SPECTRAL DECOMPOSITION OF GENUINE CUSP FORMS OVER
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ABSTRACT. We prove the geometric Satake equivalence for étale metaplectic covers of
reductive group schemes and extend the Langlands parametrization of V. Lafforgue to
genuine cusp forms defined on their associated covering groups.
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INTRODUCTION

This article is a contibution to the Langlands program for covering groups, as proposed
by Weissman, Gan, and Gao [Weil8] [GG18]. Its goal is to parametrize genuine cusp forms
over a global function field by spectral data, defined in terms of an L-group.

Such a parametrization has been anticipated by V. Lafforgue [Laf18, §14] and Gan—Gao
[GG18, §14, Question (L)]. V. Lafforgue has moreover indicated a path towards it via the
arguments of op.cit., combined with a strong version of the geometric Satake equivalence
for covering groups, which in principle should follow from Finkelberg—Lysenko [FL10], Reich
[Reil2], and Gaitsgory—Lysenko [GL18].

The present article is intended to realize this vision in what we believe is its appropriate
generality. More concretely, the class of covering groups treated in this article includes the
ones defined by Brylinski-Deligne [BD01] using algebraic K-theory, but generally contains
more objects when the reductive group is not simply connected. In this sense, our scope is
larger than the one envisioned by Weissman [Weil8] and Gan—Gao [GG18].

By making this generalization, we also make the problem simpler, essentially because étale
cohomology is better understood than algebraic K-theory. This alternative perspective goes
back to Deligne [Del96] and is rediscovered by Gaitsgory—Lysenko [GL18] under a different
guise. To keep our narrative consistent, we use [Zha22] as our only input concerning covering
groups, although many results proved there have analogues in [GL18].

0.1. Main result.

0.1.1. Let F be a global field of characteristic p # 0. Denote by Ap the topological ring of
its adeles.

Let £ # p be a prime and choose an algebraic closure Q; > Q,. Let A c Q) be a finite
subgroup whose order is indivisible by p.

Our group-theoretic input is a pair (G, p), where G is a reductive group over F and pu is
a rigidified section of the (higher) étale stack B*A(1) over the classifying stack BG, i.e. a
section equipped with a trivialization along the unit e : Spec(F) — BG.

The datum p is called an étale metaplectic cover of G in [Zha22]. Tt categorifies a class in
the reduced étale cohomology group H2(BG,A(1)). In the special case where G is simply
connected, the space of étale metaplectic covers is discrete, and our formalism coincides with
the one in [Del96].

0.1.2. From the pair (G, ), we extract two pieces of “classical” structures. (To construct
them, it is essential to start with p rather than the cohomology class it represents.)
The first one is a central extension of topological groups:

1> A-Gp—-G(Ap) - 1, (0.1)

equipped with a canonical splitting over G(F) ¢ G(Ap). The central extension (0.1) gives
us the notion of a genuine automorphic form: a G(F)-invariant locally constant function
f: Gp — Qy satisfying the equality f(Z-a) = f(Z)-a for each Z € Gp and a € A.

The second piece of structure is a short exact sequence of topological groups:

1 - Hp(Qp) — LHFﬂg - Gal(F/F) - 1, (0.2)
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where Hg is a pinned split reductive group over Q. It is determined by (G, ) following a
combinatorial recipe, modulo some immaterial choices such as the algebraic closure F. With
(0.2), we arrive at the notion of an L-parameter: an Hg(Q)-conjugacy class of sections
o :Gal(F/F) - “"Hg y of (0.2).

Remark 0.1.3. For classical applications, one often takes A to be the group u(F) of roots
of unity in F, whose inclusion in Q} is written as an injective character ¢ : u(F) - Qj.

Given an integer n > 1 invertible in F, any Brylinski-Deligne extension of G induces an
étale metaplectic cover with A = u,, (see [Zha22, §2.3]). When p,, (F) has cardinality n, the
covering group (0.1) agrees with the one constructed in [BDO1, §10], whereas the L-group
(0.2) is identified with the one constructed by Weissman [Weil§].

Another source of étale metaplectic covers arises from morphisms of complexes 71 (G) —
A[2] of Gal(F/F)-modules, where 7, (G) denotes the algebraic fundamental group of G (see
[Zha22, §5.3]). Over a p-adic local field, they induce covering groups of Kaletha [Kal22].

0.1.4. The main result of this article is a parametrization of the cuspidal part of genuine
automorphic forms by L-parameters.

In order to formulate this parametrization, we need an additional piece of information
having to do with the maximal torus Z of the center Zg c G.

To wit, the covering group of Z(Ar) induced from (0.1) is generally not commutative.
However, there is a canonically defined isogeny of tori Z# — Z such that the induced covering
group an — Z}(Af) is commutative and its image in Gr is central.

We shall fix a lattice (i.e. discrete and cocompact subgroup) = c Z#(F)\Z}, which projects
isomorphically onto its image in Z!(F)\Z!(Ap).

Furthermore, the restriction of (0.1) to P(Ar), for each parabolic subgroup P c G, canon-
ically descends to the Levi quotient M(Ar). We can thus define the cuspidal part of com-
pactly supported genuine automorphic forms on G(F)Z\Gp, by imposing the vanishing of
constant terms for all proper parabolic subgroups P c G.

Our main theorem, in its most classical form, is a decomposition of this Q,-vector space
according to L-parameters.

Theorem A. There is a canonical decomposition:

Funeus, (G(F)Z\Gr, A ¢ Q}) = DH,y, (0.3)
(o]

where [o] ranges over Hg(Qy)-conjugacy classes of sections of (0.2).

0.1.5. The spectral decomposition (0.3) arises as the limiting case of its integral variant,
Theorem 4.3.11, which contains additional information such as the compatibility with the
Satake isomorphism for covering groups, c¢f. [McN12].

Taking this compatibility for granted, Theorem A fulfills the “automorphic-to-Galois”
direction of Langlands reciprocity for genuine cusp forms. In the absence of covering groups,
this result is established by Drinfeld for GLy [Dri87b] [Dri88] [Dri87a], L. Lafforgue for GL,
[Laf02], and V. Lafforgue for all reductive groups [Laf18].

0.2. Outline of the proof.

0.2.1. The proof of Theorem A is an adaptation of [Laf18]. First, we must formulate an
integral version of the problem in order to use the tools of algebraic geometry.
Let X be smooth, proper, geometrically connected curve over a finite field k with generic
point 7 = Spec(F). Let D c X be a k-finite closed subscheme and X be its complement.
The notations Q; and A are as in §0.1.1.
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We replace the group-theoretic input by a pair (G, u), where G - X is a smooth affine
group scheme whose base change to X is reductive and p is a rigidified section of B*A(1)
over By (G), the classifying stack of the base change of G to X.

0.2.2. Denote by Bung,p the moduli stack of G-torsors over X rigidified along D.
The étale metaplectic cover u defines an A-gerbe ¥p over Bung p, via the categorification
of a transgression map on étale cohomology:

[X]: Hi(Bg(G), A1) - H?(Bung,p, A).

The A-gerbe % geometrizes the covering group Gr in the sense that a process akin to taking
the trace of Frobenius yields a set-theoretic A-torsor:

BT]IlGHD g BunG7D(k), (04)

whose pullback along the adelic uniformation map G(Ap) - Bung p(k) recovers Gr.

It is more natural, especially for nonsplit reductive groups, to replace genuine automorphic
forms by A-equivariant functions on BTlTlG,D, and the spectral decomposition theorem will
hold for this larger space of functions.

0.2.3. There are two other important geometric objects associated to G: the local Hecke
stack and the moduli stack of Shtukas defined by Drinfeld [Dri87b] and Varshavsky [Var04].

For a nonempty finite set I, these objects are ind-algebraic stacks over )O(I, related by a
morphism defined as restriction to the parametrized formal disks:

res : Shtg p — Hecg.

The rigidified section y also defines an étale A-gerbe 4* over HecIG7 which geometrizes the
local covering groups G, -~ G(F) together with their canonical splittings over the maximal
compact subgroups G(&,,), for each x € X.

The key observation is that ¢! is canonically trivialized over ShtIG’D. In particular, ¢4'-
twisted ¢-adic sheaves on HecIG pull back to untwisted sheaves over ShtéyD, so their compactly
supported cohomology are usual /-adic sheaves over XL

Moreoever, 4! is canonically trivialized over the unit section e of HecIG, so e(Q) may
be viewed as a %I—twisteczd sheaf over HecIG. Applying the above process to e;(Qy), we find
the constant sheaf over X! with coefficients in compactly supported A-equivariant functions
on 1’3_1\15(;,]3. This is how cohomology of Shtukas encodes genuine automorphic forms.

Remark 0.2.4. In the main body of the text, these constructions will be applied to the
quotient stack E\Shtg,D7 where = c Bunz «p is a lattice analogous to the one in §0.1.4, but
let us ignore this difference for now.

0.2.5. Turning to the spectral side, we extract from the pair (G, ) a locally constant étale
sheaf over X of pinned split reductive groups H over Qy, together with an E.-monoidal
morphism:

vy : Zn > BY(A), (0.5)

where ZH denotes the sheaf of characters of the center Zy c H.

The subscript 9 in (0.5) refers to a twist by the {+1}-gerbe of theta characteristics over X
(relevant only when the characteristic p # 2). The somewhat curious Corollary 4.2.7 shows
that it is essentially equivalent to Weissman’s meta-Galois group.

The pair (H,vy) is our version of the metaplectic dual data. Tt is closely related to the
same-named notion in [GL18], although we use the construction in [Zha22, §6] which is valid
in the number field situation as well.
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In the absence of an étale metaplectic cover, H would be the sheaf-theoretic version of
Langlands’ L-group associated to G. The object vy is particular to the metaplectic context,
and can be concretely described as an extension of stacks of Picard groupoids over X:

By (A) > Zpy — Znr. (0.6)

0.2.6. Here, we encounter an interesting phenomenon which is only visible on the geometric
level: Zy is generally not strictly commutative. Equivalently put, (0.5) generally does not
come from a morphism of complexes Zy — A[2] of sheaves of abelian groups.

However, we may modify the commutativity constraint on Zn in a canonical way to make
it strictly commutative. This gives us a morphism of complexes:

Ovg s Zqg — Af2]. (0.7)

Inducing along A c Q}, (0.7) defines an étale Zg(Qy)-gerbe over X.

The L-group is a way to repackage the data (H,%). Namely, if D # @, after choosing a
geometric point 77 = Spec(F) — 1 and a rigidification of °vy along 7, we obtain a short exact
sequence of topological groups:

1 - Hy(Q) - "Hy , - m(X,5) > 1. (0.8)

The generic form of the L-group (0.2) occurs as its pullback to 7 (n,7), with notational
change H; = Hg.

0.2.7. As in [Lafl8], the L-group enters through the geometric Satake equivalence.

In our context, this equivalence will make (H,vy) appear naturally. Indeed, we consider
the stack of (finite-rank) H-representations on lisse Qg-sheaves over X. This is an étale stack
of tensor categories equipped with a grading by Zu.

The Eo-monoidal morphism vy allows us to twist this étale stack, whose global section
over X is a new tensor category Repy ,, -

On the other hand, we consider the category Satq ¢ of ¥-twisted constructible complexes
of Q-sheaves on the local Hecke stack Hecg, which are universally locally acyclic and have
pullbacks to the affine Grassmannian being perverse relative to X. (For the moment, we
assume I = {1} and omit it from the notations Hecg; and ¢'.)

The category Satg « admits a natural tensor structure, coming from the fusion product.
We modify the commutativity constraint in the usual manner (having to do with 25) to ob-
tain a new tensor category *Satq . This modification ensures that the normalized constant
term functor, defined using a half-integral Tate twist @Z(%), is symmetric monoidal.

Theorem B. For a fized @@(%), there is a canonical equivalence of tensor categories:
"Satq,@ = Repy ,, - (0.9)

0.2.8. Theorem B is the special case of Theorem 2.4.4 for I = {1}, although the additional
challenges presented by general I are mostly notational.

Assuming the general form of equivalence (0.9), we obtain a system of (non-symmetric
monoidal) functors parametrized by nonempty finite sets I:

Rep®((“Hg ,)) = Repuios
monoidall (010)

Repgr,; = *Satggr % Ind(Lis(X")).
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Here, the source is the category of continuous finite-dimensional representations of the
product (LHK )" whose restrictions to H;(Qg)" lift to algebraic representations of H% The
vertical functor is the monoidal equivalence induced from the identification “vy = vy as E; -
monoidal morphisms. The next two functors are the geometric Satake equivalence (0.9),
respectively the cohomology of Shtukas discussed in §0.2.3.

