 2Z
for any A € Ag;
(2) A is a central extension of A by G,,, whose commutator pairing equals A1, Ao
(~1)bQaA2)+eCe(d2) where e(A) := b(A, A) mod 2;
(3)  is an isomorphism between the restriction of A to Ase and the central extension
induced by Qg as in §2.1.3.

To define the Picard groupoid structure on 97" (A), it is more natural to interpret A as a
monoidal morphism (see Remark 2.1.7):

A = Pics™ A (L2 e(N)), (2.11)

which preserves the commutativity constraint up to the bilinear form (-1)°. The Picard
groupoid structure on ¥ " (A) is induced from sum in b and the Picard groupoid structure
of Pic®"P®". In particular, it is not strictly commutative in general.

Let us construct the fiber sequence (2.10). The inclusion of dg(A) in 9§ " (A) sends
(Q, A, @) to the triple (b, A, ¢), where b(A1, A2) := Q(A1 + A2) = Q(A1) - Q(A2). The second
map 5P (A) - Hom(m G,Z/2) assigns to (b, A, ) the homomorphism ¢ as in (2). Note
that e vanishes if and only if b comes from a quadratic form.

Remark 2.2.2. The sheaf of Picard groupoids 9, (A) is introduced in [BD01, Questions
12.13(iii)]. For G = T a torus, a variant of it has also appeared in [BD04, §3.10], where its
sections are called ¥-data.

Theorem 2.2.3. There is a canonical equivalence of sheaves of Picard groupoids:

L. (BG,K) 5 0P (A). (2.12)

It is related to the Brylinski—Deligne equivalence by a commutative diagram:

L.(BG,B’Ks) © L.(BG,KH%™)

l(ﬂ) l(2.12) (2.13)

da(A) c  UETT(A)
2.2.4. The proof of Theorem 2.2.3 will occupy the remainder of this section. For now, we
shall formulate a compatibility statement between the isomorphisms (2.7) and (2.12) (which

will in fact be used to define (2.12).)
To do so, we need to construct two morphisms of sheaves of Picard groupoids:

Hom(m,G,Z) - 94 (A) (2.14)
VA (A) = ILP(A). (2.15)
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The morphism (2.14) sends a character z : 1, G — Z to the quadruple (Q, A, ¢, 22:) where
Q(N) == —22:()\)?, A is the trivial central extension, and ¢ is the identity automorphism of
the trivial central extension.

The morphism (2.15) is the identity on the subgroupoid ¥g(A). To any character x in the
additional factor Hom(m1G,Z), it assigns the triple (b, A, @) where b(A1, A2) == z(A1)z(A2),
A is the trivial central extension (i.e. the morphism (2.11) is given by A~ (&,€e()))), and
 is the identity automorphism of the trivial central extension.

Lemma 2.2.5. The maps (2.14), (2.15) thus defined are morphisms of Picard groupoids,
and fit into a fiber sequence of such:

Hom(mG,Z) - 9¢(A) » 95 (A). (2.16)

Proof. We only verify that (2.16) is indeed a fiber sequence. Let (Q, A, ,z) be an object
in the fiber of (2.15). Thus the induced symmetric form:

A Az e QA1+ A2) = Q(A1) = Q(A2) + z(A1)z(A2)
must vanish. Setting A; = g, this implies that 2(\) € 2Z for all X € A, so we may write z = 2y
for a character y : 1 G — Z and there holds Q(\) = —2y()\)?. The fact that (Q, A, ,z) lies
in the fiber also supplies us with a trivialization of A compatible with . This yields an
isomorphism between (Q, A, p,x) and the image of y under (2.14). O

2.2.6. The compatibility statement asserts that (2.16) coincides with the cofiber sequence

defining 7?1";? (see §1.3.7) evaluated at BG:

L.(BG,BK1) =3 Lo(BG, K[ 5) — Le(BG,K}%)

lg l(2~7) l(2.12) (2.17)
Hom(m; G, Z) =22 92, (A) —C22, geueer(y)
The following statement can be verified without any knowledge of (2.12).
Lemma 2.2.7. The left square in (2.17) is canonically commutative.

Proof. We use the expression (1.29) of the map Sq as the difference:
BKi > Kp2), £+ s(£%)-2{2, 2} (2.18)

Under the equivalence (2.7), s corresponds to the natural inclusion of Hom(m G,Z) in
¥4 (M), while the map . — {Z, .} corresponds to the restriction of (2.4) along the diagonal
copy of Hom(m G, Z) (established in the proof of Proposition 2.1.8). The map induced from
(2.18) upon taking I'. (BG, ) is thus readily computed to be (2.14). O

2.3. Central extensions by K;.

2.3.1. In this subsection, we let S be an arbitrary base scheme and G - S be a reductive
group scheme. Our goal is to classify central extensions of G by K; 2 G,,.

When S is the spectrum of a field, this classification is obtained by Weissman [Weill,
Theorem 1.11]. We give a self-contained proof valid over any base scheme.

2.3.2. For a reductive group scheme H - S, we write Rad(H) for the radical of H as defined
in [ABD*66, XXII, Définition 4.3.6]. Namely, it is the maximal torus of the center of H. The
formation of Rad(H) is stable under base change and recovers the classical notion (maximal
connected normal solvable subgroup) over a geometric point of S.
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Given a central extension of a reductive group scheme H by G, (or any torus):
1-G,->H->H-1, (2.19)

we first observe that H is representable by a reductive group scheme. Indeed, one checks
directly that H — S is smooth and its geometric fibers have vanishing unipotent radicals.

2.3.3. By functoriality of the algebraic fundamental group, we obtain a functor from the
Picard groupoid of central extension of G by G, to that of extensions of 71 G by Z as sheaves
of abelian groups:

Homg, (G, BG,,) - Homy(m G, BZ). (2.20)

Proposition 2.3.4. The functor (2.20) is an equivalence.

2.3.5. The Picard groupoids in (2.20) are of étale local nature on S, so we may assume the
existence of a maximal torus T c G in the proof of Proposition 2.3.4.

Since the G-conjugation extends along the map Gg. = G, the quotient stack G/Gg. has a
monoidal structure. As such, we have isomorphisms of monoidal stacks:

G/Gse = T/Tse = 11 (G) ® G- (2.21)

Here, the tensor product is understood in the derived sense and sheafified in the fppf, or
equivalently the étale topology.

Proof of Proposition 2.3.4. In view of the isomorphisms (2.21), it suffices to prove that the
following two forgetful functors are equivalences:

Homgy(T/Tsc, BG,,) = Homg, (T/Tsc, BG,y,), (2.22)
Homg, (G/Gsc, BG,,) = Homg, (G, BG,,). (2.23)

Indeed, the left-hand-side of (2.22) is identified with Homyz(71 G, BZ) by the vanishing of
@1(—7 Gpm,) on the category of fppf sheaves of abelian groups.

Given a central extension of a reductive group scheme H by G, as in (2.19), we have a
short exact sequence of tori:

1 - G,, - Rad(H) - Rad(H) - 1. (2.24)

Indeed, the fact that Rad(H) — Rad(H) is surjective can be checked on geometric fibers.
Moreover, Rad(H) contains G,, since the latter is central, so the inclusion of the kernel
Rad(H) nG,, inside G,, is an isomorphism.
We make two observations:
(1) If His a torus, then so is H. This is because the map Rad(H) — H is an isomorphism
by comparing (2.19) with (2.24).
(2) If H is semisimple, then we find an isomorphism G, — Rad(H).
To prove that (2.22) is an equivalence, it suffices to show that any central extension of a
torus by G, is commutative. This follows from observation (1).
To prove that (2.23) is an equivalence, we first write the left-hand-side as the groupoid
of central extensions:
1-G,->G->G-1, (2.25)
equipped with a G-equivariant splitting over G, for the adjoint action. Our task is to show
that such a splitting exists uniquely.
To construct such a splitting, we may assume that G is simply connected in (2.25). Let
Gaer € G denote its derived subgroup. We claim that the composition:

Gaer cG -G (2.26)
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is an isomorphism.

It suffices to prove that (2.26) is a central isogeny, i.e. it is finite, flat, and surjective, with
kernel contained in the center of Gder. The statement on the kernel is clear. The fact that
(2.26) is finite, finite, and surjective may be established smooth locally, so we base change
along G — G, where (2.26) becomes the multiplication map:

éder x Gy — G

However, by observation (2), this morphism is identified with the isogeny Gger xRad(G) — G
of [ABD*66, XXII, 6.2.3].

The isomorphism (2.26) for G simply connected equips (2.25) with a section over Ggc. It
is unique since any two sections differ by a character Gg. — G, which is necessarily trivial.
To see that this section is G-equivariant, it suffices to observe that the diagram:

G xXG Gsc — GSC

G——G
is G-equivariant, and any automorphism of G x¢ Gee preserves its derived subgroup. O

2.4. Proof of Theorem 2.2.3.

2.4.1. We return to the set-up of §2.1.1. In particular, the base scheme S is assumed to
be regular and of finite type over a field. In this subsection, we construct the equivalence
(2.12) and thereby prove Theorem 2.2.3.

We shall construct this equivalence in two stages: we first do it when 7 G is torsion-
free and satisfies a Galois cohomological condition. This step uses Proposition 2.1.8 and
Proposition 2.3.4. We then bootstrap the general case from this one, using the flasque
resolution over general base due to Gonzélez-Avilés [GA13].

The fact that we have to play with Galois cohomology is because we do not know a priori

that Ee(BG,Kﬁlpﬁr) satisfies étale descent.

2.4.2. Note that our hypothesis on S guarantees that every S-tori is isotrivial, i.e. split by a
finite étale cover [ABD*66, X, Théoréme 5.16]. In particular, it makes sense for an S-torus
to be quasi-trivial, see [CTS87, Definition 1.2].

Lemma 2.4.3. If mG is the sheaf of cocharacters of a quasi-trivial torus, then both rows
in (2.17) are cofiber sequences of Zariski sheaves.

Proof. This assertion amounts to the Zariski local surjectivity of the two horizontal mor-
phisms appearing in (2.17):

fl : ES(BGvg[l,Q]) e ES(BGvﬁ?Tge]r)a
f2 109G (A) > IGPT(A).
For f5, we note that comparing (2.3) with (2.10) leads to a Cartesian square:
¥4 (A) —» Hom(mG,Z)
lf2 lmod 2 (227)
Ig " (A) — Hom(m G, Z/2)

Claim: the “mod 2” morphism is surjective in the Zariski topology.
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Indeed, Zariski locally on S, we may find a finite Galois cover S; — S which splits m; G.
Denote by T' the Galois group of S;/S and M the Z-linear dual of the I-module associated
to m G at a geometric point of S. Then the problem amounts to the surjectivity of MI' —
(M/2)"', which follows from H'(T', M) = 0 by quasi-triviality.

It follows that fs is also surjective in the Zariski topology.

For f1, the canonical maps in (1.32) induce a Cartesian square:

Ie(BG,Kf1,21) — Le(BG,BKy)
|n lmod 2 (2.28)
L.(BG,KM) — L.(BG,BK,/2)

Proposition 2.3.4 implies that the “mod 2” morphism is identified with the one appearing
n (2.27). In particular, it is also surjective in the Zariski topology given the hypothesis on
m1G. The same thus holds for f;. O

2.4.4. Suppose that m G is the sheaf of cocharacters of a quasi-trivial torus. By Lemma
2.2.7 and Lemma 2.4.3, we may define a morphism fitting into (2.17):

L. (BG, K%)= g™ (A). (2.29)

It is an equivalence by Proposition 2.1.8.

2.4.5. For general G, we first introduce an auxiliary sheaf of Picard groupoids 5zlper(A),
defined to be the fiber product:

TEP(A) — Quad(Ase)™Y

l l@ 2) (2.30)

ﬁsuper(A) — ﬁsuper A )

where the bottom horizontal map is defined by functoriality with respect to Agc > A. Con-
cretely, a section of 93P (A) is a triple (b, A, ¢) as in I (A), but the Weyl-invariance
on b is relaxed: it is only required to be Weyl-invariant over Ag..