There are furthermore iterated variants of the functors (0.10), attached to ordered parti-
tions of I. They are needed to equip the target of (0.10) with equivariance structures with
respect to the partial Frobenii on X'.

Given this input, we are in a position to apply the machinery of [Laf18, §5-7] and [Xue20b]:
it proves that the image of (0.10) lifts to Ind(Rep(m1(X,7)")). The spectral decomposition
of genuine cusp forms then follows verbatim from [Lafl8, §9-11].

0.2.9. Finally, we mention one place where the proof of Theorem B differs from its non-
metapletic counterpart. The assertion is of étale local nature on )0(, so we may assume that
G splits and replace X by any smooth curve X, not necessarily connected.

One unique feature of the metaplectic context is the absence of a natural fiber functor
out of *Satq g, even at a geometric point of X. This creates difficulties in applying the
Tannakian formalism.

Let us work with a fixed Borel subgroup and a maximal torus T ¢ B ¢ G. The étale
metaplectic cover p induces one for T and defines an A-gerbe %1 over the Hecke stack Hecr.
We thus have a constant term functor at our disposal:

CTB(ﬁ)[Qﬁ] : +Satc;’g - Satr . (0.11)

Let us assume that the case for tori is already proved, so Satr ¢, is identified with the
tensor category Repr,, ,,, of vy-twisted category of representations of the metaplectic dual
torus Ty on lisse Qg-sheaves. (The vy-twist invokes a natural surjection of the character
sheaf of Ty onto ZH)

The tensor category Repr, ,  does not admit a natural fiber functor to Lis(X), unless
we undo the vy-twist. Therefore, we wish to twist both the source and target of (0.11) by
1/?’1 and apply a relative Tannakian formalism to the resulting functor:

(+SatG7g)y§—1 - (SatTﬁfT)V?-l 2 Repr,, — Lis(X).

However, in order to twist *Satg «, we must construct a ZH-grading on it compatible
with the tensor structure. In the non-metaplectic context, this would be the 71 (G)-grading
coming from the connected components of Hecg. The ZH—grading is in general finer. Its
existence on the level of abelian categories poses no difficulty, but its compatibility with the
tensor structure is not at all obvious.

We shall reduce the problem to studying the weights occurring in (0.11), which have to
do with the behavior of the A-gerbe 4 on Mirkovic—Vilonen cycles. The desired statement
follows from a description of how ¢ interacts with the action of the adjoint torus, which
eventually reduces to a calculation of Deligne [Del96, §4] (as reformulated in [Zha22, §5.5].)

Our proof of Theorem B owes much intellectual debt to pioneering works on the subject
by Finkelberg-Lysenko [FL10] and Reich [Reil2], although it does not rely on their results.*
We have also benefitted from the notion of relative perversity, recently developed by Hansen
and Scholze [HS23], which streamlined many arguments.

IThe aforementioned challenge was already present in [FL10], but went unnoticed because of a mistake
in [FL10, §4.2], where the “fiber functor” used in the Tannakian formalism was not symmetric monoidal (as
pointed out in [Reil2, V.1]). The issue was not resolved in [Reil2], because the proof of its Lemma IV.7.8
mistakenly asserted that the ZH-grading on *Satg,¢ could be obtained from the 71 (G)-grading.



METAPLECTIC SPECTRAL DECOMPOSITION 7

Acknowledgements. I thank Dennis Gaitsgory and Claudius Heyer for illuminating con-
versations about the metaplectic geometric Satake equivalence.

In addition, I owe a large part of my understanding of covering groups to conversations
with Wee Teck Gan and Sergey Lysenko.

I had several opportunities to present the current work during its preparation, and I
thank Kestutis Cesnavicius, Aron Heleodoro, and Cong Xue for their invitations.

I also thank the anonymous referee for many helpful suggestions.

1. PREPARATION

This section collects some preliminary notions which will be used in the remainder of the
article. We also use it as an opportunity to introduce notations.

The first topic is the formalism of /-adic sheaves twisted by a gerbe banded by the group
of units of the coefficient field. In particular, we explain in §1.4 how they encode genuine
functions. The second topic is the notion of étale metaplectic covers and their L-groups,
which we recall in §1.5-1.6.

1.1. A-gerbes.
1.1.1. We work over a base scheme S.

1.1.2. Suppose that G is an étale sheaf of groups over S. We denote by Bg(G) the classifying
stack of G sheafified in the étale topology. The term G-torsor over an S-scheme X refers to
a section of Bg(G) over X.

If the base scheme S is clear from the context, we shall suppress it from the notation.

1.1.3. When G is furthermore abelian, we write B"(G) for the n-fold delooping as an étale
stack of co-groupoids for any integer n > 1, see [Zha22, §1].

For an S-scheme X, the oco-groupoid of sections Maps(X, B”(G)) has homotopy groups
described by the étale cohomology groups of X valued in G:

m;Maps(X,B"(G)) = H" (X, Q).

The term G-gerbe over an S-scheme X refers to a section of B(G) over X.
The 2-groupoid of G-gerbes over X carries a natural E.-monoidal structure, and we use
® to denote the product operation.

Remark 1.1.4. This notion of G-gerbe is equivalent to the more classical notion of a “gerbe
banded by G”, which is a stack over X equipped with additional structures.

The dictionary goes as follows: given a section of B2(G) over X, we let ¢ be the étale
stack over X whose sections over an X-scheme X; are rigidifications of the composition:
X; = X = B?(Q), i.e. factorizations of it through the canonical section e: S - B%(G).

In particular, the groupoid ¢(X;) is equipped with an action of the monoidal groupoid
of G-torsors on Xj: each G-torsor ¢ defines an automorphism of the canonical section X; —

S 5 B2(G) and carries g € 9(X;) to the composition g -t € 4(X;).

1.1.5. Suppose that X is a connected S-scheme equipped with a geometric point z. Let
m1(X, Z) denote the profinite fundamental group.

Let Z be a locally constant étale sheaf of finite abelian groups over X. Its geometric fiber
Zz is thus equipped with a continuous action of m (X, Z).

Denote by 2?(m1(X,Z),Zz) the groupoid of short exact sequences of profinite groups:

1-Z; > ->m(X,Z) > 1,

such that the conjugation action of IT on Z; factors through the natural m (X, Z)-action.
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1.1.6. To interpret Z-gerbes in terms of 71 (X, Z), the following condition on X is needed:

(1.1)

Examples of such X include spectra of fields (automatic) and Henselian local rings ([Stal8,
09ZI)) as well as all connected affine Fp-schemes ([Ach17, Theorem 1.1.1]), although we are
only interested in the case where X is an affine curve over a finite field, where (1.1) can be
verified directly.

An example of an S-scheme failing condition (1.1) is the projective line.

1.1.7. Let X, 7, Z be as in §1.1.5. Denote by Maps; (X, B2(Z)) the (1-)groupoid of A-gerbes
over X rigidified along Z.
If X satisfies condition (1.1), the usual comparison between étale and Galois cohomology
lifts to a canonical equivalence of Picard groupoids:
Maps, (X,B*(2)) =2 2*(m1(X, Z),Zz). (1.2)
Following [Weil8, §19], we refer to the image of a rigidified A-gerbe (¢,g) under (1.2) as
the “fundamental group” of (¢,g) and denote it as follows:
1->Z; »>m(94,5) > m(X,z) - 1. (1.3)

Here, the rigidification g of ¢4 along Z may equivalently be viewed as a geometric point of
¢ lifting 7.

For any finite abelian group A,
any class of H?(X, A) vanishes over a finite étale cover of X.

Construction of (1.2). Let X denote the universal cover of (X,Z): it is the pro-object of
the category of finite étale X-schemes which co-represents the fiber functor (p: X; —» X)
p~*(z). In particular, Z canonically lifts to X, so we may view it as a geometric point of X.
Let 4 be a Z-gerbe over X. Condition (1.1) implies that the pullback ¢ of ¢ to X is
constant. Thus for each o € 71 (X, Z), we obtain an automorphism:

g; Ef%;(i) E%’t (14)

where the first map is provided by the constancy of & and the second map is the descent
datum of ¢ along X — X.

Any rigidification § of ¢ along Z may be viewed as a section of &;. The automorphism
(1.4) acts on g as multiplication by a (set-theoretic) Zz-torsor ¢,.

The association o +~ t, is multiplicative in the following sense: for two elements 01,09 €
m1 (X, &), there is an identification of Zz-torsors:

(02)*(t01)®t02 gto'lo'zﬂ (15)

where (02)*(t,,) is the Zz-torsor induced from t,, along o5 (i.e. z € Z; acts through o5).
The identification (1.5) satisfies the natural cocycle condition. Furthermore, ¢, is canonically
trivialized, satisfying the unit condition with respect to (1.5).

Therefore, the union:

ﬂ_l(%ag) = I_l t0~

oem (X,T)
defines an extension of m1(X,Z) by Zz, with multiplication induced from (1.5). This con-
cludes the definition of the functor (1.2) in the forward direction. It is symmetric monoidal
with respect to the natural symmetric monoidal structures on both sides.

To show that (1.2) is an equivalence, we observe that it induces the isomorphism between
H%*(X,Z) and H?(7(X,Z),Zz) on my (owing to condition (1.1)). On 7y, it induces the iso-
morphism of abelian groups between Maps; (X,B(Z)) and maps f : m (X, Z) - Zz satisfying
03 (f(01)) f(02) = f(o102) for each o1,09 € T (X, Z). O
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Remark 1.1.8. If Z = A is the constant étale sheaf with values in a finite abelian group A,
the isomorphism Az = A induces a retract:

Maps(X,B%(A)) - Maps,(X,B*(A)), ¥~»Yo¥> " (1.6)

On the other hand, the groupoid 2°%(71(X,z),A,) is equivalent to that of central exten-
sions of m1 (X, Z) by A, which we denote by CExt(71(X,Z),A). Hence, the composition of
(1.6) with (1.2) is a functor of Picard groupoids:

Maps(X,B?(A)) - CExt(m, (X, Z),A). (1.7)
The functor (1.7) induces an equivalence after 1-truncation.
1.2. Twisted /{-adic sheaves.

1.2.1. We continue to work over a base scheme S. We fix a prime ¢ invertible on S and an
algebraic closure Q; c Q.

Let E be an intermediate field Q; c E ¢ Q, and A ¢ E* be a finite subgroup whose order
is also invertible on S.

1.2.2. For any S-scheme X, we have the oo-category Shv(X,E) of constructible complexes
of E-sheaves on X. This is the oo-category denoted by Deons(X,E) in [HRS23] where E is
equipped with the ¢-adic topology.

1.2.3. In the presence of an A-gerbe & on X, there is a variant: the co-category Shveg (X)
of ¥ -twisted constructible complezes of E-sheaves on X.

To define it, consider the abelian category 7 (X) of proétale E-sheaves on X. The associ-
ation X; — o/ (X7) is a stack of abelian categories on the small étale site of X, to be denoted
(temporarily) by <.

Since A is a subgroup of E*, it acts on the identity endofunctor of /. The construction
of [Zha22, Appendix A] then yields a stack &7¢. Its global section is an abelian category
2ig(X). Then we may form its derived oo-category Dy (X) and Shvg (X) c Dg (X) is the full
co-subcategory characterized by the constructibility condition of [HRS23, Definition 1.1].

1.2.4. For brevity, we shall call an object of Shvg (X) a “¢-twisted E-sheaf” on X.
Such an object is said to be lisse or a ¥-twisted E-local system if it is dualizable and
belongs to the heart % (X) of Dg(X). They form an abelian category Lisg (X).

Remark 1.2.5. Any trivialization of ¢ induces an equivalence of oco-categories between
Shvg (X) and Shv(X).

Since ¥ is locally trivial in the étale topology, constructions on Shv(X) of étale local
nature automatically carry over to Shve (X).

1.2.6. It is convenient to consider the 2-category of pairs (X,%¥), where X is an S-scheme
(or more generally, an S-prestack) and ¢ is an A-gerbe over X.

A morphism (X1,%) — (X2,%) consists of a morphism f : X; - X5 and an isomorphism
a9 > [ (%).

A 2-morphism (f1,a1) = (f2,a2) is an equality f1 = fo : X3 - X5 together with a
2-morphism «; — as in the 2-category of A-gerbes on X;. All 2-morphisms are invertible.

1.2.7. Given a morphism (X;,%) — (X2,%) as in §1.2.6, there is a pullback functor
f* : Sth2 (Xg) - Sthl (Xl)

If f is separated and of finite presentation, we also have a functor fi : Shvg, (X;) —
Shvg, (X2). (By our convention, functors are derived unless otherwise stated.)
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The adjunctions (f*, f.), (f', fi) exist on the twisted categories of E-sheaves whenever
they exist on the untwisted ones.