Restrictions along T ¢ G, Gg. — G and applying the functor (2.29) to T, Gs., and Ty
produces a functor:

L.(BG,K[5T) = J&P (A). (2.31)

2.4.6. Suppose that we have a central extension of reductive group S-schemes:
1-T; -G -C-1, (2.32)

where T is a torus with sheaf of cocharacters A;. Denote by T the preimage of T in G. It
is a maximal torus with sheaf of cocharacters A.
By functoriality, we find two morphisms of presheaves of Picard groupoids:

Lo(BG, K715  lim L (B(G x T5™), K515, (2.33)
PP (A) > hmﬁs‘lp;in(AeBA?”), (2.34)

where the limits are taken over the simplicial category.

Lemma 2.4.7. The following statements hold:

(1) the functor (2.33) is an equivalence;
(2) the functor (2.34) is fully faithful.
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Proof. Statement (1) follows from the fact that the induced map on Zariski classifying stacks
BG — BG is surjective in the Zariski topology.

To prove statement (2), we fit 95 (A) into a fiber sequence of étale sheaves of Picard
groupoids over S:

Homy (A, BG,,) - 98P (A) - T*(A)W. (2.35)
Here, A is the dual of A, so FQ(A)W is the abelian group of Weyl-invariant symmetric bilinear
forms on A. The second map in (2.35) sends a triple (b, A, @) to b, so its fiber is precisely
the Picard groupoid of symmetric monoidal morphisms A - BG,,

The fully faithfulness will follow, if we know that the two outer terms in (2.35) satisfy
descent along A - A. For Homyz(A,BG,,), this is because A is identified with colim (A ®
A®™). For T2(A)W, this is the elementary observation that a symmetric bilinear form on A
descends to A if its restrictions to A® A; along the action and projection maps coincide. [

Remark 2.4.8. In fact, the functor (2.34) is also an equivalence. This will be established
in the course of the proof of Theorem 2.2.3 below.

Proof of Theorem 2.2.3. The case where m G is the sheaf of cocharacters of a quasi-trivial
torus is already treated in §2.4.4.

For general G, it remains to prove that the functor (2.31) factors through an equivalence
onto the full subgroupoid 9g, " (A).

To do so, we choose a central extension (2.32) with the additional property that m G is
the sheaf of cocharacters of a quasi-trivial torus. Such central extensions exist, thanks to
[GA13, Proposition 3.2].

Combining the equivalences for G x T" and Lemma 2.4.7, we obtain the following (solid)
functors among Zariski sheaves of Picard groupoids:

Lo (BG,K{T) = T, To(B(G x T3™), K35
| l; (2.36)

+
IEP(A) c limp,, 19bup;rm (A @A%™)

Note that a symmetric bilinear form on A is Weyl-invariant if and only if its restriction

to A is. Hence, the functor (2.31) factors through the full subgroupoid 9g, " (A), supplying

the dashed arrow in (2.36). It follows that all functors in (2.36) are equivalences. O

Corollary 2.4.9. Let G be a reductive group S-scheme. The Zariski sheaf of Picard groupoids

T.(BG, Ksup?r) over S satisfies étale descent.

Proof. Working Zariski locally over S, we may assume that G admits a maximal torus T

[ABD*66, XIV, Corollaire 3.20]. Let A denote its sheaf of cocharacters.
Theorem 2.2.3 then implies that L. (BG, Ksuper) is equivalent to V" (A), which clearly

satisfies étale descent. O

2.4.10. We finish our study of ['.(BG, K?um]r) by computing its homotopy sheaves. Let us
assume that T c G is a fixed maximal torus with sheaf of cocharacters A.
From the Cartesian square (2.30), we obtain a long exact sequence of étale sheaves of

abelian groups:
1> mOgP (A) » m*™ P (A) » m ™ P (Age)
- woﬁsélper(/\) - me™ P (A) @ Quad(Age)Y - me?™"PT (Age).
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The homotopy sheaves of 9°"P¢*(A) are easily computed: m19*"P*(A) is isomorphic to
Hom(A,G,,), and mp9*"P*(A) is isomorphic to the sheaf of symmetric bilinear forms on A.
Therefore, mJgP (A) is isomorphic to Hom(m G, Gy,), and modiy ™ (A) is isomorphic to
the sheaf of symmetric bilinear forms on A whose restriction to Ay. comes from a Weyl-
invariant quadratic form.

By definition of the full subgroupoid 93P (A) c TP (A), we see that b € Uy P (A)
belongs to medg " (A) if and only if it is Weyl-invariant.

Writing T2(A)Y for the abelian sheaf of Weyl-invariant symmetric bilinear forms on A
whose restriction to Ag. comes from a quadratic form, we obtain:

(AW i=0,
WlEG(BG7K?1J’p20]r) = m(ﬂ-l(}v@m) 1= la
0 i>2

2.5. Examples.

2.5.1. Recall the canonical identification between K 17 and Pic” (Remark 1.1.6). It induces
an isomorphism BK; 2 BG,,, whose inverse can be viewed as a rigidified section of BK; over
BG,, and we denote it by ¢;. It represents the K-theoretic first Chern class.

Using the cup product and the pairing K; @ K1 - Ko, =,y — {z,y}, we obtain a rigidified
section ¢; Uc; of B*Ky over BG,,. Its value at an R-point .Z is given by the pairing {.Z, £}
(¢f. Remark 1.2.9). The central extension of G, by Ko corresponding to ¢; U ¢y is given by
Ky x Gy, with 2,y — {z,y} as cocycle. The quadratic form associated to ¢; Uey (¢f. Remark
2.1.4) takes value 1 at the identity cocharacter of G,y,.

2.5.2. The Tate section. We have a rigidified section of K[; 51 over BG,, sending £ to
[£]-[€]. We shall write Tate for the induced rigidified section of K>'5.

[1,2]
Let us show that as a rigidified section of Kﬁlpﬁ, c1 Ucy is twice the Tate extension.
Lemma 2.5.3. There is a canonical isomorphism of rigidified sections ofK?fpzﬁr over BG,,:

2-Tate = cy ucy.

Proof. We need to establish an isomorphism in Kf‘fpﬁr:

2-([Z]-[0]) ={2, 2}
natural in the line bundle .. Note that [.Z] - [£] is denoted by s(£) in §1.2.2 and the
proof of Lemma 1.3.5 yields isomorphisms in Ky 23:
[Z]-[27 ] 2s(L%) -2-{2,.2}
22.5(ZL)-{%,%}.

By definition, the section [.£] - [£~'] vanishes in K[; 2], which gives rise to the desired
isomorphism 2-s(.¥) 2 { &, Z}. O
Remark 2.5.4. The rigidified section Tate : BG,, — K?‘fpﬁr has the following quadratic
multiplicative structure:

Tate(.£") = n? - Tate(ZL).

Indeed, inducting on n using the relation (1.21) yields an isomorphism between Tate(.Z™)

and n - Tate(Z) + (5){-Z, £}, but the latter is n* - Tate(.#) by Lemma 2.5.3.
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2.5.5. Consider the group scheme SLj equipped with the diagonal maximal torus G,, c SLs.
Write V for the universal rank-2 vector bundle over BSLy. The section [V] - [0®?] of K
over BSLs factors through K., so it induces a section of B?K, over BSL,.

The pullback of [V] - [0®2] to BG,, is the rigidified section sending . to [£ & £ '] -
[0®?]. The proof of Lemma 1.3.5 yields isomorphisms:

[Ze 2 ']-[0%°]=([£]-[0]) +([£¢']-[O))
= (L, YL (2.37)

In other words, the pullback of [V] - [¢®?] to BG,, is canonically isomorphic to ¢; Uc;.
In particular, it is isomorphic to twice the Tate section (Lemma 2.5.3).

Remark 2.5.6. It follows from §2.5.5 that the rigidified section [V] - [¢®?]: BSLy - B?Kj
is classified by the Weyl-invariant quadratic form whose value at a coroot is 1.

More generally, for any integer n > 2, we may consider the universal rank-n vector bundle
V over BSL,,. The section [V] - [6®"] of B*Kj, over BSL,, is also classified by the Weyl-
invariant quadratic form whose value at a coroot is 1, with respect to the diagonal maximal
torus. This follows by choosing a subgroup SLs c SL,, corresponding to a simple coroot and
reducing to the case of SLs.

2.5.7. Pfaffian and all that. Let G be a split reductive group with fixed split maximal torus
and Borel subgroup T ¢ B ¢ G and a pinning. Let Ad denote the adjoint bundle over BG,
i.e. the vector bundle associated to the adjoint representation g.

We shall construct a “half” of [Ad] - [04™8] as a rigidified section of Kﬁ%‘ir

Proposition 2.5.8. In the context of §2.5.7, there is a canonical rigidified section Pf of

KE‘;I;T over BG equipped with an isomorphism:

2-Pf = [Ad] - [09™9]. (2.38)

2.5.9. We shall use the classification theorem (Theorem 2.2.3) to construct Pf and the
isomorphism (2.38).

Denote by A the cocharacter lattice of T and Ag. that of the induced maximal torus T
of the simply connected form Gg. of G. The choice of B endows Ay, with a basis consisting
of simple coroots a € A. The choice of a pinning induces a canonical extension of each « to
a subgroup of Gg. isomorphic to SLa:

G,, < SLo
l“ l (2.39)
Tee © G

2.5.10. In the presence of a pinning, Theorem 2.2.3 can be reformulated as classifying

rigidified sections of Killlp;jr over BG by pairs (f,{¢a }aea ), where:

(1) f is a rigidified section of K107 over BT, whose associated symmetric bilinear form
b is Weyl-invariant and its restriction to Ag. comes from a quadratic form Qgc;
(2) for each a€ A, ¢, is an isomorphism between the restriction of f along « : BG,, —»

BT and the Qg.(«)-multiple of the ¢; Ucy.

Indeed, f accounts for the data (b, A) of §2.2.1. To see that ¢ of loc.cit. is equivalent
t0 {pataeca, we argue as follows: ¢ is an isomorphism of two central extensions of Ay by
Gy, with equal commutators, so it is uniquely determined over the basis A. On the other
hand, the rigidified section BGg. — B2K., classified by Q. restricts to the Qsc(a)-multiple
of ¢ Uy along a: BG,, - BTy - BGq, in view of §2.5.5 and (2.39).
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2.5.11. Let us turn to the construction of Pf.

Proof of Proposition 2.5.8. The symmetric bilinear form associated to the rigidified section
[Ad] - [09™9]: BG - B?K, is the Killing form (¢f. Remark 2.5.6):

A17)\2 g Z <Bv)‘1><37>\2>7
Bed
where ® is the set of roots of G. The choice of B expresses ® as the union of positive roots

@, and negative roots ®_. In particular, the Killing form is twice the symmetric bilinear
form b defined by:
b()‘luAQ) = Z <B7)‘1)<B7)‘2>
Be(l>+
In particular, we have b(\, \) = (2p,A) mod 2, for 25 := Yhew, B, so b(a, ) is even for all
a € A. This means that the restriction of b to A¢c comes from a quadratic form Q.
Next, the restriction of [Ad] - [04™9] to BT is the section:

Y ([L°1-10)+ ¥ (£ P1-[o) =2 ¥ ([£°]-10)),

pedy pedy Bedy

where .7 denotes the line bundle over BT defined by the root B, and we applied the
isomorphism [.£7] 2 [Z~"] in K?Tp;]r In particular, the restriction of [Ad] - [€4™¢] to BT
is twice the rigidified section:
> ([27°]-[0)). (2.40)
Bed,

Note that the symmetric bilinear form associated to (2.40) is b. We shall argue that the
restriction of (2.40) along each « : BG,,, —» BT is the Qg.(a)-multiple of ¢; U ¢y. This would
furnish the construction of Pf in view of §2.5.10.

Indeed, the restriction of (2.40) along « is the rigidified section:

Y ([ZP - [6]) 2 3 (B.a)? Tate

Bed, Bed,
2 2-Qge(a) - Tate 2 Qsc(a) - (c1 U )

where the first isomorphism follows from the quadratic structure of the Tate section (Remark
2.5.4) and the last isomorphism follows from Lemma 2.5.3.

The isomorphism 2 - Pf = [Ad] - (69™9) results directly from the construction of Pf, so
we omit the details. O

Remark 2.5.12. The image of Pf in Hom(m G, Z/2) under (2.10) is the character:
A~ (2p,A) mod 2. (2.41)

Thus, Pf comes from a rigidified section of B*Kj if and only if j is integral.

The same fact also shows that Pf generally does not come from a rigidified section of
Ky 97, d-€. it is genuinely “half-integral”. Indeed, if it did, then (2.41) would have to lift to
character m;G — Z, but this is generally not the case.

2.5.13. Let us combine Proposition 2.5.8 and the integration functor of §1.4.9 to construct
the Pfaffian line bundle on the moduli stack of G-bundles over a spin curve.

More precisely, let p: Xg - S be a smooth, proper morphism of relative dimension 1 with
connected geometric fibers together with a square root w'/? of the relative canonical bundle.
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Denote by Bung the moduli stack of G-bundles over Xg. The rigidified relative canonical
bundle of Bung — S is the line bundle:

Liet := det(Rp.gp) ® (det(Rp*gpo))_l, (2.42)

where p : Xg xg Bung — Bung is the projection and gp (resp. gp,) is the adjoint bundle of
the universal G-bundle P (resp. trivial G-bundle P?).

2.5.14. The commutative diagram (1.42) yields the following commutative diagram via the
construction of §1.4.9:

'(BG,B’Ks) — I'(BG,K[%))

lfxs lf(xs,wl/z)

I'(Bung, Pic) — I'(Bung, Pic®"?*")

Here, the horizontal morphisms are the tautological inclusions.

Note that Ze; is the image of [Ad] - [04™ ] under the left vertical functor. By Propo-
sition 2.5.8, the image of [Ad] - [04™¢] in F(BG,K?‘;ZT) is twice the Pfaffian section Pf.
In particular, Z4.t admits a square root as a super line bundle, given by:

Lop = f Pt
(Xs,w/2)

Remark 2.5.15. A square root of Zjet has been constructed in [BD04, §4] using a different
method. One feature of our construction is that it yields a purely group-theoretic object Pf,
while the spin curve (Xs,wl/ 2) only appears in the integration functor.

Part 2. Loop groups
3. STATEMENTS

The goal of this section is to state the classification of factorization super central ex-
tensions of ZG: Theorem 3.4.5. The first two subsections §3.1, §3.2 review the notions
of factorization structure and loop groups. In §3.3, we use the Contou-Carréere symbol to
define the notion of “tame commutator” and study its basic properties. In §3.4, we state the
classification theorem of factorization super central extensions of ZG and briefly indicate
the structure of its proof.

We work over a ground field k. Let X be a smooth curve over k.

3.1. Factorization.

3.1.1. Denote by Ran the presheaf whose S-points are nonempty finite subsets of Maps(S, X).
We shall write an S-point of Ran as @' = (2°);1, where I is a nonempty finite set.

Given an S-point 2! of Ran, we denote by I',1 the sum of the graphs I'y: ¢ Sx X over i € I
as effective Cartier divisors. Let D, be the completion of S x X along I';1 and f)xl be its
open subscheme D 1\I',1.

Two S-points z!, 27 of Ran are called disjoint if T'y,1 nT',s = @. Denote by z' U’ the
S-point of Ran given by their union.

Remark 3.1.2. For each nonempty finite set I, there is a tautological map X' — Ran,
sending an S-point 2! of X! to the associated finite subset of Maps(S, X). The presheaf Ran
is identified with the colimit of presheaves:

collim(XI) > Ran,

indexed by the category of nonempty finite sets with surjections.
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3.1.3. Let % be a presheaf over Ran. Given an S-point z! of Ran, we write %, for the base
change of % along z'.

The presheaf % is called factorization when we are supplied with a functorial system (in
S) of isomorphisms for all disjoint pairs of S-points (z!,z”) of Ran:

Pl izl %quJ = %I xS %Jv (31)

satisfying the analogues of commutativity and associativity conditions. Namely, the follow-

ing diagram commutes:

Pl zd
%IUQ:J - %I Xg %J

l; l; (3-2)

Prd 2l
X3t — Yps xg Yt

where the left vertical arrow comes from the equality z' Uz’ = 27 U z! as S-points of Ran

and the right vertical arrow is the map swapping the two factors; the following diagram
commutes for pairwise disjoint S-points (2!, 27, 2¥) of Ran:

%Ium‘]uzK

S%I’ZJuly \%TI\_‘ZJ,IK

%I Xg %Jqu %IUJCJ Xg %K (33)

idx#PzJ,mK\A‘ AI,IJ xid

%I Xg %J Xg %K

3.1.4. Let & be a factorization presheaf such that %, satisfies fppf descent for each S-point
z! of Ran. (We do not impose fppf descent on % because Ran itself does not satisfy étale
descent, see [GL19, Warning 2.4.4].)

A factorization super line bundle over % is a super line bundle .Z over # equipped with
functorial isomorphisms for all disjoint pairs of S-points (!, 27) of Ran with respect to (3.1):

(@xl,wJ)*(-’ng gﬂc‘]) > g:EILIJL":“ (34)
which are compatible with (3.2) and (3.3).
Let us spell out the compatibility with (3.2). Denote by exch : Z1 xg %0 - %5 xg %1 the

map which exchanges the coordinates. The commutativity constraint of the Picard groupoid
of super line bundles yields an isomorphism:

GXCh*(fo .Zwl) i le X gx.]. (35)
The compatbility states that the image of (3.5) under (y,1 ,1)*, viewed as an isomorphism

(¢p1.01) (L 8L 1) 5 (¢g1 27) (L L) by the commutativity of (3.2), intertwines the
isomorphisms (3.4) attached to (x!,27), respectively (z7,z").

3.1.5. Let JZ be a group factorization presheaf such that 2, satisfies fppf descent for each
S-point z! of Ran.

A multiplicative super line bundle .Z over 57 is called factorization if it is equipped with
a factorization structure which commutes with the multiplicative structure, i.e. (3.4) is an
isomorphism of multiplicative line bundles over 1,7 2 H1 xg H,3.

Note that a multiplicative factorization super line bundle over J# is equivalent to a super
central extension of group presheaves over Ran:

1 GRran = A —» H —1, (3.6)
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equipped with a functorial homomorphism &, ,. lifting the factorization isomorphism @1 ;s
of # for each disjoint pair of S-points (z!,z”) of Ran:

1= Grs*xsGns ﬁ%lxskz} — I xg s — 1

l(a,b)»ab l@II,IJ lgpxl’z;' (37)

1 —— Gpsg —— %Ium.] — a0 — 1

which satisfies commutativity and associativity. The data (3.6), (3.7) subject to these con-
ditions are called a factorization super central extension of € by Gy, Ran- They form a
Picard groupoid to be denoted by:

Homy,e (2, Pic®"P").

e interpret them as homomorphisms # — Pic compatible with factorization.
We int t th h hi H — Pic?"P tible with factorizati

Let us again be explicit about commutativity: (3.6) being a super central extension, each
S-point (2!, h!) of J# carries a grading, viewed as a locally constant section of Z/2 over S.
Commutativity refers to the equality:

Bat s (W 17) = (1) B a (07, 1Y),
whenever h! (resp. h') has grading €' (resp. €’).
3.2. Loop groups.

3.2.1. Let Y —» X be an affine morphism of finite type.

Denote by .ZY (resp. .Z*Y) the presheaf whose S-points are pairs (z!,y!) where 2! is
an S-point of Ran and 3" is an X-morphism f)xx —Y (resp. D,i > Y). Note that £*Y is a
closed subpresheaf of Y and the structural morphism .£Y — Ran (resp. £*Y — Ran) is
indschematic (resp. schematic), see [KV04, 2.4-2.5].

Furthermore, ZY admits a canonical factorization structure. Indeed, for any disjoint
pair of S-points (z!,2”) of Ran, there is a functorial isomorphism:

gzluzJY i> gzIY Xg jmJY,

induced from f)le_,zJ z f)zl Uf)zJ, which is clearly commutative and associative. Analogously,
ZL*Y also admits a canonical factorization structure.

Since the association Y — £Y (resp. Z*Y) preserves limits, it carries an affine group
X-scheme G of finite type to a factorization group presheaf £G (resp. Z*G) over Ran.

3.2.2. Let G be a smooth group X-scheme with connected geometric fibers. We also in-
troduce the affine Grassmannian Grg as the presheaf whose S-points are triples (2!, P, ),
where z! is an S-point of X, P is a G-torsor over S x X, and « is a trivialization of P over
S x X\I'y1. Then Grg — Ran is ind-schematic of ind-finite type; it is ind-proper when G is
reductive [Zhul7, Theorem 3.1.3].

The factorization structure on Grg is defined by Beauville-Laszlo gluing [Zhul7, Theorem
3.2.1] and the canonical map £G — Grg realizes the latter as the quotient ZG/Z*G in
the étale topology [Zhul7, Proposition 3.1.9].

3.2.3. For later purposes, we give a convenient description of Z*G — Ran as an inverse
limit of smooth affine group schemes relative to Ran.

Consider an S-point 2! of Ran. The morphism I';r — S is finite locally free. Denote by
RrG the Weil restriction along I';i — S of G (pulled back along I'yr ¢ S x X — X.) Then



HALF-INTEGRAL LEVELS 31

RrG is representable by a smooth affine group S-scheme [BLR90, §7.6]. The evaluation map
defines a short exact sequence:

1- 235G~ 256G > RrG > 1. (3.8)

More generally, we let I‘SIL) (for n > 0) denote the nth order infinitesimal neighborhood
of the closed immersion I';j1 ¢ S x X. Then I‘Sf) — S is finite locally free: writing .# for the
ideal sheaf defining I',1, we see that each .#™/.#""! is locally isomorphic to @s,x/.# as an
Os-module. Let Ry G be the Weil restrction along I‘i?) — S, which is again representable
by a smooth affine group S-scheme. This gives us a limit presentation:

245G 5 liTaner)G.

Under the Tannakian formalism, the formula £ — 1 + ¢ defines an isormorphism between
the vector group S-scheme g&(.#"*!/.#"*2) and the kernel of the evaluation map Ry G —
RpG. In particular, the group scheme .£%'G in (3.8) is an (infinite) iterated extension of
vector group S-schemes.

3.3. Contou-Carrere.

3.3.1. For each integer n > 1, we shall define Tate central extension as a factorization super
central extension: .
1> Gm,Rran > GL,, > £GL, - 1. (3.9)

Viewing GL,, as a super line bundle over .ZGL,, its fiber at an S-point (z',a') of ZGL,
is the super Os-module:
det(a' 03" | 05" ) with grading rank(a' 05" | 05" ) mod 2,

where det(L; | Ly) denotes the relative determinant of two lattices Ly, Ly in the Tate Os-
module ﬁg” and rank(L; | Ly) denotes their relative rank. (See [Dri06] or [CH21, §3] for
I

the definition of these notions).
The multiplicative structure of (3.9) is defined by the canonical isomorphism:

det(a'd'OF" | OF" ) = det(a'OF" | 05" ) @ det(b'OF" | 6F"),

1

for any S-points (z!,al) and (z!,b') of ZGL,. The factorization isomorphism arises from
the Z/2-graded multiplicativity of determinants with respect to direct sums:

det(a' 05" @b’ 05" | OF" © OF")) = det(a' 65", | OF") @ det(b' 05", | O5")),
for S-points (2!, a'), (27,b’) of ZGL,, with 2!, 27 disjoint.