Indeed, these functors are constructed from the usual functors by étale descent, in view
of Remark 1.2.5.

Remark 1.2.8. Suppose that X is connected, Noetherian, and geometrically unibranch.
Let T be a geometric point of X. Recall that lisse E-sheaves on X are equivalent to continu-
ous 71 (X, T )-representations on finite-dimensional E-vector spaces, the functor being taking
fibers at Z.

Assume that X satisfies condition (1.1). Then an A-gerbe ¢ on X with rigidification g
along Z defines a central extension (1.3).

Taking fibers at T yields an equivalence between ¥-twisted lisse E-sheaves on X and
continuous (¥, g)-representations on finite-dimensional E-vector spaces such that A acts
through the inclusion A c E*.

1.3. A vanishing lemma.
1.3.1. We remain in the context of §1.2.1.

1.3.2. Let G be an étale sheaf of groups over S. There is an equivalence of groupoids
between A-gerbes on B(G) rigidified along e : S - B(G) (simply called “rigidified A-gerbes”
below) and monoidal morphisms G - B(A).

In turn, monoidal morphisms G — B(A) are equivalent to multiplicative A-torsors on G.
They induce character E-local systems on G along the inclusion A c E*.

1.3.3. Suppose that G acts on an S-scheme X. Let ¢4 be a rigidified A-gerbe on B(G).
Denote by x« the induced character E-local system on G.

By abuse of notation, we write Shvg(X/G) for the oo-category of E-sheaves on X/G
twisted by the pullback of ¢ along X/G — B(G).

The oo-category Shve (X/G) admits a more concrete description: it is the co-category
of E-sheaves on X equipped with G-equivariance structures against the character E-local
system xg.

1.3.4. Let X be a separated S-scheme of finite presentation. We write I'(X, —) (resp. I'.(X, -))
for the direct image functors p.(-) (resp. pi(-)) along the structure morphism p : X - S.
Similar conventions apply to H (X, -) and H%(X, -).

The following lemma is a variant of the standard fact that an E-sheaf equivariant against
a nontrivial character on the stabilizer group must vanish.

Lemma 1.3.5. Let G be a separated group S-scheme of finite presentation acting on X.

Let 4 be a rigidified A-gerbe on B(G), with induced character E-local system x4 on G. If

HO(Gs, x«) = 0 for all geometric points 5 of S, then any object F € Shvy (X/G) satisfies:
HL(X,.Z)=0 foralli>0. (1.8)

(In particular, we find Shvg (B(G)) =0 by setting X =S.)

Proof. The vanishing (1.8) can be verified at geometric points of S, so we may assume that

S is the spectrum of an algebraically closed field.

Write f: X — X/G for the quotient in the étale topology. It suffices to show fi(%) = 0.
Consider the Cartesian diagram:

XxG —2t X

lpr lf (1.9)

X —L 5 x/G
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where act (resp. pr) stands for the action (resp. projection) map.
We view % as an E-sheaf on X which is G-equivariant against y«. Base change along
(1.9), the equivariance structure, and projection formula imply an isomorphism:

FH(F) 2 Zrlu(G, ye). (1.10)

It remains to show T'.(G, xg) = 0.
For X =G and .Z = x«, (1.10) reads:

ExT.(G,xv) 2 xg ®(G, xg). (1.11)

In particular, any nonzero H%(G, x« ) implies the existence of a nonzero section of yg. [

1.3.6. Let us discuss an example for which the condition of Lemma 1.3.5 is satisfied.
Suppose that G = G,, s is the multiplicative group over S. For each integer n > 0 invertible
over S, the degree-n Kummer cover of G,, s defines a character ji,-torsor on G, s.
In particular, we have a monoidal morphism:

V:Gps — lygrol B(pn). (1.12)
invertible
For each section a of the étale sheaf A(-1), we thus obtain a monoidal morphism a.(¥) :
Gm,s - B(A). We also write U* := q,(¥) and keep the same notation for the induced
character E-local system on G, s.
When a is nowhere vanishing on S, there holds H(G,, s, ¥*) = 0 at all geometric points 5
of S. Indeed, this follows from the vanishing of m1(G,, s, ¢)-invariants of the corresponding
1-dimensional character.

1.4. Frobenius.

1.4.1. Suppose that the base scheme S = Spec(k), where k is a finite field of cardinality q.
Let A be a finite abelian group whose order is coprime to q.

For any k-scheme X, we write Frx : X - X for the absolute Frobenius endomorphism: it
acts as identity on the topological space |X| and the gth power map on Ox.

1.4.2. Consider the special case z = Spec(k). Then any A-torsor ¢ on z defines a character
Gal(k/k) — A for any algebraic closure k c k, and the image of the geometric Frobenius
¢ € Gal(k/k) may be called the trace-of-Frobenius of t.

When a coefficient field E with A ¢ E* is supplied, this is indeed the trace of ¢, on the
1-dimensional representation induced from ¢ along A c E*.

1.4.3. We shall describe an analogous construction for A-gerbes on a k-scheme (or k-stack)
X. It is helpful to perform this construction in two steps:

X XFr X(k)
lg = lﬂ(mg) = lTr(Fr\g)(k) (1.13)
B*(A) B(A) B(A)

In other words, we shall first extract an étale A-torsor Tr(Fr | ¥) over the Frx-fixed point
locus X c X, defined to be the fiber product:

Xt X

| Jaaro (1.14)

X —2 4y XxX

and then set Tr(Fr | ¢)(k) to be its set (or groupoid) of k-points.
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1.4.4. Recall that for any k-scheme X, the endofunctor Fry on the 2-groupoid of A-gerbes
over X is naturally isomorphic to the identity (the “baffling theorem” [Stal8, 03SN]).
Let us explicitly describe the value of this natural isomorphism at an A-gerbe ¢:

Fri(9) 2 9. (1.15)

For any étale morphism f : X; — X, the groupoid Frx (¢)(X;) is the filtered colimit of ¢ (U)
over étale morphisms u : U — X through which Fryx o f factors. This index category has an
initial object, given by (U,u) = (X1, f) and the factorization Frx o f = f o Frx,. The colimit
is thus identified with ¢(X).

Let us now give two constructions of Tr(Fr|¥).

Construction 1. Since Frx restricts to the identity map on X', we obtain a “tautological”
identification Fry (%) = ¢ of A-gerbes over X'™.

The A-torsor Tr(Frx | %) over X! is defined so that the action by it renders the following
diagram of A-gerbes over X" commutative:

Py (9) 2% ¢
id “Tr(Frx|4) (1.16)
Fri(¢) 2 ¢
where taut refers to the tautological identification. O

Remark 1.4.5. For an étale morphism f : X; — X the automorphism of 4(X;) defined
by the action of Tr(Frx | ¢) is the pullback along the X! -automorphism Fr;}l1 : X - Xj.
(Note that Frx being invertible over X** implies that Fry, is as well.)

Construction 2. The identification (1.15) yields an isomorphism between the endomorphism
Frpz(a) of B*(A) and the identity.
Hence we find an isomorphism:

B*(A)™ 2B*(A) xB(4), (%.0)~ (4.9 ®a), (1.17)

where the isomorphism « : ¥ = Fry (%) is viewed as an automorphism of ¢ via the identifi-
cation (1.15), so 47! ® o is an automorphism of the trivial A-gerbe, i.e. an A-torsor.
The A-torsor Tr(Frx | ¢) over X! is set to be the composition:

XFr N BQ(A)Fr N B(A)7
where the second map is the projection of (1.17) onto its second factor. O

1.4.6. Let us argue that Tr(Fr|¥)(k) is indeed a set-theoretic A-torsor over X (k).

Namely, we must show that its fiber over any x € X(k) is nonempty. To see this, it suffices
to note that H?(x,A) = 0, so any A-gerbe over 2 admits a section. The choice of any such
section trivializes Tr(Fr |¥) over x.

Remark 1.4.7. Suppose now that x = Spec(k) and an algebraic closure k c k is chosen. We
write 7 = Spec(k).
Then the fiber of Tr(Fr|¥)(k) over x € X(k) is identified with the preimage in 71 (¥, g)
of the geometric Frobenius element ¢, € Gal(k/k), for any rigidification g of ¢4 along .
Indeed, since the fiber of Tr(Fr | 4)(k) over x is nonempty, it is identified with the fiber
of Tr(Fr | %) (k) over Z. Its description in Remark 1.4.5 coincides with the definition of ¢,
in §1.1.7 for o = ¢, and any rigidification g of ¢4 along z.
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Remark 1.4.8. Suppose that k c k; is a finite extension. Let X; be a ki-scheme, whose
restriction of scalars along k c k; is denoted by X :=res(X;). To each A-gerbe 4 over X;,
we may associate an A-gerbe Nm(%; ) over X. To define it, we restrict ¢ along the counit
map Xy, := X x Spec(ky ) = X; and take its image under the norm map:

(X, A[2]) = T(X, A[2]),

which exists thanks to Xy, - X being finite étale.

The trace-of-Frobenius construction may be performed for ¢ (using the |kq|th power
Frobenius) as well as Nm(% ) (using the |kjth power Frobenius). They yield canonically
isomorphic set-theoretic A-torsors:

Tr(Frx, |%) = Tr(Frx |Nm(%4))

l l (1.18)

X, (k1) ~ X (k)

1.4.9. Let us bring in the coefficient field E as in §1.2.1 and assume that A c E*.

Let X be a k-scheme locally of finite type equipped with an A-gerbe ¢. Denote by X the
set-theoretic A-torsor Tr(Fr | 4)(k) over X(k).

Let Func(x, A c EX) denote the E-vector space of compactly supported functions f : X -
E such that f(Z-a) = f(&)-a for each a € A. Elements of Fun.(X, A c EX) are called genuine
functions over X with respect to the inclusion A c EX.

In this set-up, there is a canonical isomorphism of E-vector spaces:

Fun.(X, A c EX) = HO(X™ Tr(Frx | 9)®7!), (1.19)

where H2(X -) denotes the colimit of functors H?(U,-) over quasi-compact open sub-
schemes U c XTT.

1.4.10. We are now in a position to explain how genuine functions arise from twisted E-local
systems as defined in §1.2: this is the mechanism by which the cohomology of Shtukas will
define genuine automorphic forms.

Consider the A-gerbe ¥ ® (4®71) over X x X. In reference to (1.14), its restriction along
A is canonically trivial, as is its restriction along (id,Frx) by the isomorphism (1.15).

In particular, the restriction % of 4 ® (4®71) to X admits two sections, corresponding
to the two circuits of (1.14). If we write g € % (X'™) for the section induced from the lower
circuit, then the section induced from the upper is identified with g- Tr(Frx | 4).

Now, we let .Z be the %-twisted E-local system on X', which is identified with E using
the section g (see Remark 1.2.5). The same .# is identified with Tr(Frx | 4)®! using the
section g - Tr(Frx | ¢).

In other words, taking H2(X' .#) using the section of %, induced from the upper circuit
of (1.14) yields the E-vector space Fun.(X, A c EX).

1.5. Etale metaplectic covers.

1.5.1. Let S be a scheme and A be a finite abelian group whose order is invertible on S.
Suppose that X is an S-scheme and G — X is a smooth affine group scheme.

1.5.2. An étale metaplectic cover of G — X with values in A is defined to be a section of
B?A(1) over Bx(G) equipped with a rigidification along e : X - Bx(G).

Recall that the subscript in Bx means taking the classifying stack of G relative to X (as
opposed to the base scheme S.)
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Note that a rigidified section of B2A(1) over Bx(G) may be equivalently viewed as a
morphism of E;-monoidal stacks G -~ B¥A(1) over X.

Remark 1.5.3. This definition agrees with the one in [Zha22, §2] and we refer the reader
to op.cit. for its relationship with classical metaplectic covers as well as their geometrization
by means of K-theory.

It is imperative to point out that this definition is essentially contained in [Del96].

1.5.4. Suppose that X is the spectrum of a local nonarchimedean field F,. Then an étale
metaplectic cover u defines a central extension of topological groups:?

1-A-G,—>G(F,) -1 (1.20)

If X is instead the spectrum of the rings of integers &, c F,, then the extension (1.20)
produced by restricting (G, i) to Spec(F;) admits a canonical splitting over G(0,.).

1.5.5. If X is the spectrum of a global field F without real places, then an étale metaplectic
cover u defines a central extension of topological groups:

1A - Gp—G(Ap) = 1, (1.21)

where Ar denotes the topological ring of adeles of F. Furthermore, (1.21) is equipped with
a canonical splitting over G(F).

For each nonarchimedean place x of X, the restriction of (1.21) along the inclusion
G(F,.) c G(Af) recovers the central extension (1.20).