3.3.2. Following [CH21, §4], we define the Contou-Carrére symbol (or tame symbol) to be
the commutator pairing of (3.9) for n = 1:

<'a') 1 LGy, ® LGy, > Gm,Ran, (3.10)
Namely, (-,-) carries S-points (z',a"), (z1,b") of ZG,, to the element (2!, a'd'(al)~' (b))
of Gy, Ran, Where al (resp. b) is a lift of a® (resp. b') to G,, which exists locally on S.

The pairing (3.10) is factorization in the following sense: given disjoint S-points z!, 27 of
Ran and lifts al, b' (vesp. a’, b?) of ! (resp. 27) to ZG,,, there holds:

(a'ua’, b'ub?) = (al, 0" (a?, b7).
Furthermore, (3.10) is perfect in the sense that its adjoint:
gGm g I—I<37m($([},m Gm,Ran) (311)
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is an isomorphism of factorization group presheaves [CH21, Corollary 5.4.1.1]. This pairing
exhibits .Z*G,, as the Cartier dual of Grg,, [CH21, Theorem 5.2.1].

3.3.3. More generally, let T be an X-torus with dual X-torus T, (3.11) induces an isomor-
phism between .ZT and Hom(.ZT, G, Ran)-

In particular, for a pair of X-tori T, Ts with sheaves of cocharacters Ay, Ao, any bilinear
form b: A; ® As - Z defines a factorization pairing:

<'7 ')b : ng ® $T2 - Gm,Ran; (312)

uniquely characterized by the property that its restriction along A1, A2, viewed as homomor-
phisms from ZG,, to LTy (resp. £Ts), equals b(A1, A2)(:,).

Pairings ZT1 ® LTy — Gy, ran of the form (-,-), are called tame. Given morphisms
T} - Ty, Ty - T, a tame pairing £ T ® LTy — Gy, ran induces a tame pairing ZT) ®
ZLT4H - Gy ran- The converse also holds for surjections of tori.

Lemma 3.3.4. Let (-,-) : LT1 ® LTo — Gy ran be a factorization pairing. Given surjec-
tions of X-tori T} — T1, Ty — Tq, if the induced pairing LT] ® LTy - Gy ran is tame,
then so is (-,-).

3.3.5. Before proving Lemma 3.3.4, we shall make an observation.
Suppose that we are given X-tori Ty and Ty. Claim: all factorization morphisms of group
presheaves over Ran below are trivial:

LTy - Groy; (3.13)
GTT1 - $+T2. (314)

For (3.13), this is because £*T; — Ran is pro-smooth with connected geometric fibers,
whereas Grr, — Ran has formal geometric fibers. For (3.14), this is because Grp, - Ran
is ind-proper, whereas .£*Ts — Ran is pro-affine. The combination of these two facts
shows that any factorization bilinear pairing ZT; ® ZTy — G,, induces, and is uniquely
determined by a pairing 2T ® Grr, > G,.

Proof of Lemma 3.3.4. Let Ty (resp. T%) denote the X-torus dual to Ty (resp. Th). By
perfectness of the Contou-Carrére symbol, (-,-) is equivalent to a factorization morphism of
group presheaves over Ran:

LT - LTy, (3.15)

We need to prove that for any pair of cocharacters A1, Ay of Ty, Ty, the endomorphism
p of ZG,, defined by the composition:

LG, 5 21,1, B v6,,
is given by a + a™ for some integer N.

The hypothesis implies that this statement holds after composing with an endomorphism
of ZG,, defined by nth power map a — a™ for some integer n > 1.

By the observation of §3.3.5, ¢ is uniquely determined by its restriction ¢* to Z*G,,,
whose image is also contained in .Z*G,,. Note furthermore that for each S-point z! of XI,
the restriction £ G,, of Z*G,, is the extension of a group S-scheme of multiplicative type
by an iterated extension of vector group S-schemes (§3.2.3).
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In particular, ¢* induces a homomorphism of short exact sequences:

0 — Z3'Gm — ZGp — ReGp — 1

% l# l;

0 — Z3'Gm — Z5Gp — ReGr — 1

The fact that ¢, is the N'th power map after composing with the nth power map shows
that n | N’ and ¢}, is the Nth power map, for N := N'/n.

Since £ G,,, — S is pro-smooth, it suffices to prove that ©* is the Nth power map on
Ek-points. In other words, given f € k[[t]]* satisfying the equality:

et ("= (M) in BT
we need to deduce the equality o*(f) = fN. Setting g:= o*(f)/fN, we may write:
g=1+> a;t" in k[[t]*.
izl
~ Claim: g" =1 implies g = 1. Forichar(lfc) + n, this holds because all nth roots of unity of
k[[t]] are contained in k. For char(k) | n, this holds because the Frobenius is injective. [

Example 3.3.6. Suppose that k has characterstic p > 0. Let us define a factorization central
extension whose commutator is not tame:

1 - Gpran > 9 - £G,, - 1. (3.16)

Given a morphism Y — S of k-presheaves, we write Fry;s: Y — Y;é) for the pth power
Frobenius of Y relative to S. Its formation is compatible with base change along S. Note

that the presheaf ZGmER) is canonically isomorphic to ZG,,: an S-point of .Z Gm%)an

is a pair (2!,a) where 2! is an S-point of Ran and a is map Dpr*(zl) - G,,. However,

Dy %(s1) is isomorphic to DxI since its formation depends only on the subset |Fx1| of [S xX]|.
In partlcular we may view Frgg, /Ran @s an endomorphism of £ G, over Ran.

The central extension (3.16) is defined to be the presheaf of sets Gy, rRan XRan-Z G, Whose
group structure is defined by the cocycle:

LG ® LGp = G Rran, (a,b) = (Freg,, /ran(a), ),
where (-,-) denotes the Contou-Carrére symbol. Since (,-) is anti-symmetric, the commuta-
tor of (3.16) is the pairing:
LGm ® LGy > Gpran,  (a,0) > <FT$G,”/Ran(a)v b)(a,FrzG,,,L/Ran(b»- (3.17)
Let us argue that this pairing is not tame over any geometric point x : Spec(k) - X. The

choice of a uniformizer allows us to identify %, G, with G,,((¢)). The morphism Frg ()%
evaluates to the following map on R-points for any k-algebra R:

R(() = R((1), D ant" = Y (an)Pt".

The commutator (3.17) is indeed (-,-)?*! on k-points. For a more general k-algebra R, the
Contou-Carrére pairing (1-ayt,1-b_1t7!) equals 1-a,b_; for nilpotents a;,b_; € R [APRO04].
Taking R := k[e]/e® with a; = ex, b_; = ey for 2,5y € kK and equating the commutator
(1-alb_1)(1-a1b”,) with (1 -a1b_1)P*!, we find 2y = 0, which is impossible.

3.3.7. We now show that tameness is a positive characteristic phenomenon.
The assertion below relies on [Tao21a] which uses the hypothesis char(k) = 0.
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Proposition 3.3.8. Let Ty, Ty be a pair of X-tori. If char(k) =0, then any factorization
pairing LT1 ® LTy - Gy Ran s tame.

Proof. Using the observations in §3.3.5, it suffices to prove that any factorization pairing
ZL*T19Grr, - Gy, Ran is necessarily of the form (-, -);, for some bilinear form b: A; ® Ay > Z
(see §3.3.3).

Using the duality between Grp, and .#* Ty under the Contou-Carrere symbol, we reduce
the statement to the special case Ty = Ty = G,,.

For each I-tuple A' = (\’) of integers, there is a closed immersion ¢y : X! - Grg, x1
sending an S-point 2! = (2%) of X! to the line bundle (¥, T',:) over S x X equipped
with its canonical trivialization off I';r. Consider the category of pairs (I, A) where I is a
nonempty finite set and ! is as above, where morphisms (I, \!) — (J,A”) are defined by
surjections o : I - J with M = Yiep1(5) A! for each j € J. The closed immersions ¢,1 assemble
into a morphism of presheaves over Ran:

Grg™® := colim X! - Crg,,,
T (LAY "

which induces a bijection on field-valued points.
Claim: factorization pairings .£*G,, ® Gréﬁf‘b — Gy Ran are in bijection with sections of
7Z over X. More precisely, locally on X, a generator is the colimit over (I, A\) of maps:
fany 1 LG > G, (2h,a) & T](alr ), (3.18)
i€l
where alr , is the restriction of a to the closed subscheme I';: ¢ D,1.

To prove the claim, we use the presentation (3.8) of the group X!-scheme 246Gy, as an
extension of RrG,, by E;}Gm Every character .2y, G,,, - G,, must factor through RrG,,
and is uniquely determined by its restriction to the pairwise disjoint locus of X

Given a factorization pairing f': Z*G,, ® Gr%,o:lb — Gy, Ran, We obtain a system of maps
indexed by (I, AD):

Fany : ZxaGm > G, (3.19)
By the observation above, (3.19) is uniquely determined by the case I = {1}. Moreover,
f(’{l}’)\) is a character of RprG,, = G,, x, hence a section of Z over X. Looking at I = {1,2},
we see that the association A\ — f(' (112 defines a group homomorphism Z — Z. The group
homomorphism corresponding to multiplication by n yields the nth power of (3.18).

Under the hypothesis char(k) = 0, [Tao21a, Proposition 5.1.5] shows that any S-point of
Grg,, admits a factorization S - Sg - Grg,,, where Sy is reduced. Therefore, any pairing
ZL*Gy, ® Grg,, & Gy Ran is uniquely determined by its values on reduced test schemes,
hence on field-valued points. Consequently, any such pairing is uniquely determined by its
restriction to . Z*G,, ® Gr&oj‘b. O

Corollary 3.3.9. If char(k) =0, then any factorization pairing LG, ® LGy, = Gy Ran 18
an integral power of the Contou-Carrére symbol.

Proof. This is a restatement of Proposition 3.3.8 in the special case T = Ty = G,,. O
Remark 3.3.10. For any field k, we may view the proof of Proposition 3.3.8 as establishing

the implication (1) = (2) between the following statements:

(1) any S-point of Grg,, admits a factorization S - Sg - Grg,, where Sy is reduced,;
(2) any factorization pairing .ZG,,®.ZG,, - G, ran is an integral power of the Contou-
Carrere symbol.
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Since (2) fails when char(k) > 0 (Example 3.3.6), (1) must also fail when char(k) > 0. In
other words, the hypothesis char(k) = 0 in [Tao21a, Theorem 1.2.1] is necessary.

Remark 3.3.11. It is known that the Contou-Carrére symbol is the universal Steinberg
symbol over a point of X, ¢f. [GO15]. The universal property established in Corollary 3.3.9
is of a different kind: instead of imposing the Steinberg relation, we impose compatibility
with factorization.

3.4. Classification.

3.4.1. Let G be a reductive group X-scheme. Denote by Rad(G) the radical of G, i.e. the
maximal torus of the center Zg of G [ABD*66, XXII, Définition 4.3.6].

Our principal goal is to study factorization super central extensions of .ZG by G, Ran
subject to the followng property: the commutator of the induced factorization super central
extension of ZRad(G) by Gy, ran is tame in the sense of §3.3.3. Such a factorization super
central extension of £G by G, ran is said to have tame commutator.

By Example 3.3.6 and Proposition 3.3.8, the condition of having tame commutator is
vacuous when char(k) = 0, but not so when char(k) > 0.

3.4.2. Suppose that G has a maximal torus T with sheaf of cocharacters A.

Write Gg. for the simply connected form of G with induced maximal torus T, and sheaf
of cocharacters Ag..

Recall that any integral Weyl-invariant quadratic form Qg on Ag. defines a section of
Y(Age) via (2.2). The corresponding central extension A of Age by G,,, can be viewed as a
monoidal morphism:

Q.. : Ase > BGyp, 2 Pic. (3.20)
We define a morphism of pointed X-stacks by the formula:

VQue+ ' Ase = Pic, A g (A)® w%’c()‘). (3.21)

3.4.3. To specify the additional structure of the map vq_ + inherited from the monoidal
structure of vq__, we introduce a piece of terminology.

Let A denote, temporarily, any étale sheaf of finite free Z-modules over X and b: A® A - 7Z
be any symmetric bilinear form. A morphism of X-stacks v, : A - Pic®™"P®" is said to be w-
monoidal with respect to b if it is equipped with ismorphisms:

ﬁx i I/+(O);
I/+(>\1) ® I/+(>\2) ®w§(()‘1’”\2) 5 I/+(>\1 + )\2),

for each A1, A9 € A, satisfying unitality and associativity. (This notion does not refer to the
commutativity constraint of the Picard groupoid Pic®™P".)

In this terminology, the map vq__ -+ is w-monoidal with respect to the symmetric form by
associated to Qgc.

3.4.4. Denote by ¥ " (A) the Picard groupoid of triples (b, v, ¢), where:

(1) bis a Weyl-invariant integral symmetric bilinear form on A, such that b(\,\) € 2Z
if X\ e Age—we write Qg for the corresponding quadratic form on Ag;

(2) vy is a morphism A — Pic®™P" which is w-monoidal with respect to b and commutes
with the commutativity constraint up to the bilinear form (-1);

(3) ¢ is an isomorphism between the restriction of v, to Ay and vq,, + as w-monoidal
morphisms.
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The relation between ¥ (A) and the Picard groupoid 95" (A) defined in §2.2.1 is as

follows. Given a U-characteristic w'/?, i.e. a line bundle over X equipped with an isomor-

phism (w!/?)®? = wx, we obtain an isomorphism (called the w'/?-shift):
TGP (A) = IGET(A), (byvip) = (byvss ), (3.22)

where v, is the w-monoidal morphism A = v/(A\)®(w'/?)* ) and v is the monoidal morphism
A — Pic®™P" corresponding to A, i.e. (2.11).

Theorem 3.4.5. Let G be a reductive group X-scheme. The following Picard groupoids are
canonically equivalent:

(1) factorization super central extensions of ZG by Gy, ran With tame commutator;
(2) factorization super line bundles over Grg;
(3) VG5 (A)—if G is equipped with a mazimal torus T with sheaf of cocharacters A.
(4) rigidified sections of KET,I;T over the Zariski classifying stack of G—if X is equipped
with a Y-characteristic.
3.4.6. The equivalences of Theorem 3.4.5 are constructed in several stages. We briefly
indicate the steps and explain where prior works are used.

First, we prove that factorization super central extensions of Z*G by G, ran are canon-
ically trivial (Proposition 4.1.2). By descent, we obtain the functor (1) — (2).

Next, the equivalence (2) 2 (3) is essentially known when G is a torus or a semisimple,
simply connected group scheme. The torus case is treated in [TZ21] (using a substantial
theorem of [Tao21b]). The simply connected case reduces to Falting [Fal03].

One may then define the functor (2) — (3) for any reductive group scheme G, by appealing
to functoriality with respect to the commutative diagram:

Tsc I Grsc

|

T—G

We then proceed as follows. We first prove “by hand” that (1) — (2) is an equivalence
for G a torus or a semisimple, simply connected group scheme. Then we prove that, for any
reductive group scheme G, the composition (1) — (2) — (3) is an equivalence, whereas the
second functor is fully faithful. Here, we use an idea of Finkelberg—Lysenko [FL10], an idea
of Gaitsgory [Gai20], and an argument from [TZ21].

The equivalences (1) = (2) 2 (3) are completed in Proposition 4.4.13.

Finally, the equivalence (3) = (4) is defined by combining Theorem 2.2.3 with the w'/?-
shift (3.22). The composed functor (1) -(2) — (3) — (4) thus a priori depends on a maximal
torus T, but it shall follow from the construction that this is not the case. By étale descent,
we obtain the equivalence (1) 2 (4) without assuming the existence of a maximal torus.

Corollary 3.4.7. Let G be a reductive group X-scheme. The following Picard groupoids are
canonically equivalent:

(1) factorization central extensions of LG by Gy, ran with tame commutator;

(2) factorization line bundles over Grg;

(8) Ya,+(A), if G is equipped with a mazimal torus T with sheaf of cocharacters A;
(4) central extensions of G by Ko on the big Zariski site of X.

Proof. Each Picard groupoid in Theorem 3.4.5 admits a canonical functor to Hom(m G, Z/2):
for the Picard groupoids (1), (2), these are the functors remembering the grading; for (3),
this is the second functor in (2.10); for (4), this is the lower horizontal functor in (2.28).
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The equivalences of Theorem 3.4.5 commute with these functors to Hom(m G,Z/2). By
restricting them to the fibers, we obtain the corollary. (Note that the restriction of (3.22)
is defined without the choice of w'/2.) O

4. PROOFS

The goal of this section is to prove Theorem 3.4.5. We begin in §4.1 by constructing a
functor from factorization super central extensions of -ZG to factorization super line bundles
over Grg. The subsections §4.2, §4.3, §4.4 prove the equivalences (1) = (2) = (3) of Theorem
3.4.5 for tori, simply connected groups, respectively all reductive groups. In §4.5, we show
that the equivalence (1) 2 (4) obtained by combining the equivalence (1) = (3) and Theorem
2.2.3 is independent of the choice of a maximal torus.

We remain in the context of the previous section: we fix a ground field £ and a smooth
curve X.

4.1. Triviality over arc groups.

4.1.1. In this subsection, we let G denote a smooth affine group X-scheme with connected
geometric fibers. Our goal is to prove the following result.

Proposition 4.1.2. Any factorization super central extension of £*G by G, Ran @S canon-
tcally trivial.

4.1.3. Consider an S-point 2! of Ran. Recall that the restriction G is an extension of
RrG by fjllG as a group S-scheme (3.8).
We begin with a Lemma which allows us to reduce the problem to RrG.

Lemma 4.1.4. If S is locally Noetherian and normal, then pullback along (3.8) defines an
equivalence between the groupoid of central extensions of RrG by Gy, s and that of ZG.

Proof. Given a central extension:
1->Gns—>9—>2:G-1, (4.1)

we claim that (4.1) admits a unique splitting over .£3'G, and its image is normal in &.
Then the association 4 — ¢ /X;IlG supplies the desired inverse functor.

Since .i”fll(} is an iterated extension of vector group S-schemes, to show the existence and
uniqueness of the splitting, it suffices to show that any central extension of G, g by Gy, g is
canonically split.

This assertion follows from the observations below:

(1) any S-morphism G, g - Gy, g is trivial—this uses the hypothesis that S is reduced,;
(2) the pullback Pic(S) — Pic(G,,s) is an equivalence—this uses the hypothesis that S
is locally Noetherian and normal [GD67, Corollaire 21.4.13, p.361].

To prove that the resulting splitting flﬁl(} — ¢ has normal image, it suffices to show that
it commutes with the conjugation action of £’ G. However, this follows from the uniqueness
of the splitting. O

Proof of Proposition 4.1.2. For an integer n > 1, we denote by Ran*" c Ran the subfunctor
whose S-points are finite subsets of Maps(S, X) of cardinality < 2.
Given a factorization super central extension:

1> Gmpan >4 > LG 1, (4.2)

we first observe that “super” is redundant since the group scheme Z1G — S for any S-point
2! of Ran has connected geometric fibers. Next, we claim that a trivialization of (4.2) over
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Ran*? compatible with the factorization morphism (3.7) for |I| = |J] = 1 uniquely extends to
a trivialization of (4.2) over Ran.

For a nonempty finite set I, consider the tautological X!-point z! of Ran (Remark 3.1.2).
Denote by U c X! the open subset where I',i; N T,i, # @ for at most one pair of distinct
elements i1, € I. Let Z c X! be its complement, a closed subset of codimension > 2. (It is
empty if [I| < 2.) The induced U-point z'|y; is a disjoint union of z* (for i # i1,iy) with z{%-72},
The factorization morphism for ¢ and its trivialization over Ran*? define a trivialization of
.1 over Uc XL

Since X! is smooth, %,1 is pulled back from a central extension of RrG by G, x1 (Lemma
4.1.4). Since RrG is also smooth, the trivialization of %1 extends uniquely along U c X!
[Stal8, 031T]. Given a surjection of nonempty finite sets I - J, we need to argue that the
trivialization of ¥, restricts to the trivialization of ¢,s. This statement reduces to the
case |I| = |J] + 1, where the diagonal X’ c X! intersects nontrivially with U. Since the two
trivializations agree over X’ n U, they must agree over X’.

Finally, we construct the trivialization of (4.2) over Ran*? compatible with factorization.
Consider the tautological X2 -point {12} of Ran, with U c X{1:2} the complement of the
diagonal. The closed immersions I'y: ¢ T' 1,2y (for ¢ = 1,2) induce projection maps from RrG
to G. Moreoever, the base change of RrG along the diagonal of X112} is an extension G of
G by a vector group scheme. These morphisms are summarized in the following diagram:

G%RFG%G

Lo

X A, x02 z:; X
To

where both compositions in the upper row are the canonical surjection G- G.

The restriction of ¢4 along the tautological X-point of Ran is pulled back from a central
extension of G by G,, x, to be denoted by ¢;. Similarly, the restriction ¢, 1 2; is pulled back
from a central extension of RrG, to be denoted by %. By factorization, the restriction of
4, to Uc X112} is identified with pri% @ pry%; . This identification extends uniquely to an
isomorphism between % with pri% ® pry% ® ¢(nA) as line bundles over RrG, for some
n € Z. Restriction to the unit section e : X{1:2} - RrG tells us that n = 0, so we obtain an
isomorphism of central extensions of RrG by Gm’x(l,z}t

Gy S prig @ pri. (4.3)

Restriction of (4.3) along the diagonal then yields an isomorphism % 5 %1@2, i.e. a trivial-
ization of ¢;. The trivialization of % is deduced from (4.3), so it is automatically compatible
with factorization. O

4.1.5. Using Proposition 4.1.2, we construct a functor of Picard groupoids:
Homy, ot ((ZG, Pic®™P") - Tt (Grg, Pic®™P), (4.4)

where the target consists of factorization super line bundles over Grg.

Indeed, any factorization monoidal morphism .ZG — Pic®"P®" is trivial over Z*G, so the
monoidal structure yields its descent data to ZG/Z*G = Grg.

One can make a stronger statement: this monoidal structure yields descent data to the
local Hecke stack Hecg = . Z*G\.ZG/.£*G, and the resulting factorization super line bundle
over Hecg is compatible with the “convolution structure” of Hecg. To make this precise,
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we need the prestack:

Hecl:= 2*Q\2G x?'¢ 2G| 2" G,
equipped with three maps p;, m, p2 to Hecg: projection onto the first factor, multiplication,
and projection onto the second factor. There is also a unit section e : B(.Z*G) — Hecg,
where B stands for delooping relative to Ran. A factorization super line bundle £ over
Hecq is compatible with convolution if there are additional isomorphisms:

ﬁB(f*G) i) e*f; (45)
(P) Z®(p)' L >m'2, (4.6)

which satisfy the conditions of an associative algebra and commute with factorization.

Let Homyg, . (Hecg, Pic™™P") denote the Picard groupoid of factorization super line bundles
over Hecg compatible with convolution. The descent procedure then yields an equivalence
of Picard groupoids:

Homgaet (LG, Pic™™ ") 5 Homgaer (Hecg, Pic™PT). (4.7)

This assertion follows at once from two observations: the convolution structure on Hecg is
defined by the Cech nerve of B(.Z*G) - B(.4G) and any monoidal morphism B(.Z*G) —»
Pic™P®" compatible with factorization is canonically trivial (Proposition 4.1.2).

4.2. Tori.

4.2.1. Let A be an étale sheaf of finite free Z-modules over X. Denote by 957 (A) the
Picard groupoid of pairs (b, F, ), where:
(1) bis an integral symmetric bilinear form on A;
(2) Fy: A > Pic®P is an w-monoidal morphism with respect to b and commutes with
the commutativity constraint up to the bilinear form (-1)°.