When A occurs as a subgroup of E* for a field E, we have the E-vector space:

Fun(G(F)\Gr, A c E¥) (1.22)

of G(F)-invariant locally constant functions f: Gp — E satisfying f(&-a) = f(Z)-a for every
#eGp and acA. They are called genuine automorphic forms on Gr.

Roughly speaking, the Langlands program for étale metaplectic covers seeks to understand
the decomposition of various subspaces of (1.22) according to “spectral data”, defined in
terms of an L-group associated to (G, u).

1.6. The L-group.

1.6.1. We keep the notations of §1.5.1. Furthermore, we bring in the coefficient field E as
in §1.2.1 and assume that A c E*.

1.6.2. We also assume that G — X is a reductive group scheme. Let A (resp. A) be the
étale sheaf of cocharacters of the universal Cartan T — X of G.

The based root data of G consist of a sheaf of coroots (resp. simple coroots) ® (resp. A)
with A ¢ ® c A, a sheaf of roots (resp. simple roots) ® (resp. A) with A c ® c A, and an
isomorphism ® = &. The image of a € ® under this isomorphism is denoted by d.

1.6.3. To each étale metaplectic cover u of G - X with values in A, the recipe of [Zha22,
§6] defines its metaplectic dual data (H,v), where:
(1) H is a locally constant étale sheaf over X of pinned split reductive groups over E;
(2) v:Zg - B%(A) is an Ee-monoidal morphism.
Here, Zy denotes the center of H, Zu the abelian group of its characters, viewed as a

locally constant étale sheaf of abelian groups over X.
We shall partially recall the construction of (H,v) below.

2The construction of (1.20) uses local Tate duality, which requires fixing an isomorphism Gal(k/ks) & Z,
where k; denotes the residue field of F,. We normalize this isomorphism so that 1 € Z corresponds to the
geometric Frobenius element.
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Remark 1.6.4. The construction of H is due to Lusztig [Lus93] and its role in the theory
of metaplectic covers is explained by Finkelberg—Lysenko [FL10] and McNamara [McN12].

The construction of v is essentially due to Weissman [Weil8] when p comes from K-theory
and due to Gaitsgory—Lysenko [GL18] when X is a smooth curve, following a priori different
approaches.

1.6.5. Given an étale metaplectic cover u of G — X, we first extract a triplet of invariants
(Qa Vuv 90)7 where:
(1) Qis an A(-1)-valued quadratic form on A;
(2) vt: At > B%(A) is an Ec-monoidal morphism, or equivalently an extension of stacks
of Picard groupoids over X:

Bx(4) > A > A¥,
(3) ¢ is an Eo-monoidal trivialization of vt over Ab" c Al
Here, A c A denotes the kernel of the symmetric form b associated to Q and Ab" c A the

Z-span of the set:
ord(Q(a)) -, for each o€ ®.

The fact that AP" belongs to At follows from the equality satisfied by Q:
b(a, \) = Q(a){a, ), foreach ae ® \eA. (1.23)

1.6.6. Let us sketch the construction of (Q, v, ¢) and provide pointers to [Zha22]. The
construction is performed étale locally on X using a Borel subgroup B c G, but it turns out
to be independent of this choice ([Zha22, §5.2]) and thus globalizes.

First, we restrict p along B(B) — B(G), which canonically descends to an étale meta-
plectic cover pr of T.

The quadratic form Q is the unique discrete invariant of pr, in view of the isomorphism
between H*(BT, A(1)) and quadratic forms on A ([Zha22, §4.3]).

Next, the restriction ups of pr to B(TH) acquires a canonical E.-monoidal structure
([Zha22, §4.6]). Taking rigidified sections of pri over B(G,,), we find a morphism of sheaves
of E-monoids over X:

At - T.(BG,,,B*A(1)). (1.24)

However, étale metaplectic covers of G, admit a Z-linear splitting into its Z-linear com-
ponent and the associated quadratic form [Zha22, Remark 4.2.8]:

Lo(BGm, B'A(1)) 2 BX(A) @ A(-1). (1.25)

Set v to be the composition of (1.24) with the projection onto the first factor in (1.25).
Finally, the trivialization ¢ arises from a calculation with SLy ([Zha22, §6.1.5]).

Remark 1.6.7. By construction, the composition of (1.24) with the projection onto the
second factor in (1.25) equals the restriction of Q to A!, which is a Z-linear map A - A(-1)
taking values in the subsheaf of 2-torsion elements, because b vanishes over Af.

The restriction of Q to AP vanishes, so we obtain a map:

Q:AF/APT — A(-1). (1.26)
Remark 1.6.8. It is possible to enhance the data (Q, 2!, ¢) to complete invariants of étale
metaplectic covers ([Zha22, §5.1]), although we will not need this fact.

Note that due to the 2-categorical nature of these data, they are more difficult to state
than their K-theoretic analogues defined in [BDO1].

1.6.9. Let us now construct the metaplectic dual data (H,v) from the triple (Q, !, ¢).
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Construction. Let us write Af for the Z-linear dual of Af. For each a € ®, we set
ol = ord(Q(a)) -« e Al
at =ord(Q(a)) ™ & eAl

Let ®! (resp. ®t) be the span of ol (resp. @) and Al (resp. At) its subset corresponding
to @ € A (resp. & € A). Then the collection Al ¢ ®f ¢ A}, At c &t c A, with bijection
dl = o > Gl defines a locally constant sheaf of based root data over X.

The sheaf H is defined to be the associated sheaf of pinned split reductive groups over E:
it has characters in Af, roots in ®f, simple roots in A, etc.

By this definition, we have a canonical isomorphism of sheaves of abelian groups:

Zg = AFJADT (1.27)

so the data (¢!, @) of §1.6.5 may be interpreted as an Eo,-monoidal morphism Zu — B%(A).
This concludes the definition of (H,v) alluded to in §1.6.3. O

1.6.10. In order to define the L-group, we need to pass to the component of v which is Z-
linear, i.e. corresponding to a morphism of complexes Zu — A[2] of étale sheaves of abelian
groups over X (see [Zha22, §6.2]). This is because v can be nontrivial even over a geometric
point of X, whereas the L-group does not capture this information.

Let us perform this construction in a more abstract setting: M denotes an étale sheaf
of abelian groups over X. An Ec-monoidal morphism v : M - B%(A) corresponds to a
symmetric monoidal extension M of M by Bx (A).

Associating to each m € M the commutativity constraint of m ® m defines a character of
M valued in the subsheaf A[;; ¢ A of 2-torsion elements. This character vanishes < M is
strictly commutative < v is Z-linear.

Therefore, we have a fiber sequence:

Maps; (M, B?*(A)) - Mapsg_ (M, B*(A)) - Hom(M, Ap3)) (1.28)
1.6.11. The fiber sequence (1.28) canonically splits.
Construction. If Apa) # 0, there is nothing to construct. If Apy) = 0, the inclusion A c E*
identifies Apy) with Z/2.
Given a homomorphism € : M — A[Q]’ we define the E.-monoidal morphism ‘v : M —
B2(A) to be the trivial E;-monoidal morphism, whose Eo,-monoidal structure is defined by
the commutativity constraint:

(812 my mg) o> (<))

on the associated monoidal extension M of M by B(A). The association € — ‘v provides the
desired splitting of (1.28). O

1.6.12. Let us now return to the metaplectic dual data (H,v).
Along the split fiber sequence (1.28) with M := Zy, the Eo-monoidal morphism v : Zy —
B%(A) has a Z-linear component, to be viewed as a morphism of complexes:

Op: Zy — A[2]. (1.29)

This datum is equivalent to a global section of the complex (Zg)* ® A[2] over X, where
(Zu)* denotes the Z-linear dual of Zy as a complex.

Inducing along the inclusion A ¢ E and replacing E by a finite extension if necessary, v
determines a global section of:

(Zu)* ® E*[2] = Zu(E)[2],
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i.e. an étale Zy(E)-gerbe over X.

Remark 1.6.13. When Ay # 0, there is a canonical isomorphism A(-1)[2] = Aa).

Using [Zha22, Proposition 4.6.6], we may identify the image of v in Hom(zH,A[g]) with
the morphism (1.26) (which is valued in A(-1)[2], or equivalently A[y]), under the identifi-
cation Zg = AF/ABT,

However, we will not use this fact in the present article.

Remark 1.6.14. In what follows, we will use the same notation v (resp. °v) for the E.-
monoidal morphism Zg — B%(E*) (resp. Z-linear morphism Zg — B%(E*), or section of
Zn(E)[2]) induced along A c EX.

1.6.15. Let us now assume that X is connected, Noetherian, geometrically unibranch, and
satisfies condition (1.1). Fix a geometric point Z of X.

By taking the fiber at Z, we obtain a pinned split reductive group H; over E equipped
with a 71 (X, Z)-action preserving the pinning.

Since Zy is finitely generated, v is trivial over a finite étale cover of X. Fixing a rigidifi-
cation g of °v along Z and applying the construction of §1.1.7 to finite subgroups of E*, we
find an extension of topological groups:

1= Zng(E) » m(°v,g) » m(X,z) > 1, (1.30)

where the 71 (v, §)-action on Zy z(E) factors through the given (X, Z)-action.
Inducing (1.30) along the (X, Z)-equivariant inclusion Zy z(E) c Hz(E), we obtain an
extension of topological groups, to be referred to as the L-group of (G, u) over X:

1 - Hz(BE) » "Hx » (X, Z) - 1. (1.31)

Remark 1.6.16. By construction, “Hy is induced from a finite quotient m (X, Z) - I" and
the corresponding extension “Hr of T' by H(E) can be equipped with an algebraic structure
with neutral component H.

The main difference between “Hyx and the L-group of a reductive group is that the quotient
map “Hx — 71(X, Z) is not equipped with a canonical section.

[1]

1.6.17. Let £ be a line bundle over X, viewed as a morphism of complexes Z — G,,[1].
= A[1],

Tensoring with A(-1) and composing with the Kummer isomorphism ¥ : A(-1)®G,,
we obtain a morphism ¥, (%) : A(-1) - A[2].
We shall denote the composition of (1.26) with ¥, (%) by:

L9 7y - A[2]. (1.32)

Since (1.26) factors through the subsheaf of 2-torsion elements, (1.32) is trivialized by any
choice of a square root of .Z.

1.6.18. In the particular case where X is a smooth curve over a field, we may take .Z := wx
in (1.32) to arrive at a morphism of complexes:

w7y — A[2]. (1.33)

We shall use the notation vy (resp. vy) for the product of v (resp. “v) with wg. The
subscript is interpreted as a “twist by the gerbe of ¥J-characteristics.”

After fixing a geometric point Z of X and a rigidification of (1.33) along z, the Z-linear
morphism vy defines an extension:

1 Hz(E) > "Hx » - m(X,2) > 1. (1.34)
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It is also induced along Zy z(E) ¢ Hz(E) from the Baer sum of (1.30) and the central
extension defined by (1.33).

These constructions have obvious analogues when X is replaced by the spectra of its field
of fractions F, its local fields F,, or rings of integers &, .

Remark 1.6.19. In §4.2 below, we shall explain the relationship between ¥-characteristics
and Weissman’s meta-Galois group as defined in [Weil8, §4].

In particular, when X is the field of fractions of a curve over a finite field, it will follow
that (1.34) coincides with Weissman’s L-group when p comes from algebraic K-theory.

1.7. Twisted H-representations.

1.7.1. We work over a base scheme S, a finite abelian group A, and a coefficient field E as
in §1.2.1. Let X be an S-scheme.

Let H - X be a locally constant étale sheaf of pinned split reductive groups over E. Write
Zu c H for its center and Zy its character group, viewed as an étale sheaf of abelian groups
over X. Suppose that we are supplied with an E..-monoidal morphism v : Zu — B2 < (A).

In this context, we shall define an étale stack of tensor categories Rep{ b on X. By “tensor
category”, we mean an E-linear symmetric monoidal abelian category.

1.7.2. Denote by Lisx the tensor category of lisse E-sheaves on X.

Note that &y may be viewed as a Hopf algebra in Ind(Lisx ). In particular, there is the
notion of an H-representation on a lisse E-sheaf: it is an object % € Lisx equipped with a
morphism # - F# ® Oy in Ind(Lisx) satisfying the axioms defining a coaction.

Let Repg} denote the tensor category of H-representations on lisse E-sheaves over X.

{1}

The forgetful functor Repy;’ — Lisx is E-linear and symmetric monoidal.

1.7.3. The construction X RepH} being of étale local nature, we obtain a stack of tensor

categories Rep{ Y on the étale site of X. It admits a decomposition according to the weights
of the Zy-action, compatible with the tensor structure:

Repli) = @ Repl . (1.35)
)\GZH

{}

Since A acts by automorphisms of the identity endofunctor of Repy;’, we may form the

v-twisted stack of tensor categories Repil}y as in [Zha22, Appendix A].