This is the special case of ¥ (A) defined in §3.4.4, for G the X-torus A ® Gy,

4.2.2. Let T be an X-torus with sheaf of cocharacters A. We shall define a functor from
the Picard groupoid of factorization super line bundles over Grr to 937 (A):

[act (Gro, Pic™Pe") — 97P(A). (4.8)

This is a variant of [BD04, §3.10.7], where objects of 937 (A) are called 9-data.

For each I-tuple A' = ()\;) of elements of A, there is a closed immersion ¢y1 : X! — Gry x1
sending an S-point 2! = (2%) of X! to the T-torsor &(\;I',:) equipped with the canonical
trivialization off I' 1.

To define (4.8), we take a factorization super line bundle . over Grr and construct a pair
(b,F1). Given A1, A3 € A, the line bundle (¢x, x,)*-Z is identified with (¢x,)*Z ® (¢, )*Z
off the diagonal of X? by factorization—this identification extends to an isomorphism:

(L)\11)\2)*$ = (LAI)*j® (L)\z)*$® ﬁXQ(b()‘h)Q)A)? (49)

for a uniquely defined integer b(A1, A2). The associativity and unitality of the factorization
isomorphism implies that A1, Ao — b(A1,A2) is a bilinear form. Commutativity of the fac-
torization isomorphism implies that b is symmetric and that b(A, A) mod 2 agrees with the
grading on (¢)*.Z. The definition of b is complete.

The second datum F, is set to be F.(\) := (¢1x)*.Z, with w-monoidal structure given by
restricting (4.9) along the diagonal. The fact that F, commutes with the brading up to the
factor (~1)*(*1:22) follows from the fact that the isomorphism @x2 (A)|a = wx is equivariant
against the exchange map X? —» X2, (2!, 2?) = (2%, 2!) up to the factor (-1).
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Proposition 4.2.3. The functor (4.8) is an equivalence of Picard groupoids.
Proof. The proof is identical to that of [TZ21, Proposition 1.4]. O

4.2.4. Let T, T' be X-tori whose sheaves of cocharacters are A, respectively A’. Suppose
that we are given a factorization bilinear pairing:
(,): LT ® Grp - Gy, (4.10)
Delooping in the first variable and pulling back along the projection map Grr — B(.Z*T),
we obtain a morphism compatible with factorization:

('v > : GI'T XRan Gr = BGypy, (4.11)

or equivalently a factorization line bundle over Grpyp.

Consider the factorization pairing (-,-)p defined by a bilinear form b: A® A’ - Z as in
§3.3.3. The property of Contou-Carrére symbol shows that (-,-); induces a pairing Z*T ®
Grr: — Gy, hence a factorization line bundle &'(b) over Grrx1.. We may calculate its image
under the equivalence of Proposition 4.2.3.

Lemma 4.2.5. The factorization line bundle O(b) corresponds under the equivalence of
Proposition 4.2.3 to the pair consisting of:
(1) the quadratic form A& AN - Z, (M A') = b(A\,X);
(2) the w-monoidal morphism A & A" — Pic with (\,\') — wf((’\’x), whose w-monoidal
structure is the isomorphism:

)

(~1)P2 M) g w?{()\1+>\2,)\’1+)\’2) = w;;((Al,A’l) ® w;;((xg,,\;) ® w;:((xl,A;)w(Az,)\’l)
for any pair of elements (A1,A]), (A2, \y) e A@ A'.
Proof. Let (\M)!'=(\)) be an I-tuple of elements of A’. The restriction of &'(b) along:
(id, t(aryr) = Grp xi = Grp xr xx1 Groy xr

is the line bundle over Grp x1 whose fiber at an S-point (z',Pr, ) of Grp x1 is given by
Qi (Prlr i)b(”k;), where the superscript indicates inducing along the character T — G,
defined by b(—,\}) : A — Z.

In particular, for an I-tuple ' = (\;) of elements of A, further restricting (id, ¢(xy1)* @'(b)
along ¢y yields the following line bundle over X':

;Wi © @i Ox: (b(Aj, \D)A)), (4.12)
i€l jel
j#i

where p; : X! - X (resp. Dij X! - X2) denotes the projection onto the factor labeled by i
(resp. factors labeled by (4,7)).

Statement (1) follows by inspecting (4.12) for I = {1,2}, seeing that the quadratic form
(A, A7) = b(A, A') has symmetric form (A1, A7), (A2, AL) = b(Ag, A1) +b(A1, AL). The first part
of statement (2) follows by inspecting (4.12) for I = {1}, the second part for I = {1, 2}, taking
into account the fact that the isomorphism Ox:z(A)|a 2 wx is equivariant for the exchange
map X2 - X2 (21, 22) = (22, 2) up to the factor (-1). O

4.2.6. Let T be an X-torus with sheaf of cocharacters A. We now complete the classification
of factorization super central extensions of ZT by G,, ran With tame commutator.

In light of the equivalence between factorization super line bundles over Grr and 97" (A)
(Proposition 4.2.3), it remains to prove the following assertion.
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Proposition 4.2.7. The functor (4.4) induces an equivalence between:

(1) factorization super central extensions of LT with tame commutator; and
(2) factorization super line bundles over Grr.

Proof. Passing through the equivalence (4.7), we replace (4.4) by the forgetful functor:
Homyg,t (Hee, Pic®™P") — Tgaer (Grr, Pic™P), (4.13)

defined via pullback along Grr — Hecr.
The desired equivalence amounts to showing that every factorization super line bundle
% over Grr admits a unique collection of the following pieces of structure:

(1) an Z*T-equivariance structure;
(2) compatibility data with convolution, i.e. (4.5) and (4.6), on the factorization super
line bundle over Hect induced from structure (1),

subject to the tameness condition: the induced factorization super central extension of £ T
has tame commutator.
Since the Z*T-action on Grr is trivial, we may view an .£* T-equivariance structure on
% as a morphism:
$+T XRan GTT - Gm,Rana (414)

linear in the first variable. On the other hand, given a factorization super central extension
of T with commutator (-,-) : LT ®.LT — Gy, Ran, the £ * T-equivariance structure on the
induced factorization super line bundle over Grr is precisely the map .Z*T x Grr — Gy, Ran
associated to (-, -) by restriction (c¢f. §3.3.5). By the tameness condition, the morphism (4.14)
must then be of the form (-,-);, for some bilinear form:

bi:A®A > Z. (4.15)

Let us now analyze the compatibility data with convolution. The existence and uniqueness
of the unital structure (4.6) follows from the canonical triviality of factorization super line
bundles over Ran and the bilinearity of (4.15). The multiplicative structure (4.5) amounts
to an isomorphism of factorization super line bundles over .ZT x< T Gry equivariant against
the leftmost .£*T-action. Triviality of the Z*T-action on Grr yields an isomorphism:

LT xZ"T Grp = Gry xgan G
I = I'T XRan Irr,

Since the Z*T-equivariance is defined by by, the multiplicative structure (4.5) amounts to
an isomorphism of factorization line bundles over Gr x Grr:

m* (L) 2 (L 8L e 0b), (4.16)

where €(by) is the factorization line bundle associated to the form by in §4.2.4.

Under the equivalence of Proposition 4.2.3, £ corresponds to a pair (b,F,). Applying
Proposition 4.2.3 to T x T, we see that (4.16) exists if and only if b = b. Indeed, the
quadratic form equates Q(A1 + A2) with Q(A1) +Q(A2) +b1 (A1, A2) for each A1, Ay € A, using
Lemma 4.2.5(1). When b7 = b, Lemma 4.2.5(2) yields a canonical isomorphism of w-monoidal
morphisms associated to the two sides of (4.16). The isomorphism (4.16) thus defined is the
unique one satisfying the cocycle condition. O

4.2.8. Consider any factorization super central extension of £ T with tame commutator:
1- Gm,Ran -7 ->2T->1. (417)

The equivalences of Proposition 4.2.3, Proposition 4.2.7 show that (4.17) is classified by a
pair (b,F,) in 93P (A).
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In the course of the proof of Proposition 4.2.7, we have also established the fact that the
commutator pairing of (4.17) equals (-,-)p.

4.3. Simply connected groups.

4.3.1. Let G denote a semisimple and simply connected group X-scheme.

Since Grg - Ran (resp. ZG — Ran) has connected geometric fibers, every factorization
super line bundle over Grg (resp. factorization super central extension of .ZG by Gy, Ran)
is pure of even grading.

Proposition 4.3.2. If G is semisimple and simply connected, then the functor (4.4) is an
equivalence between:

(1) factorization central extensions of £G; and
(2) factorization line bundles over Grg.

4.3.3. Before proving Proposition 4.3.2, we define Schubert varieties in Grg as flat schematic
morphisms to Ran. We give a detailed presentation because Lemma 4.3.4 below was also
used in the proof of [TZ21, Lemma 3.6] but the justification there is inadequate.

Let us assume that G contains a Borel subgroup and a maximal torus T c B c G. Denote
by A* c A the subsheaf of dominant cocharacters of T. For an I-tuple Al = (\?) of elements of

A*, we may view vy of §4.2.2 as a closed immersion X' — Grg x1. Denote by Gré,)‘I c Grgx
the schematic image of the map Z5;G — Grg x1 defined by acting on L (XD).

Since G is semisimple and simply connected, Grg x1 is reduced and Grg x1 — X! has con-
nected geometric fibers. In particular, the above closed subschemes define an isomorphism
of indschemes: )

co/gm Grgt 5 Grg xr. (4.18)

Lemma 4.3.4. For each I-tuple A of elements of A*, the projection p : Gré/\I - X! is flat
and the canonical map below is an isomorphism:

ﬁxl - Rp*ﬁ(}rs’\l . (419)
G

Proof. For || < 2, flatness of p is established in [Zhu09, §1.2]. The argument below which

applies to general I is explained to me by Joao Lourengo. We call a morphism f:Y; - Yo

of schemes derived O-connected if the induced map Oy, - Rf. 0y, is an equivalence.

We begin by recalling some classical facts taking place over geometric points of X. Let z
be a k-point of X and Grg, the fiber of Grg. Let W denote the Weyl group of (G, T) and
Wag := A x W its affinization. Write I, ¢ £ G for the Iwahori group scheme associated to
the Borel B. The affine flag variety Flg , := %, G/I,; has I,-orbits parametrized by W,g. For

w

each \ € A*, the preimage of Gré{‘m along Flg ; - Grg,; concides with Flé
of the I,-orbit corresponding to the longest element w(A) in WAW c Wg.

é)‘), the closure
The scheme Flé‘f’é’\) admits a Demazure resolution D**) associated to any reduced ex-
pression of w(A):

DM L FIg™N S Grg),. (4.20)

By [Fal03, Theorem 8], the morphism 7 is derived ¢-connected. Since G/B — Spec(k)

is derived O-connected [Kem76], the same holds for the composition (4.20). We collect two
consequences of this fact:

(1) Grg', - Spec(k) is derived @-connected; indeed, this is because D" — Spec(k)

is derived @-connected, being an iterated P*-bundle.
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(2) the convolution map Grg't X Grg)2 - Grg't™? is derived @-connected; indeed, the
source and target both admit rational resolutions in the sense of [Kov22, Definition
9.1], so this claim follows from [Kov22, Theorem 9.12(i)].

I —_—
To prove that p: Grg‘ - X! is flat, we consider the global convolution map m : Gré}‘I -

GréAI over X!, where the composition @féﬂ - X! is evidently flat. Statement (2) implies
that for each k-point 2! of X!, the base change m,1 of m satisfies R*(m,1),€ = 0 for i > 1. By
[G6103, Proposition 3.13], m, € is X!-flat and its formation is compatible with base change

I —
along X!. Since Gré)‘ is reduced and m is surjective on k-points, we see that m, & coincides

with the structure sheaf of Gré)‘l. This implies that p is flat and its geometric fibers are
identified with the corresponding Schubert varieties. The derived &-connectedness (4.19)
then follows from its pointwise version, i.e. statement (1) above. O

4.3.5. Lemma 4.3.4 has the following consequence: given any S-point z': S — X!, a line
bundle £ over Grg ,1 descends to S if and only if it is trivial over all geometric fibers.
Indeed, if .Z is trivial over all geometric fibers, then by Lemma 4.3.4 and cohomology and
base change, the derived pushforward of .Z to S yields the desired descent.

On the other hand, [Fal03, Theorem 7] proves that the Picard group of Grg s, for any
k-point z of X, is isomorphic to Z", where r denotes the number of simple factors of G, with
(1,-+,1) € Z" corresponding to an ample line bundle over Grg ;.

Proof of Proposition 4.3.2. The problem is of étale locally nature on X, so we may assume
that G contains a Borel subgroup and a maximal torus T c B c G.

Let .Z be a factorization line bundle over Grg. According to §4.1.5, it suffices to prove
that £ admits a unique .Z*G-equivariance structure and the induced factorization line
bundle over Hecg admits unique compatibility data with respect to convolution.

Consider an S-point (2!, g) of Z5:G. The action by g defines an automorphism act, of
Grg 41. There is a unique isomorphism:

(act,)* ¥ > & (4.21)

extending the identity over the unit section e : S - Grg ,1. Indeed, this is because the
difference (act,)*.Z®.¢! is trivial along geometric fibers, so we may apply the observation
of §4.3.5. The uniqueness of (4.21) implies that it satisfies the cocycle condition.

The compatibility data with respect to convolution consist of isomorphisms (4.5) and
(4.6). The second isomorphism is clear. The first one amounts to an isomorphism of line
bundles over:

Grg X Grg = Z2G xZ'G Grg,

compatible with the left £ * G-equivariance. This isomorphism is constructed in the same
way as (4.21), by reducing to geometric fibers over Ran. O

4.3.6. Suppose that G contains a maximal torus T with sheaf of cocharacters A. The Weyl
group W acts naturally on A. Restricting along T c G and applying Proposition 4.2.3, each
factorization line bundle over Grg defines a pair (b, F,) with b(\, \) € 2Z, hence quadratic
form Q: A~ b(A\\)/2 on A.

By [TZ21, Proposition 2.5], the quadratic form Q is Weyl-invariant and this procedure
defines an equivalence of Picard groupoids between factorization line bundles over Grg and
Weyl-invariant quadratic forms Quad(A,Z)" on A. (Evaluation on short coroots belonging
to each simple factor of G defines an isomorphism Quad(A,Z)W = Z®".)
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In summary, all of the Picard groupoids below are canonically equivalent when G is
semisimple and simply connected:

Homfact (XG; PIC) i> Homfact (XG, Picsuper)

Ffaot(Grg, PIC) — Ffact(GrI‘G7 Picsuper) (422)
Quad(A,z)WV

In particular, composing these equivalences with the restriction along T c G and the
functor (4.8), we obtain a functor:

Quad(A,Z)W - 93P (A). (4.23)

In [TZ21, §2.4.7], we have verified that the image of Q is the pair (b,F,), where F, is the
w-twist of the monoidal morphism Fq defined in §3.4.2.

Remark 4.3.7. The equivalences in (4.22) remain valid when factorization central exten-
sions of ZG (resp. factorization line bundles over Grg) are replaced by central extensions
of Z,G (resp. line bundles over Grg ,) for any geometric point z of X.

4.3.8. Let us relax the hypothesis and let G be any reductive group X-scheme. We shall now
use our knowledge about the simply connected case to perform a commutator calculation.
Denote by Gg. the simply connected form of G and G,q the adjoint form of G. The
Gaq-action on G by conjugation extends to a Gug-action on G, which we still refer to as
the conjugation action.
Consider any factorization central extension:

1-— Gm,Ran - gsc - og/ﬂGsc - 1. (424)

Claim: the conjugation ZG,q-action on Z Gy, extends uniquely to Y.

Indeed, let (2!, g) be an S-point of #G,q. Action by g defines an automorphism act, of
Z.1Gge. Viewing 9,. as a multiplicative line bundle over .Z Gq., we shall argue that there is
a unique isomorphism:

(aCtg)*gsc,wI > gb‘c,mla (4.25)
compatible with the multiplicative structure of %, ;1. According to §4.3.5, it suffices to
show that the two sides of (4.25) are isomorphic on geometric fibers over S. This statement
holds by Remark 4.3.7, seeing that (act,)* induces the identity map on Quad(A,Z)"W.

4.3.9. Suppose that G contains a maximal torus T with sheaf of cocharacters A. Write Ty,
Taq for the induced maximal tori in Gg., Gaq, with sheaves of cocharacters Ag., Aaq.

The ZGaq-action on ¥, constructed in §4.3.8 restricts to an .£T4-action, and we obtain
a factorization pairing:

gTad ® fTsc - Gm,Rana (tadv tsc) ing (tadisct;é) : tN_l

sc

(4.26)

where £y is an arbitrary lift of ¢, to %, which exists locally.
To compute this pairing, we recall that ¥, is classified by a Weyl-invariant quadratic
form Qg. on Ag.. Since A,q is canonically dual to the root lattice, the formula:

(A @) = Qse(@) (N, @)

for each X\ € A,q and coroot a € Ay yields a pairing by : Apq ® Age — Z.
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Lemma 4.3.10. The factorization pairing (4.26) equals (-,)», (in the notation of §3.3.3).

Proof. The problem is of étale local nature on X, so we may assume that G is split and T
is a split maximal torus. Each coroot « induces a morphism f, : SLy — Gg, sending the
upper-triangular unipotent matrices to the root subgroup U, c Gg. and restricts to a on
the diagonal torus G, c SLs.
The central extension (4.26) restricts along f,, to the Qsc(a)-multiple of the factorization
central extension:
1 - G Ran ~ SLy » #SLy — 1, (4.27)

defined by restricting the Tate central extension GLy along ZSLy ¢ £GLy. Indeed, fac-
torization central extensions of .ZSLs are uniquely determined by their quadratic forms
(§4.3.6), hence by the commutator of their restrictions to £G,,, so we conclude by §4.2.8
and our definition of the Contou-Carrere symbol.

By functoriality of the construction, it suffices to show that (4.26) equals the Contou-
Carrere pairing for G = SLy and %, being the central extension (4.27). Note that the Taq
(= G,n)-action on G (= SL2) extends to the inner action of G,, on GL2 as the subgroup:

G cGly, av (g (1)) (4.28)
Using the group structure on GL,, we extend the induced inner £G,,-action on . GL3 to
an action on GL2 This action must restrict to the T,q-action on the subgroup SL2 c GLQ,
by the uniqueness of the latter (§4.3.8). Therefore, it remains to prove that the commutator
pairing in GLo between the subtorus (4.28) and the subtorus:

a 0
GWLCGLQ, Cl'-’(o a_l)

is the Con@u—Carrére symbol. This assertion holds because GLs restricts to the Tate central
extension G, of ZG,, along (4.28). O

4.4. Descent.

4.4.1. Let 2 and 5 be factorization group presheaves whose base changes along any
S-point of Ran are fppf sheaves.

An action of 5 on J as group presheaves is compatible with factorization if for any
disjoint S-points z!, 2”7 of Ran, the /&1 ,1-action on 1,1 coincides with the 1 x -
action on JZ,1 x s under the factorization isomorphisms of 77 and .#. When this happens,
the group presheaf £ x 7 over Ran inherits a factorization structure.

Consider a factorization super central extension:

15 Gy > H > > 1.
Suppose that J# is equipped with an JZ-action which is trivial on A. Then we say that the
A -action on A is _compatible with factorization if for disjoint S-points z', &7 of Ran, the
F,1,,7-action on o 1z coincides with the induced 2,1 x JZ,5-action on the quotient:

gt X Ky = Kyt
The following lemma is a variant of [BDO01, Construction 1.7].

Lemma 4.4.2. Let 2, 7€ be as in §4.4.1 with € acting on & compatibly with factoriza-
tion. The following categories are equivalent:

(1) factorization super central extensions of & x H by G, Ran;
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(2) triples (0, 0, a), where H (resp. A ) is a factorization super central extension of
K (resp. F€) by G Ran, and « is an € -action on & which is trivial on Gy, Ran,
compatible with factorization, and induces the given J€-action on J .

Proof. The functor (1) = (2) is given by restricting a factorization central extension of
H x A along the group sub-presheaves ¥ ¢ # x A, # ¢ K x H to obtain A, A, and
observing that the Z-action on .# factors through 7.

The functor (2) = (1) is given by forming the central extension % x 7 of ¥ x . by
Gy, Ran X Gy, Ran using the action «, and pushing out along the product map on G, rRan. U

Proposition 4.4.3. Let G be a reductive group X-scheme with a mazimal torus T. Denote
by Gy the simply connected form of G, equipped with the conjugation T-action. The following
categories are canonically equivalent:

(1) factorization super central extensions of LGge x LT by Gp, Ran;

(2) pairs (Y, T ), where Y. (resp. T ) is a factorization super central extension of

ZLGqc (resp. LT) by G Ran-

Proof. We appeal to the equivalence of Lemma 4.4.2. It suffices to prove that given any pair
(Ysc, 7) in (2), there is a unique £ T-action on % which is trivial on G,;, Ran, compatible
with factorization, and induces the conjugation action on .ZGg.. This is established in §4.3.8
when T is replaced by G,q4, but the argument for uniqueness carries over. O

4.4.4. Under the equivalence of Proposition 4.4.3, we shall write the factorization super
central extension of ZGg. x £T induced from (%, 7 ) as follows:

1- Gm,Ran _)%sc;{y g gGSC x LT - 1.
It is by construction the pushout of ¥ » .7 along the product map on G,, ran-

Lemma 4.4.5. Let G » G be a surjection of reductive group X-schemes whose kernel is a
torus. The induced morphism LG — £ G is surjective in the topology generated by fpqc and
proper covers.

Proof. We shall deduce this from two statements:
(1) Z*G - Z£*G is surjective in the fpgc topology;
(2) Grg — Grg is surjective in the topology generated by proper covers.
Let us prove the lemma assuming both statements. Indeed, the morphism £G - £G
factors as:
ZG - LG xgy, Grg » ZG.
By statement (2), the second morphism is surjective in the proper topology. We claim that
the first morphism is surjective in the fpgc topology. Indeed, consider an S-point (g,x) of
ZG xgrg Grg. Since ZG - Grg is surjective in the étale topology, we may lift = to an
Si-point § of .ZG over some étale cover S; — S. The image of § in £ G differs from g by an
Si-point h of £*+G. Statement (1) allows us to lift h to an Ss-point h in £*G over some
fpqe cover Sg — Sp, which we may then use to modify § to obtain a lift of (g,x).
To prove statement (1), we consider an S-point z! of X! with graph I';r ¢ Sx X. The base

change G - £ G is the inverse limit of morphisms:
Rpm)é d RF(W,)G, (4.29)

which are the Weil restrictions of G — G along the finite locally free morphisms Fi’f) - S,

see §3.2.3. Since G — G is affine, smooth, and surjective, the same holds for (4.29). Hence
Z5G - 241G is affine, flat, and surjective.
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We now turn to statement (2). Since the formation of the affine Grassmannian is com-
patible with étale base change, we may assume that the kernel of G — G is a split torus T.
This implies that ZG — ZG is surjective on field-valued points. Indeed, given any k-field
F, the graph of an F-point of X! is the disjoint union of schemes isomorphic to Spec(F((t))),
but the map G(F((t))) — G(F((t))) is surjective because H'(F((t)), T) = 0. In particular,
any F-point of Grg lifts to Grg after a finite extension F c F;.

On the other hand, the morphism Grg — Grg is ind-proper because G is reductive.
Since Grg is of finite presentation, taking schematic points of Grg puts us in the following
situation: an affine k-scheme S of finite type, an ind-proper S-indscheme Y, such that
Y — S is surjective on field-valued points up to finite extension. We claim that some closed
subscheme Y; ¢ Y surjects onto S. Then Y; — S is a proper cover which lifts to Y.