Finally, we define RepH} to be the global section of Rep{l}

Remark 1.7.4. There is a decomposition inherited from (1.35):
Repli) = @ (Reply ™o, (1.36)
AeZy

where each summand is the v(\)-twist of the abelian E-linear categories Rep{ bA

The symmetric monoidal structure on Rep{ b is induced from that of Repg} and the
E.-monoidal structure of v. Concretely, the monmdal product is given by:
; , 1HA14A
(Repgy ™)) x (Repft )00 > (Repfy "™ ™), 00 )00 00)
1A 42
= (Repl ™), 00 400)-
Remark 1.7.5. Suppose that X is connected, Noetherian, geometrically unibranch, and

satisfies condition (1.1). Suppose also that v is Z-linear. (In practice, v will be one of the
objects “v, %y defined in §1.6.)
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We fix a geometric point Z of X and a rigidification g of v along . Then the L-group

(1.31) can be used to give a “hands-on” description of Repg,}/.

Indeed, given a profinite group I' and an extension “H of " by Hz(E), we write Repill_gI for
the category of finite-dimensional continuous representations of “H whose restriction along
Hz(E) c VH lifts to an algebraic representation of Hy.

Applied to “Hx, this contruction yields a tensor category canonically equivalent to that
of v-twisted H-representations:

Rep}fll_glx =~ Repgﬂ}/. (1.37)
Under the equivalence (1.37), the underlying (algebraic) Hz-representation of an object

Ve Repfll_gIX is isomorphic to the fiber of the corresponding object in Repg}y at T, by passing

through the rigidification g.

1.7.6. The construction of Repg,}j has a multiple-point generalization, which justifies the
superscript in the notation. ’

Indeed, for a nonempty finite set I, we have an E.-monoidal morphism of étale sheaves
over X! out of an external direct sum of copies of Zy:

Vi Z - Boi(A), (M) = [X]v(N). (1.38)

iel
Viewing H' as a locally constant étale sheaf over X! of pinned split reductive groups
over E, the corresponding étale sheaf Zyr is identified with Z%{. The construction of §1.7.3,
applied to X!, H, and »!, yields a stack of tensor categories RepIHI 1 Over X!, and we set

Rephl’ul to be its global section.

1.7.7. The E,-monoidal structure on v (for varying I) induces its compatibility data with
respect to restrictions along the diagonals.

More precisely, given a surjection of nonempty finite sets p: I - J, giving rise to the diag-
onal immersion AP : X7 - X! we obtain an isomorphism (AP)*! = 7. These isomorphisms
are compatible with compositions in the obvious sense.

Correspondingly the association (I # @) Rephl,,,l defines a functor from the category
of nonempty finite sets with surjections to the 2-category of tensor categories. It carries a
surjection p: 1 - J to the composition:

Rephl’,ﬂ - Rep((]Ap)*(HI)’VJ - Repgﬂ,u‘] (1.39)

where the first functor is the restriction along AP, whereas the second functor is the restric-
tion of the action along the diagonal H? — (AP)*(H).

2. GEOMETRIC SATAKE EQUIVALENCE

The goal of this section is to state the geometric Satake equivalence for étale metaplectic
covers: Theorem 2.4.4. Tt is the metaplectic analogue of the equivalence of Mirkovi¢—Vilonen
[MVO07] and Gaitsgory [Gai07, Theorem 2.6].

Sections §2.1-2.3 are preparatory. The main equivalence is stated in §2.4. In §2.5, we shall
use it to define a collection of functors, called “Satake functors”, which play an instrumental
role in the proof of the spectral decomposition theorem in §4.

2.0.1. Throughout this section, we work over a field k. The letter S is reserved for arbitrary
(“test”) affine k-schemes.
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Let £ be a prime invertible in k and fix an algebraic closure Q; c Q. The coefficient field
E will be an intermediate field Q, c E c Q;.% Let A c E* be a finite subgroup whose order
is invertible in k.

Let X be a smooth curve over k and G - X be a smooth affine group scheme. Let p be
an A-valued étale metaplectic cover of G, i.e. a rigidified section of B*A(1) over Bx(G).

2.1. The local Hecke stack.

2.1.1. Let I be a nonempty finite set.
For an S-point z! of X!, we write I',1 for the scheme-theoretic union of the graphs of
2" S - X (over i € I), D,1 for the formal completion of S x X along I',1, and ]o)xl the open
subscheme D 1 —I';i. We call D1 (resp. Dzl) the formal disk (resp. formal punctured disk)
around T',r.
We shall define a number of étale stacks over X'. Their groupoids of lifts of an S-point
x! of X! are tabulated below:
LL(G) | a section of G over D,
LY(G) | a section of G over D,
Grg, | a G-torsor P over D1 equipped with a : P° zp

(2.1)
I
HecIG G-torsors Py, Py over D,1 equipped with a: Py * Py

Here, P° stands for the trivial G-torsor over D,1, and the notation Py z P, for two
G-torsors over D 1 means an isomorphism of them off T'_:.

The étale sheaves L. (G) and L'(G) are valued in groups. The étale sheaf Grg is ind-
schematic of ind-finite type.

If G —» X is reductive, GrIG is furthemore ind-proper.

Remark 2.1.2. Since G is smooth, there are canonical isomorphisms Grg = L'G/LLG and
Hecy, = LLG\L'G/LLG, where the quotients are taken in the étale topology. The quotient
map 7 : Grg; — Hecg, sends (P, a) to the triple (P°,P, ).
2.1.3. Given a surjection of nonempty finite sets p: I - J, we write I; := f~(j) and view
p as an unordered partition of I. Denote by X? c X! the “disjoint locus”, i.e. the open
subscheme where I' 1; NI 1, =@ if j1 #jo € J.

We have a canonical isomorphism of étale stacks over X? via restriction to each Dy1;:

¢" : Hec, xx1 XP = (] Heclé) xx1 XP. (2.2)
jeJ

The isomorphism (2.2) is compatible with refinements of partitions. Namely, given two
composable surjections of nonempty finite sets p: I - J, ¢ : J - K, we have containments
XP c X7 ¢ X!, For each k € K, p restricts to the partition py, : Iy := (¢-p) "' (k) = J. There
is a commutative diagram:

qp
Hecg xx1 XP —F—— (TTgex HecIG"‘ xx1 XP
lﬁ”p J/erK PPk (23)
(ITjey Heed) xxt XP = TTgex (ITjeg, Hecd) xx1 XP

Furthermore, given three composable surjections of nonempty finite sets, the isomorphism
of arrows rendering (2.3) commutative satisifes the evident cocycle condition.

31t would be interesting to treat integral cofficients, but I have not attempted to do so.
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The isomorphism (2.2) and the commutativity (2.3) satisfying the cocycle condition are
referred to as the factorization structure of Hec{; (for varying I).

Remark 2.1.4. If J is equipped with an ordering, or equivalently if I admits an ordered
partition I =1; u---uI, then we change the notation X? to X! and analogously for the
base change of the prestacks in (2.1): Hecg)” ™™ := Hecgy xx1 X171

2.1.5. Given an ordered partition I = I; u--- U I as nonempty finite sets, we shall consider
another étale stack Hecg""’l" over X! whose lift of an S-point z! of X! consists of G-torsors

Py, -, Py together with isomorphisms:
S| rl2 2k
(Pg ™~ Py~ "~ Py). (2.4)

Ia
The functors p, of remembering each segment (2'*,P,_; "~ P,) (over 1 < a < k) and the

I
functor m of remebering their composition (z',Pg ~ P}) define two morphisms:

=TI, IlPa I
Hecé ¥ —= [Ti<ca<r Hec

lm (2.5)
Hecg,

Over the disjoint locus X!'"!* both maps in (2.5) restrict to isomorphisms and their
composition is identified with the factorization isomorphism (2.2) associated to the under-
lying unordered partition I — {1,---, k}.

This construction has an obvious analogue for the affine Grassmannian, namely an ind-

scheme C}vrglk — X! classifying the same data (2.4) as I’-i\e-ég""’lk, together with an addi-

tional trivialization of Pg.

2.1.6. Given a nonempty finite set I, the association:

([k] € A%) > Heck™ = Hecl ™™ syruean, X, (2.6)
with I; = --- = I, := I defines a simplicial étale stack over X'.

By convention, we set ﬁ&:lc’;[o] = Bxi(LL(G)), i.e. the stack classifying a G-torsor P
over D 1 with no modifications. Morphisms in A°P are carried to compositions of the
corresponding segment of modifications in (2.4).

This simplicial étale stack is canonically identified with the Cech nerve of the morphism:

Bxi(LL(G)) = Bxi(LY(G)). (2.7)

Evidently, its value at [1] is Heclg. In particular, the simplicial system (2.6) may be viewed
as an additional structure on HecIG which we call the convolution structure.

2.2. The local A-gerbe.

2.2.1. Let I be a nonempty finite set.

We shall use the étale metaplectic cover p to define an A-gerbe %' on Hec{}. Furthermore,
&' (for varying I) will come equipped with canonical compatibility data with respect to the
factorization and convolution structures of Hecg.

The A-gerbe ¢! is not new: it features prominently in [Reil2] and [GL18], and we will
explain in Remark 2.2.8 how their approach is related to ours.
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2.2.2. We start by defining an E;-monoidal section of BZ(A) over L(G), trivialized as such
over LL(G), i.e. a commutative diagram of E;-monoidal morphisms:

L(G) —— X!

l le (2.8)

LY(G) — B(4)

Construction. For an S-point z' of X!, we give names to the natural morphisms in the
following diagram as displayed:

i j :
| > Dyt < D1

pao ] |

Tyt —3 SxX 21— §xX -,

|»

S

Viewing 4 as an Ej-monoidal morphism G - B%A(1), we obtain an E;-monoidal mor-

phism by taking its section over D1 — X:
fs 1 D(Dy1, G) » T'(D,r, BYA(D)). (2.9)

Note that the target is the oo-groupoid associated to the connective truncation of the
complex I'(D,1, 7. A(1)[3]).

Using the Cousin complex and the Gabber—Fujiwara formal base change theorem [Fuj95,
Corollary 6.6.4] (see [BM21, Theorem 6.11] for a proof avoiding the Noetherian hypothesis),
we find morphisms of complexes:

= D(Fy, i A(D[4]) 2T (Dar, (p-0)'A[2]) > T(S,A[2]),  (210)
where the last two maps use the smoothness of p and the properness of p -, respectively.

Composing (2.9) with the morphism on underlying co-groupoids of (2.10), we obtain an
E;-monoidal morphism:

[(D,1,G) - (S, B*(4)), (2.11)
trivialized as such over I'(D,1,G). The construction being functorial in the S-point z!, we
obtain the commutative diagram (2.8). 0

Remark 2.2.3. Fix a closed point z € X and write L(G), for the fiber of LI (G) at z.
The construction of the E;-monoidal morphism L(G), — B2(A) in §2.2.2 only requires p
to be defined over D, (instead of X). Furthermore, it is E;-monoidally trivial over the first
congruence group scheme:
Gip =Ker(Ly(G); = G),
because G, is pro-unipotent. (However, lifting this trivialization to one over L,(G), in
general requires u to be defined over D,.)

2.2.4. The commutative diagram (2.8) is equivalent to a section of B3(A) over Bxi (L}(G))
trivialized over Bxi(LL(G)).
Taking Cech nerves, we obtain a morphism of simplicial étale stacks:

Hecp™ - B2(A)*,  [k] e AP, (2.12)
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where the target [k] = B?(A)** is the Cech nerve of the morphism Spec(k) - B3(A).
Finally, we define ' to be the value of (2.12) at [1].

Remark 2.2.5. We view the simplicial morphism (2.12) as expressing the compatibility
between ¢! and the convolution structure of Hecg.
For instance, the commutation of (2.12) with the three face maps ([1] = [2]) € A contain

o . ——1,[2].
the following isomorphism of A-gerbes on Hec ' ™:

m*(9") 2 pi(4") @ p3(4"), (2.13)
1 I P
where the morphisms py, m, p; send an S-point (Pg ~ P; ~ Py) of Hecé[z] to S-points

I I I
(P1 =~ Py), (P ~ Py), respectively (Py ~ Py), of HeCIG.
The commutation of (2.12) with the degeneracy map ([1] — [0]) € A expresses the fact
that ¢' is canonically rigidified along the unit e : By: (L. (G)) — Hecg,.