Let us prove the claim. Since S is of finite type over k, we reduce to the case where S is
irreducible. Then its generic point lifts to some Y; after a finite extension. Since Y; - S is
proper, its image contains the closure of the generic point which is all of S. O

4.4.6. Let G denote a reductive group X-scheme with a maximal torus T. Denote by Gg.
the simply connected form of G and Ty, c Gg. the preimage of T. The T-action on G by
conjugation extends to Gg.. There is a short exact sequence:

15T = GeexT -G =1, (4.30)

where the first map is the anti-diagonal embedding ¢ ~ (¢,¢7!). Furthermore, its image is
central in Gg. x T.
The exact sequence (4.30) induces an exact sequence of factorization group presheaves:

1 > LTy > LGCoe x LT » £G, (4.31)

where the last map is surjective in the topology generated by fpqc and proper covers. Since
perfect complexes satisfy derived proper descent [Cho22, Theorem 1.8] and loop groups are
classical [GR14, Theorem 9.3.5], central extensions of ZG by G, ran are equivalent to those
of LG 1. LT by Gy, ran equipped with a splitting over £ T, whose image is normal. (This
idea is due to Gaitsgory, cf. [Gai20, Corollary 5.2.7].)

4.4.7. Let (G, T) be as above. Appealing to Proposition 4.4.3, we obtain an equivalence of
Picard groupoids between:

(1) factorization super central extensions of ZG by G, Ran; and
(2) triples (7, %, ), where 7 and %, are factorization super central extensions:

1->Gppran 7 - LT =1, (4.32)
1 - Gpmran >%ec > L Gse — 1, (4.33)
and ¢ is an isomorphism of their pullbacks to £ Ty, subject to the normality con-

dition that the section £ Ts. — %:%x7 induced from ¢ has normal image.

Lemma 4.4.8. A factorization super central extension of LG by Gy, Ran has tame com-
mutator if and only if its restriction to LT does.

Proof. Note that any factorization (super) central extension of .ZGg. by Gy, Ran has tame
commutator (Lemma 4.3.10). The claim now follows from Lemma 3.3.5, seeing that Rad(G) x
Tsc = T is an isogeny of X-tori. U

4.4.9. Consider a triple (7, %, ¢) as in §4.4.7 and assume that 7 has tame commutator.
In particular, this implies that its commutator is (-, ), where b is the symmetric bilinear
form appearing in the classifying data of 7, see §4.2.8.
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Under this assumption, we shall make the normality condition of §4.4.7(2) explicit.

Lemma 4.4.10. If J has commutator {-,-)p, then the normality condition holds if and only
if b is Weyl-invariant.

Proof. Let A (resp. Aag, Asc) denote the sheaf of cocharacters of T (resp. Taq, Tsc). Note
that .7 has commutator (-,-), while %. defines the pairing (-, )y, via its £ T.q-action (see
Lemma 4.3.10). The existence of ¢ implies that b and by agree on Ay ® Ag.. In particular,
the restriction of b to Ag. comes from a Weyl-invariant quadratic form Q.

We shall prove that the normality condition holds if and only if b and b; coincide over
A ® Ag.. This latter condition means that for each A € A and root a € Ay, there holds:

(A, a) = Q(a){d, A). (4.34)

The equality (4.34) is equivalent to the Weyl-invariance of b.
Let us now analyze the normality condition. The section induced from ¢ has the following
description on S-points:

LTee >G4 RT,  tee > (tse, p(tse) ™), (4.35)

where fy is any lift of ts. to % and o(fs) is its image in .7 under ¢. Since .£Ty. is a
central subgroup of ZGg. x ZT, the image of (4.35) is normal if and only if it is central.
This condition translates to the following equality in ¥, %7 :

(gscat) (scaso(tsc) ) (gscvt) ! (Esca¢(£sc)71)v (436)

for all S-points (gsc,t) of LGy x ZT and ts. of LTye.
The left-hand-side of (4.36) computes to ({(Z, fsc)p, tse; (£, P(Tse) oo (tse) L) Its equality
with the right-hand-side amounts to the equality:

<tﬂ ESC)bl = (ta SD(ESC)hH
for all S-points t of ZT and tg. of LTy, i.e. the agreement of b and b over A ® Agc. O

4.4.11. Define the Picard groupoid 19buper (A) by the Cartesian diagram:

ﬂs“per(A) — Quad(Ag, Z)W

| e

B (A) > 617 (M)

Then 9357 (A) can be viewed as the full subgroupoid of ﬁsuper(A) consisting of objects
whose images in 677 (A) have a Weyl-invariant form b.

Pulling back along T c G, Gg ¢ G, and using the compatibility over Ty., we obtain a
functor:

Dgact (Grg, Pic™™P) - G0 (A). (4.37)

4.4.12. We are now ready to establish the equivalence (1) 2 (2) 2 (3) in Theorem 3.4.5. We
shall do so using the equivalence of §4.4.7, together with an argument from [TZ21] showing
that factorization super line bundles over Grg embed fully faithfully into ﬁgﬂcr(/\).
Denote by:
Hom 2 (£ G, Pic®™P") ¢ Homyg,et (LG, Pic™P)
the full subgroupoid of factorization super central extensions of ZG by Gy, ran, character-
ized by the property of having tame commutator.
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Proposition 4.4.13. Let G be a reductive group X-scheme equipped with a maximal torus
T with sheaf of cocharacters A. The functors (4.4) and (4.37) induce equivalences among
the following Picard groupoids:

Hom{i° (LG, Pic™™P*") 5 Tgae (Grg, Pic™™P) = 950 (A). (4.38)
Proof. The functors (4.4) and (4.37) a priori define:
Hom{ (£ G, Pic™™P®") - T'taet (Grg, Pic®™P") — 19S“p°r(A),

The composition is an equivalence onto ¥ (A)—this is the equivalence of §4.4.7 re-
stricted to the subgroupoid characterized by the tameness condition, as we see from Lemma
4.4.8 and Lemma 4.4.10. Hence it suffices to prove that (4.37) is fully faithful and its essential
image is contained in ¥ (A).

The fully faithfulness is the content of [TZ21, §3.2]. The assertion that its image lies in
g5 (A) amounts to establishing the Weyl-invariance of the bilinear form b associated to
any factorization super line bundle over Grg. Since Rad(G) x Ty — T is a Weyl-equivariant
isogeny of X-tori, the statement can be proved when G is replaced by Rad(G) x Gg.. In this
case, we claim that the external product:

X : 1_‘fact(G'I‘Rad((})7 Picsuper) x Ffact(Gerca PIC) - 1_‘fact(G'I‘Ra.d((})><Grsc7 Picsuper)

is an equivalence of Picard groupoids. Indeed, this follows from the fiberwise characterization
of line bundles over Grraq(g)xG.. Which descend to Grgaq(q) (§4.3.5). d

4.5. Poor man’s transgression.

4.5.1. Let G be a reductive group X-scheme. Denote by BG the X-stack classifying Zariski
locally trivial G-torsors.
The following result completes the equivalence (1) = (4) in Theorem 3.4.5.

Proposition 4.5.2. Fiz a U-characteristic w'? over X. There is a canonical equivalence
of Picard groupoids:

f(b oy Te(BG K7) 5 Homfne (£G, Pic™™). (4.39)

Furthermore, if G is equipped with a mazimal torus T with sheaf of cocharacters A. Then
the following diagram is canonically commutative:

Jipun
T (BG Ksupe]r) (D, /2)H }jértle(g(} Plcsuper)

l(2.12) l(4.38) (4.40)
super (322) super
I (A) Vg (A)

4.5.3. In an ideal world, we would define (4.39) by a “transgression” on K-theory and verify
the commutativity of (4.40), but we do not know how to do so.

In what follows, we offer a poor man’s substitute: we first fix a maximal torus contained
in Borel subgroup T ¢ B ¢ G (which exists étale locally on X) and define (4.39) as the com-
position of the three equivalences in (4.40). We denote this functor by ® gy to emphasize
its a priori dependence on (T,B).

Then we prove that ®(p gy is canonically independent of (T,B), i.e. given two pairs
T; cB; c G (for 7 = 1,2) of maximal tori contained in Borel subgroups, there is a canonical
isomorphism of functors:

Ty B (T2.Ba) * P11 By) = (T ,Ba)- (4.41)
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satisfiying the cocycle condition for three such pairs (T;,B;) (i =1,2,3).
These canonical isomorphisms allow us to glue the functors ®(t gy over an étale cover of
X, which yields the equivalence (4.39).

Remark 4.5.4. The definition of ®(p gy uses only T. However, the isomorphism (4.41)
depends on By and Bs, so we prefer keep the Borel subgroups in the notation.

Proof of Proposition 4.5.2. 1t suffices to construct (4.41) satisfying the cocycle condition.
Suppose that ¢ is an X-point of T. The inner automorphism int; : G - G, g ~ tgt™!
preserves T c G and induces a commutative diagram:

(2 12)

Le(BG, K 5) — 95" (A)
Jims lint: (4.42)
super (2 12 super
Ie(BG, K %)) — 19Gp (A)
Rigidified sections of Kf"fp;]r over BG are equivalent to monoidal functors G — Q(KSTPQ?)

Since the target has a symmetric monoidal structure, int; acts as the identity on the groupoid
of such monoidal functors.

On the other hand, the right vertical functor int} in (4.42) carries a triple (b, A, ) to the
triple (b,A, ¢ -t%), where t* : A - G,,, denotes the character sending A € A to the character
b(\,-): T > G,, evaluated at t, and ¢ -t® is the sum of ¢ with the restriction of t* to Ag..
The 2-isomorphism rendering (4.42) commutative evalutes to the isomorphism:

(b, K, ) = it} (b, A, ) = (b, K, p-t"),

induced by the automorphism of the central extension A defined by t*. These calculations
are performed using the description of the commutator in [BD01, Proposition 3.13].

The situation is parallel for the functor (4.38): an X-point ¢ of T induces a commutative
diagram:

Hom {2 (ZG, Pic®™P*") = (439 19“per(A)

Jm [ (4.43)

Hom{he (£G, Picver) 125 youper ()

where the left vertical functor is isomorphic to the identity, the right vertical functor sends
(b,A,, ) to (b,A,,p-t*), and the 2-isomorphism rendering (4.43) commutative is given by
the automorphism t* of A,. These calculations are performed using the description of the
commutator in §4.2.8.

Suppose now that T; c B; ¢ G (for i = 1,2) are a pair of maximal tori contained in Borel
subgroups and ¢ is an X-point of G with inty(Ts) = T4, int,(B2) = By1. Denote by A; the
sheaf of cocharacters of T};.

The inner automorphism int, gives rise to a commutative diagram:

(2.12)

12

F (BG Ksupcr) ﬂsupcr (A ) ﬁsupcr(A ) (4 38) }:é?e(gG’ Picsuper)
lint_’; lint; lintg lint_’; (4.44)
F (BG Ksupcr) (2.12) ﬂsupcr (A ) ~ ﬁsupcr(A ) (4 38) E:(I;Itle(gGa Picsuper)
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where the middle equivalences are defined by w'/2-shift (3.22). Since the outer vertical
functors are equivalent to the identity, the 2-isomorphism rendering (4.44) commutative
defines an isomorphism of functors:

Oég H ®(T17B1) i> q)(TQ,Bg)' (445)

Claim: a4 depends only on the pairs (T1,B1) and (T2,B2) (as opposed to g). Indeed,
any other choice of an X-point of G conjugating (T2,B2) into (T1,B;) differs from g by
an X-point of Ty, so the claim is equivalent to the following assertion: for (T;,B;) =
(T2,Bz) = (T, B), the isomorphism «y is the identity on ® (1 y. However, this follows from
the description of the 2-isomorphisms in (4.42) and (4.43).

Finally, we set (4.41) to be the isomorphism (4.45) for any X-point g conjugating (T3, Bs)
into (T4,B1), which exists étale locally over X—these choices glue thanks to the indepen-
dence of oy on g. The cocycle condition follows from the equality oy, g, = ag, - tg, . O
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