2.2.6. We note a variant of the compatibility between ¢! and the convolution structure, for
the Hecke stack ﬁEEgI" associated to an ordered partition I =1; U u 1.
Namely, along the two morphisms of (2.5), we have a canonical isomorphism of A-gerbes
@)z @ pi(@™). (2.14)
1<a<k
To see this, we express I’:IEEI’“ as the quotient of the group stack Eh’""l’“(G) - X
whose lift of an S-point z! of X! consists of sections g, of G over Dy — I',1, (for 1 <a < k),
by the actions of (k + 1) copies of L1 G via the fomulas:

(hgla927"'7gk:)

h‘l,h L
h'(gl,"’,gk) _ (gl g2 gk)

(gla Y gk—hgkhfl)

Given an S-point (z', g1, gr) of LIk (G), the section in T'(Ty1,i'A(1)) defined by
the sum of the sections in I'(Iy1,,i',, A(1)) (for iy, : Thi. > S x X the closed immersion)
via (2.9) is identified with the section defined by (!, g1---gx) € L}(G). This identification
induces the isomorphism (2.14).

The isomorphism (2.14) is compatible with refinements of the ordered partition of I, in

the evident sense.

2.2.7. Finally, the A-gerbe ¢! is also compatible with the factorization structure on Hec{;
(for varying I) in the following sense: (2.2) is upgraded to an isomorphism in the 2-category
of prestacks equipped with an A-gerbe (see §1.2.6) where the A-gerbe over HecIG is 4! and
the A-gerbe over [],¢; Hecg is the external product jeJ Gl

The 2-isomorphism rendering (2.3) commutative and the cocycle condition it satisfies also
lift to the 2-category of such pairs.

Remark 2.2.8. The restriction of ' along Grg; — Hecg defines a “symmetric factorization
A-gerbe” in the sense of [Reil2]. The symmetry datum is encoded by the 2-isomorphism of
(2.3) corresponding to I - J 2 J where q is an automorphism.

Contrary to [Reil2] and [GL18], we do not take factorization A-gerbes as parameters for
covering groups, although they turn out to be equivalent to étale metaplectic covers over a
smooth curve [Zha20]. An advantage of étale metaplectic covers is that their compatibility
with the convolution structure on HecIG (and I’-E/clél’“) is essentially tautological.



24 YIFEI ZHAO

2.2.9. Suppose that k is a finite field, I = {1}, and = € X is a k-point.

Let us assume that p is only defined over D, = Spec(F.). Recall that p gives rise to a
central extension G, of G(F,) by A (1.20). Let us recover this central extension from the
A-gerbe 9{!} via the trace-of-Frobenius construction (see §1.4).

Indeed, write L(G), for the base change of L{*}(G) to z and ¢, for the restriction of
{1} to L(G),. Note that k-points of L(G), are canonically identified with G(F,). We shall
construct an isomorphism of multiplicative A-torsors over the group G(F,):

Tr(Fr | 4,) (k) = G,. (2.15)

Construction. By the constructions of §2.2.2 and [Zha22, §2.1], the two sides of (2.15) arise
as the compositions of y : G - B*A(1) with the morphisms on [E;-monoids induced from
the two circuits of the following diagram:

T(F,, A(1)[3]) == T(x, A[2])

l; lﬂ(m-) (2.16)
[(F,, A(1)[2])[1] —2— A[1]

Here, the bottom horizontal arrow is induced from the Tate-duality map H?(F,, A(1)) = A.
It remains to note that (2.16) commutes thanks to our normalization of the Tate duality
map (see §1.5.4). O

Remark 2.2.10. If x € X is a closed point with residue field k; o k, a small modification is
needed to recover the central extension G, from geometry.

Namely, we consider the Weil restriction res(L(G);) of L(G), along = — Spec(k). The
A-gerbe ¥, defines an A-gerbe Nm(%,) over res(L(G),) (see Remark 1.4.8) and we obtain
an isomorphism of multiplicative A-torsors over G(F,):

Tr(Fr | Nm(%,))(k) = G,
by combining (1.18) and (2.15).

112

Remark 2.2.11. It follows from the identification (2.15) that G, is canonically split over
the first congruence subgroup G , (k) (Remark 2.2.3). If y is defined over D, this splitting
extends to one over G(&,) by the same remark and coincides with the one in §1.5.4.

2.3. The Satake category.

2.3.1. Let S be a k-scheme. Let Y be a separated S-scheme of finite presentation equipped
with an A-gerbe 4.

Recall the co-category Shvg (Y) of ¥-twisted sheaves on Y defined in §1.2.

Denote by Shvg (Y);s ¢ Shvg (Y) the full co-subcategory of ¢-twisted sheaves universally
locally acyclic relative to Y — S. The condition of universal local acyclicity is well-defined
for ¥-twisted sheaves because it is of étale local nature on the source.

The oo-category Shvg (Y) admits a perverse ¢-structure relative to Y — S, see [HS23,
Theorem 1.1]. Let Pervg(Y) denote its heart. We refer to its objects simply as “perverse
sheaves” on Y.

The full co-subcategory Shve(Y);s inherits a t-structure ([HS23, Theorem 6.7]). In
particular, we have the abelian category:

Perve (Y) /s = Pervg (Y) nShvg (Y))s.

These notions generalize to the situation where Y is an ind-scheme of ind-finite presen-
tation via left Kan extension.
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2.3.2. Let us now assume that G — X is a split reductive group scheme.
Let I be a nonempty finite set. Recall the A-gerbe ' on HecIG defined by p in §2.2.
The Satake category is the full subcategory

SatIGé@ c Shvy: (Hecg,)

characterized by the following property: an object belongs to SatIG’gI if its pullback along
7 : Grg — Hecg (see Remark 2.1.2) belongs to Perv(gI(GrIG)/XI.

Remark 2.3.3. As in the non-twisted setting, SatIG,gI is an abelian category and the
pullback functor defines a fully faithful embedding:

T SatIG’gI c PeTVgI(GrIG)/XI-

In particular, we may view objects of SatIG’gI as ¥ -twisted universally locally acyclic

1 . . . . ..
erverse sheaves on Grg satisfying an extra “equivariance” condition.
G

2.3.4. Let us equip Satg g with a symmetric monoidal structure, where the monoidal
product is given either by the “convolution”, or the “fusion” product.

The construction explained below is a straightforward adaptation of its non-metaplectic
counterpart. We choose to follow the approach of [FS21, VI] instead of [MVO07].

2.3.5. To begin with, since HecIG admits a convolution structure (§2.1.6) and ¢! is compat-
ible with it (§2.2.4), the co-category Shver(Hecg;) admits an E;-monoidal structure.
More concretely, the monoidal product is given by:

F1 ox1 Fo = my(p] F1 ® p5Fa), (2.17)
passing through the isomorphism (2.13) of A-gerbes. The monoidal unit is given by ei(E)
using the rigidification of ¥ along e. It clearly belongs to Satlggl.

This E;-monoidal structure is inherited by the full subcategory SthI(HeCIG) xi: the
ind-algebraic stack ﬁ&ém is étale locally isomorphic to a product of Hecg, with Grg and

universal local acyclicity is preserved under proper pushforward.

2.3.6. Suppose that I admits an ordered partition into nonempty finite sets I =1y u--- 1 I.
Let .%, be an object of Shvgr, (Hecl(‘;‘), for 1<a<k.

We may form their external convolution product using the morphisms in (2.5) and the
isomorphism of A-gerbes (2.14):

orcask Fa = Q piFa) € Shvg (Hecg). (2.18)
1<a<k
Lemma 2.3.7. If each %, belongs to Satg 1o then o1cac Fq belongs to SatIG,gI.

Proof. The fact that oj<q<p-%, is universally locally acyclic relative to X! is argued as in
§2.3.5. It remains to show that oy<.<x-%, is perverse over Gré relative to X'.

The universal local acyclicity condition implies that this sheaf has zero vanishing cycle
along any specialization of geometric points in X!. Hence its restrictions to geometric fibers
of GrIG — X! are isomorphic to the nearby cycles of X1 cqer Fa over the pairwise disjoint
locus in X!. However, perversity is preserved under the nearby cycle functor [11194, Corollaire
4.5]. O

2.3.8. For later convenience, we define a variant of the Satake category associated to a
nonempty finite set I equipped with an ordered partition I 2| ;<< I into nonempty subsets:

SpyR SRR Tacltrle
Satq g c Shvgr (Hecg ),



26 YIFEI ZHAO

characterized by universal local acyclicity and perversity over @;Ié’”"l’“. Here, the A-gerbe
is the pullback of ¢! along the morphism m in (2.5).

Under the hypothesis of Lemma 2.3.7, the sheaf ®1,<x P-4 belongs to S\ajcg’éflk, passing
through the identification of A-gerbes (2.14). Indeed, this is already established in the proof
of Lemma 2.3.7.

2.3.9. The triple (SatIG)gI, ox,e(E)) admits the structure of a monoidal category.

Construction. The construction (2.18) for two copies of the same nonempty finite set I
produces an object % o %5 € SthIuI(HeCIGUI). Its restriction along the diagonal X! — X!
is canonically identified with %, ox Z5.

Combining this observation with Lemma 2.3.7, we see that the E;-monoidal structure on
SthI(HeCIG)/XI constructed in §2.3.5 is inherited by SatIGgI. O

2.3.10. Given an unordered partition p : I - J, ie. I 2 [ e;1; as in §2.1.3, we define a
“disjoint” variant of the Satake category:

Satg, 41 € Shver (Hecg, xx XP),

as the full subcategory consisting of objects whose pullback to GrIG xx XP belongs to
Perve: (Grg xx XP) /xo-
By [HS23, Theorem 6.8], the restriction functor is fully faithful:

Satg g1 € Satly i, F > Flxo, (2.19)

and its essential image is stable under subquotients.
Given %; € Satgglj for each j € J, the external tensor product [X];.; %; is a ([X];; Gli)-

twisted sheaf over [];¢; Heclé. Its restriction
sheaf over Hecg, xx X? using the factorization isomorphism (2.2) and its compatibility with
the A-gerbes (see §2.2.7).

Note that [x];; Fj[x» belongs to the essential image of (2.19), and we call the corre-
sponding object the external fusion product:

3 Fjlxe may be viewed as a ¢'-twisted

*jey Fj € Satlc}’gI. (2.20)

Indeed, given any ordering J = {1,---,k}, we may form oy.,<x-Fq € SatIG’gI using Lemma
2.3.7 whose restriction along X? c X! is identified with [Xjey Fjlxr-

Remark 2.3.11. By this argument, any ordering on J induces an isomorphism between the
external convolution product (2.18) and the external fusion product (2.20).

2.3.12. Finally, for a nonempty finite set I, the fusion product of two objects %1, %5 €
Satégl is defined to be the restriction of %#; x %5 € SatIGu,IgM along the diagonal X' — X1

jl * X1 jg = (5/’\1 * y2)|XI. (221)

The triple (SatIG,gI, *x,e(E)) admits the structure of a symmetric monoidal category.
The commutativity constraint comes from the fact that the formation of .%; x %5 uses the
unique unordered partition of {1,2}.

Furthermore, Remark 2.3.11 implies that the monoidal structures corresponding to ox
and *x are identified.
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Remark 2.3.13. Fargues—Scholze [FS21, VI] explains another way to identify these monoidal
structures, which is more natural from a higher categorical perspective.

To wit, the convolution structure upgrades (Satlc;’gh *x,e1(E)) to an E;-monoidal object
in the 2-category of symmetric monoidal categories, so the two monoidal structures are
identified by a variant of the Eckmann—-Hilton argument.

Remark 2.3.14. Note that given a surjection of nonempty finite sets p: I - J, with corre-
sponding diagonal AP : X’ — X!, the restriction of ' to Hecé xx1 X7 = HecJG is canonically
isomorphic to 7. These isomorphisms are furthermore compatible with compositions.

It follows that the association (I # @) — Saté 1 defines a functor from the category of
nonempty finite sets with surjections to the 2—cat’egory of tensor categories.

2.4. The equivalence.

2.4.1. We now assume that G — X is a reductive group scheme. Notations for the based
root data of G are as in §1.6.2.

Recall that the algebraic fundamental group of G is the sheaf of abelian groups 71 (G) :=
A/A", where A" is the span of ®.

Let 2p € A denote the sum of positive roots. Its reduction mod 2 defines a character of
71(G) valued in Z/2.

In order to state a properly normalized version of the Satake equivalence, we shall assume
the existence of and fix a square root E(1) of E(1).

2.4.2. For a nonempty finite set I, we tweak the commutativity constraint of SatIG 1 in the
usual way. ’

Indeed, the connected components of GrIG are indexed by 71 (G). The symmetric monoidal
category Saté’gI acquires a decomposition according to the support of its object:

Satg g1 = @( )(Satggl)*. (2.22)
)\Eﬂl G

This decomposition is compatible with the monoidal structure in the following sense: the
monoidal unit has pure grading 0 € 71 (G), and the monoidal product of two objects of pure
grading A1, Ao has pure gradings \; + \s.

Set J’SatIG’gI = Sa‘cagI as a monoidal category, but whose commutativity constraint for
a pair of objects from (Satg 1), (Satg i)™ is multiplied by (=1)2PA0)2pA2)

2.4.3. Let (H,v) be the metaplectic dual data associated to (G, ) as in §1.6. Recall the
twist vy of v by the ¥-characteristic of X (see §1.6.18).

Applying the construction of §1.7.6 to the pair (H,vy), we obtain a tensor category
Rep}{w}s for each nonempty finite set I.

Theorem 2.4.4 (Geometric Satake equivalence). For each nonempty finite set 1, there is a
canonical equivalence of tensor categories:

+SatIG7g1 S Rephlyyé. (2.23)

2.4.5. The equivalence (2.23) which we shall construct comes equipped with two additional
pieces of compatibility data.
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First, it is compatible with restrictions along the diagonals. Namely, the following diagram
is canonically commutative for every surjection of nonempty finite sets p: 1 - J:

J'Sat%}’gI ~ RepIHI’VlI9
l(A”)* l(1.39) (2.24)

o J
+Sat‘]G7gJ = RepH,Wg

where AP : XJ - X! denotes the corresponding diagonal. The isomorphism of functors
rendering (2.24) commutative is compatible with compositions.

Secondly, external fusion product (2.20) of the Satake category corresponds to the external
tensor product of representations. Namely, writing I; := p~1(4), the following diagram is
canonically commutative:

+Qatli ~ L
[Tje; "Sat 2 [jes RepHIj 1

1.
G,@4% Sl
"9

l* l@ (2.25)

- I
J’SautégI ~ RepHI’V%

compatibly with compositions.

Remark 2.4.6. The equivalence (2.23) is of étale local nature over X. In particular, it may
be viewed as an equivalence of stacks of tensor categories on the étale site of X.

2.4.7. Let us specialize to the case I = {1}. Viewing (2.23) as an equivalence of stacks of
tensor categories on Xgi, its stalk at a closed point x € X yields an equivalence of tensor
categories:

"Satq,@.. 2 Repy o, 4 (2.26)

Choosing an algebraic closure k, c k, (corresponding to a morphism Z — z), the right-
hand-side of (2.26) is monoidally equivalent to Repy o,,, .., hence to the representation cat-
egory Repalg(LHx_’ﬁ) according to Remark 1.7.5. (To define “H,, », one may need to replace
E by a finite extension.)

If X satisfies condition (1.1), the local (integral) L-group “H, 4 is also identified with the

restriction of “Hx » along 71 (x, %) — m (X, 7).
2.4.8. Suppose that k is a finite field. We obtain a homomorphism of E-algebras:
Ko(Rep™®(VH,.9)) ® E2 Ko(*Satc.g..) ® E
- Fun.(G(0,)\G./G(0,), A c E), (2.27)
where the first isomorphism is the application of the monoidal invariant Ko(-)®E to (2.26),
and the second homomorphism is the trace of the geometric Frobenius ¢, € Gal(k,/k,) at
each kg-point of Hecg ;.

For an object V ¢ Repalg(LHwﬂg), we denote by hy , its image under (2.27), and call it
the (unramified) Hecke operator associated to V at the point x.

Remark 2.4.9. Let H, c LHxﬂg denote the preimage of ¢,. Using the argument of [Zhul?7,
§5.6], it is possible to show that (2.27) factors through an isomorphism of E-algebras:

['(H,, //H, 0) = Fun.(G(0,)\G./C(0,), A c EX) (2.28)
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where the left-hand-side is the E-algebra of algebraic functions on Hy, invariant under H-
conjugation. It receives a morphism from Ko(Repalg(LHIﬂg)) ® E by mapping V to the
character of its restriction to H, .

The isomorphism (2.28) for metaplectic covers arising from algebraic K-theory over any
local field has already been obtained by McNamara [McN12, Theorem 10.1]. We will not
use (2.28) in this article.

2.5. The Satake functors.
2.5.1. We keep the notations of §2.4.

2.5.2. For a nonempty finite set I, we replace +Sat£;,g1 by SatIG”gI on one side of the geo-
metric Satake equivalence and vy by its Z-linear component “vy (see §1.6) in the formation
of the other side. Both modifications only change the commutativity constraint.

In this manner, we obtain from (2.23) an equivalence of monoidal categories:

SatIG,gI = RepIHI’oyly. (2.29)

For a surjection of nonempty finite sets p : I - J, the compatibility data of (2.29) with
respect to restrictions along the diagonal and external fusion products are given by (2.24)
and (2.25) on the underlying monoidal categories.

2.5.3. Let us now assume that X is connected and satisfies condition (1.1).
We fix a geometric point 7 of X and a rigidification of vy along 7. In this set-up, we
have the extension (1.34):

1> Hy(E) » "Hx,9 > m(X,7) ~ 1,
where Hj is the fiber of H at 7, viewed as a pinned split reductive group over E.

2.5.4. Let I be a nonempty finite set together with an ordered partition I 2| |i<,<x I, into
nonempty finite subsets.

Composition of the equivalence (1.37), the external tensor product, and (2.29) defines a
functor of monoidal categories:

a. ) X “
[1Rep*®(“Hx ») = [TRepi;h, = T[] Reps , ..
? Y

i€l iel 1<a<k
®pa Gl I
2 T Satg g, —> Satgi* (2.30)
1<a<k

where the functors p; are pullbacks along the morphism in (2.5) (see §2.3.8).

We shall argue that (2.30) factors through the category Rep™®((*Hx g)"). This can be
done by playing with the regular representation as in [Gai07, Appendix B], but we supply
another argument.

2.5.5. Let ' be a profinite group and “H an extension of T' by H;(E). For a nonempty
finite set I, the I-fold product (“H)! is an extension of I'' by H%(E) In particular, we may
form the tensor category Rep™®((*H)!) (see Remark 1.7.5).

Recall the notion of tensor product of E-linear abelian categories in [Del90, 5.1]: it is the
universal recipient of E-multilinear functors which are right exact in each factor.

Over a perfect field, the tensor product of tensor categories satisfying a finiteness condition
acquires a canonical tensor structure ([Del90, 5.17]). This applies to Rep™&(“H).
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Lemma 2.5.6. The tensor product of restrictions of representations along each projection
(*H)! - H induces an equivalence of tensor categories:

& Rep8(“H) = Rep™8((“H)"). (2.31)
i€l
Proof. The tensor category Repalg(LH) is Tannakian with fiber functor w being the functor
of forgetting the “H-action. The sheaf of automorphisms Aut(w) is thus representable by
an affine group scheme “H*# over E, and Repalg(LH) is equivalent to the category of finite-
dimensional representations of “H?18
Given a finite-dimensional E-vector space V, its lift to an object of Rep™&((*H)!) is
equivalent to commuting continuous actions of “H indexed by I, satisfying the algebraicity
condition over H(E): this is equivalent to an action of (“H*#)!. Hence we have ((“H)!)2le =
(*H*8)! and the equivalence (2.31) follows from [Del90, 6.21]. O

2.5.7. The functor (2.30), being E-multilinear and right exact in each factor, canonically
factors through a right exact monoidal functor according to Lemma 2.5.6:

yll’.»-,lk IRepalg((LHX)ﬁ)I) = S—gtIGl:gI,Ik (232)

We shall call .71 the Satake functor associated to the nonempty finite set I together
with the ordered partition I 2 | J1<4< la-

Furthermore, the functors (2.32) are compatible with change of the partitioned set. More
precisely, given nonempty finite sets I, J, nonempty ordered finite sets Ky, Ky and a com-
mutative diagram of surjective morphisms where ¢ is order-preserving:

I — K1 = {1,"',]{31}
s (2:33)
J — K2 = {17"',k2}

we have a canonically commutative diagram of E-linear abelian categories:

Iq 0,1 T L
Repalg((LHXﬂg)I) Bz k1 SatIth;Ikl

l(AP)* l(m«)p(my (2.34)

S PR

(y‘llv“‘*'lk .
Repalg((LHXﬂg)J) EAREELN Satg,

Here, m? : I’{_EEE"H’IM xx1 X7 - ﬁEEél"”’J'” is defined by composing the modifications corre-
sponding to those segments in K; defined by fibers of q.

The commutativity of (2.34) follows from a combination of (2.24), (2.25), and the identi-
fication of external fusion and convolution products (Remark 2.3.11). It is compatible with
compositions of squares of the type (2.33).

Remark 2.5.8. Our Satake functors and their compatibility data (2.34) are parallel to the
assertions of [Lafl8, Théoréme 1.17].

Indeed, (c) of loc.cit. comes from our definition of the Satake functors. Assertions (b)
and (d) are obtained by setting I = J, respectively K; = Ky in (2.34). (However, we only
use functoriality with respect to surjective maps.) The remaining assertion (a) will be
established in the course of the proof of Theorem 2.4.4.
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3. PROOFS

This section is entirely dedicated to the proof of Theorem 2.4.4. The proof follows the
same overarching structure as [MV07] and shares many common features with [FL10].

The first two subsections §3.1-3.2 treat the case for split tori. The difficulties in this case
are mostly of categorical nature, and closely related statements have appeared in [Reil2]
and [GL18]. However, since our metaplectic dual data are not defined using factorization
gerbes, our results are not direct consequences of [Reil2, GL18].

Then, we study SatIG g1 for I = {1} as an abelian category in §3.3. The methods in the
non-metaplectic setting 7carry over with minimal modifications.

Subsections §3.4-3.6 are dedicated to the study of the constant term functor. The con-
struction of the “fiber functor” in the metaplectic context differs substantially from the
non-metaplectic one. It requires constructing a tensor decomposition of Satagl according
to Zh—weights. The method we use involves a study of the A-gerbe 4! over the Mirkovi¢-
Vilonen cycles, which is hopefully interesting in its own right.

The last subsection §3.7 reconstructs H using a relative Tannakian formalism. It is a
variant of [FS21, VI.10] and contains few surprises.

3.0.1. We remain in the context of §2.0.1 throughout this section. Furthermore, we assume
the existence of and fix a square root E(3) of E(1). (It will be used from §3.3 onwards.)

For a nonempty finite set I, the notation %' stands for the A-gerbe on Hecé constructed
in §2.2. The metaplectic dual data (H,v) are defined as in §1.6.

3.1. Split tori: reduction to T*.

3.1.1. Suppose that G =T is a split torus with sheaf of cocharacters A.

Recall from §1.6.5 that u defines a quadratic form Q on A, and we let A' ¢ A be the
kernel of the associated symmetric form b. Let f: T! — T denote the corresponding isogeny
of split tori. For a nonempty finite set I, we obtain a morphism:

f': Grly - Grh. (3.1)

We use the same notation for the map on Hecke stacks f: Hec}m - HecIT. The pullback
of 4" along f' is identified with the A-gerbe associated to the restriction of p to TH, by
functoriality of the construction. The notation ¢! is retained for its restriction.

The goal of this subsection is to prove the following statement.

Proposition 3.1.2. Let I be a nonempty finite set. Then pushforward along (3.1) defines
an equivalence of tensor categories:

Sat}”’gl = Satlf’gl. (32)

3.1.3. For a tuple A\l = (A)je1 of elements of A, we have a closed immersion xt - GrIT
sending an S-point z! to the T-torsor &'(¥; A'a?) together with its canonical trivialization
off T';1. We view its image as a closed subscheme:

I
X* c Grr. (3.3)

Since the LL (T)-action on GrYy, is trivial, we obtain a closed substack Byar (L1 (T)) c Heck
by taking the quotient of (3.3) by the LL(T)-action.

Consider the special case I = {1} and A\! = X\ € A. Restricting sections of T along I, c D,
defines a morphism Lil} (T) - T. We label the corresponding morphisms on their classifying
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stacks (relative to X* = X) as in the following diagram:

x> > XA

Fo

Heel ¢ By (LU T) 25 X (3.4)

| l

Bx(T) —— X

3.1.4. Recall from §1.3.6 that any section a € A(-1) defines the multiplicative A-torsor ¥*¢
on G,,, thus a rigidified section of B2A over BG,,.
There is an isomorphism of étale sheaves over X:

A®A(-1) = Maps.(BxT,B%A), z®aw z*(¥), (3.5)

where the target is the sheaf of rigidified sections of B2(A) over Bx(T). This follows from
the calculation of étale cohomlogy of Bx(T) as in [Zha22, §4].

In particular, the character b(—,\) : A - A(~1) defines a rigidified section of B%(A) over
Bx (T), to be denoted by W),

3.1.5. As observed in [Zha22, §4.5], the E;-monoidal morphism underlying the metaplectic
dual datum ! of §1.6.5 canonically extends from Af to A.

For each X € A, we denote by vy(\) the A-gerbe v(\) ®w§(>‘), where wg()‘) is the A-gerbe
induced from wx along WQ™) : G,, - B(A). We shall view the association A — vy(\) as
a pointed morphism A - B%(A). Note that its restriction to A! is the pointed morphism
underlying the E.-monoidal morphism vy defined in §1.6.18.

We now establish the relationship between vy and the A-gerbe ¢ {3

Lemma 3.1.6. For each A € A, there is a canonical isomorphism of A-gerbes, in reference
to the morphisms in (3.4):

(Mg 2 pruy(N) ® (pr)* (BPEN). (3.6)
(For A =0, this is the identity automorphism of the trivial A-gerbe.)
3.1.7. We begin the proof of Lemma 3.1.6 with an observation: since the kernel of the
projection L. (T) — T is pro-unipotent, pulling back along pr defines an equivalence on the
(resp. discrete) groupoid of (resp. rigidified) A-gerbes.
It thus suffices to perform the two tasks below:
(1) construct a canonical isomorphism:
e (M) g 2y (N, (3.7)
(2) show that the rigidified A-gerbe (i*)*¢{} @ p*1y(N)®~" equals the character b(—, \)
under the isomorphism (3.5).
3.1.8. In order to construct the isomorphism (3.7), we shall make use of an observation

about étale metaplectic covers of G,,.
Consider the following commutative diagram of stacks over X:

X — oy XxX 22 oG,

V!
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where 4 is the diagonal immersion and p is the projection onto the first factor. Pulling back
along ¢(A) and composing with the second row of (2.10), we find a morphism of complexes:

T (BxGo, A()[4]) 2225 (X, #*A(1)[4]) S T(X, A[2]). (3.8)

The second map here is identified with the isomorphism induced from cohomological purity

of the diagonal divisor: i'A(1)[4] = A[2]. Truncating in degrees < 0, the morphism (3.8)
gives rise to a Z-linear morphism:

I.(BxG,,, B*A(1)) - I'(X,B?A). (3.9)

On the other hand, the Z-linear decomposition (1.25) gives rise to a Z-linear decomposi-
tion below upon taking sections over X:

Fe(BXGma B4A(]—)) = F(Xa B2A) ® F(Xvé(_l)) (310)

Lemma 3.1.9. Under the decomposition (3.10), the Z-linear morphism (3.9) is the sum of
(X, -) applied to the two morphisms below:

id: B?A - B%A, and
U, wx : A(-1) - B2A defined as in §1.6.17.

Proof. Tt suffices to identify (3.9) after pre-composition with the inclusion of the first, re-
spectively the second summand in (3.10).
For the first summand, this follows from the fact that:
o* 409 1
F(Xaé[2]) - FP(BXGmaA(l)[4]) - F(Xv ZA(l)[4:|) (311)
is identified with the purity isomorphism. Here, we have (slightly abusively) used ¥ to
denote the delooping of the Kummer torsor (1.12) over Gy,:

U:BxGp > lim B2(un), (3.12)
n>

invertible

which may be viewed as a limit of rigidified sections of u,[2] over BxG,,, so pairing with
them defines the first map in (3.11).

For the second summand, we recall that the inclusion of A(-1) in I.(BxG,,,B*A(1))
is defined by sending a to the ath power of the self-cup product ¥ u ¥ of (3.12), which is
isomorphic to the section ¥® € ', (BxG,,, B?A) induced along the map:

lI]»—(aguniv) :A[Q] - A(l)[4] (313)

defined by the universal line bundle Z,;v on BxG,, as in §1.6.17.
By functoriality of the purity isomorphism with respect to change of coefficients (3.13),
the following diagram is commutative:

W,wx

l l (3.14)

D(X.#A[2]) "5 DX, FA L) 4])
Let us view (3.14) as expressing the top horizontal arrow ¥,wx as the composition of

the three other arrows. The latter is indeed isomorphic to the composition of (3.9) with the
inclusion of the summand I'(X, A(-1)). O
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Proof of Lemma 3.1.6. Let us construct the isomorphism (3.7) for each A € A. Pulling back
u along the cocharacter A : G, - T, we find an étale metaplectic cover A*(u) of G,,.

The construction of ¢} shows that e*(i*)*%{!} is the image of A*(u) under the mor-
phism (3.9). By Lemma 3.1.9, there holds:

()9 = u(\) @ we,

where the right hand side is identified with vy(A) by definition.

We now turn to task (2) of §3.1.7. Since it asserts the equality of two sections of A@A(-1)
over X*, we may verify it over an arbitrary geometric point Z of X.

We omit the superscript {1} and use the subscript “Z” to mean the base change to Z.
The base change of X* to Z will simply be written as Z*.

We fix a uniformizer w at #, which defines a geometric point @w” of L(T);.

By construction, the A-gerbe over (Hecr)z is defined by an Ej-monoidal A-gerbe:
4 :L(T)z - B*(A) (3.15)

along with its trivialization over L,(T)z as in (2.8). Indeed, the trivialization equips ¢
with left and right L, (T)z-equivariance structures, which are its descent data along the
projection L(T)z — (Hecr)z.

As L, (T)z acts trivially on z*, the L, (T)z-equivariance structure on e*(i*)*(¥) =
is described by a rigidified A-torsor 7* over L, (T)z. Its value at an S-point ¢ € L, (T)z is
the quotient of the lower circuit by the upper circuit of the square below:

Gre — G2 ®Y,

l l (3.16)

%.mx — 9, ®gwx

Here, the horizontal morphisms are the E;-monoidal structure of ¢, the left vertical arrow
is induced from @’ -t =t - w”, and the right vertical arrow is the commutativity constraint
of the 2-groupoid of A-gerbes.

It suffices to identify 7* with W*(-%) as a rigidified A-torsor over L, (T)z, or equivalently
as a rigidified A-torsor over Tj.

Recall that ;2 may be regarded as an E;-monoidal morphism T — B A(1). The morphism
T x T - B%A(1), sending a pair of S-points (t1,t2) to the quotient of the lower circuit by
the upper circuit of the square below (with morphisms analogous to (3.16)):

Htyty — [ty ®:u‘t2

L

Mgty — Mty ® Mty

is rigidified along e x T and T x e: it is a “bi-rigidified morphism” in the sense of [Zha22,
§4.4.2]. As such, it agrees with the commutator of the corresponding extension of T by
BZA(1), and equals (¥ u ¥)® by [Zha22, Corollary 4.7.6].

Finally, we observe that (3.15) is obtained from p by taking sections over f)f, which is
identified with the punctured formal disc of G, at e. The fiber of (¥ U W)’ at Tz x @ then
induces WY along the canonical morphism I'(Dz, A(1)[2]) - A[1]. O
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Proof of Proposition 3.1.2. Let us embed the Satake categories for T! and T into their ana-
logues over the pairwise disjoint locus (corresponding to X? for p = idy) using (2.19):

Sat}r”gI c Sa‘cf’m,gI
l(fl)z l(fl)! (3.17)
Satp g Sat g,

Here, f!: GrIT,, - GrIT is the closed immersion corresponding to the isogeny f:T! — T.

Claim: the right vertical functor in (3.17) is an equivalence.

Indeed, f is an inclusion of connected components over X?, so it suffices to show that any
F € Satz_}yI is supported on the union of XM xx1 XP with Al is a tuple of elements in Al.

The base change of LL(T) to a geometric point ' € XP is identified with [;¢ Lii}(T)ii.
Given a tuple X! = (A");; with \? € A, the A-gerbe ¢! restricts to Xlier {fi{z} over its classifying
stack, viewed as a substack of (Hech)z.

By Lemma 1.3.5 and Lemma 3.1.6, it suffices to prove:

H([] Ti,\lfb(_’k")) =0 if some \; ¢ AL
i€l €l

This follows from the vanishing of global sections of ¥* for a # 0 € A(-1), see §1.3.6.

To show that the left vertical functor in (3.17) is an equivalence, it remains to show that it
is essentially surjective. Since the essential image of (2.19) is closed under direct summands,

: P
an object & € SatTg{I

extends to a lisse E-sheaf on X* . The same assertion for T then concludes the proof. [

belongs to SatIT o if and only if its restriction to each XM xx1 XP

Remark 3.1.10. The proof of Proposition 3.1.2 also shows that SatIT,1 is equivalent to the
abelian category Perv(GrITu) sx1 of perverse, universally locally acyclic E-sheaves on GrITu,
i.e. the L (T")-equivariance condition is automatic.

The analogous statement for T instead of T# is emphatically false.

3.2. Split tori: equivalence.

3.2.1. We continue to suppose that G = T is a split torus with sheaf of cocharacters A.
Furthemore, we assume that the symmetric form b vanishes, i.e. Af = A.

Under this assumption, the étale metaplectic cover i : Bx(T) - BYA(1) canonically lifts
to an E-monoidal morphism, see [Zha22, §4.6].

The metaplectic dual data (H,») admit a concrete description:
(1) H is the dual torus T over E;
(2) v : A - B%A is obtained from u by taking rigidified sections over BxG,,, and
composing with the projection from I'.(BxG,,, BxA(1)) onto BXA.

Our current goal is to prove the geometric Satake equivalence for such (T, u).

Proposition 3.2.2. For a nonempty finite set I, there is a canonical equivalence of tensor
categories:
SatITgI ¥ RepITI’%. (3.18)

3.2.3. For a nonempty finite set I, we regard Gr%; as an étale sheaf of abelian groups over
X! being defined by the quotient L!(T)/LL(T). The collection of closed immersions (3.3)
is gathered into a morphism of sheaves of abelian groups Al — GrIT, the source being the
external direct sum of A over i € l.
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Since p admits an E.-monoidal structure, the commutative diagram (for G = T) lifts to
a commutative diagram of étale sheaves of Eo,-monoids over X!. In particular, ' may be
viewed an E.-monoidal morphism Grh, — B (A).

Composing these two morphisms, we obtain an E.,-monoidal morphism:

A5 BZ(A), Mo et (M)l (3.19)
Lemma 3.2.4. The Eo-monoidal morphism (3.19) is canonically identified with:
vy A= BXi(A), (A= [X]va(N),
i€l
where the Eo,-monoidal morphism vy is defined as in §1.6.18.

Proof. For each i € I, let 4% : T',s = X! - X! x X denote the graph of the ith projection
x*: X! - X. The union of the graphs is denoted by v :T',i - X! x X. (We are following the
notations of §2.1, viewing 2! = (2%);; as an X!-point of X.) We also have the projections
pr: X x X - XE py : XEx X - X onto the X!, respectively the last factor.

Recall that sheaves of grouplike E.-monoids are equivalent to sheaves of connective
spectra, where the functor B corresponds to suspension [1].

The pullback p3 (1) defines a morphism of sheaves of connective spectra p3(p) : T[1] »
A(1)[4] over X!, and induces a commutative diagram of such:

A @i () T[] 2% @0 (1)) A1) [4]

= =

(p1-7)«7'T[1] M (p1-7)y'A(1)[4] (3.20)
A[2]

Here, the first horizontal morphism sends (A%);er to the section (O(A'T:))ser, and the last
vertical morphism is the one from (2.10).

The upper circuit of (3.20) is the morphism (3.19). The lower circuit of (3.20) is the
external sum of the morphisms A — A[2] defined by (3.19) for the singleton {i}. The
construction thus reduces to the case I = {1}, where it is given by (3.7).

To see that (3.7) is compatible with the E-monoidal structures, we note that (3.19) for
I= {1} may be re-expressed as the composition of Ee-monoidal morphisms:

A 5 T.(BxGy, BxT) % T (Bx Gy, B*A(1)) 22 1(X, B2A).
On the other hand, Lemma 3.1.9 identifies (3.9) as the sum of the identity endomorphism
on I'(X,B2A) and the section of ¥, (wx) over X.

These two components give rise to the E-monoidal morphism v : A - B%(A), respec-

tively the Z-linear morphism w% :A > B%(A) of §1.6.18. O

Proof of Proposition 3.2.2. Let us construct the tensor equivalence (3.18).

Consider the product map m : [T, Gr{Ti N Gr of ind-schemes over X!. (Any ordering

T~ {1, k} realizes [T; Gr,{;} as the ind-scheme (f}\}{Tl}’m’{k} of §2.1.5 and m the composition

of all modifications.)
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Note that the reduced sub-indscheme of []; Gr,{; ; represents the étale sheaf Al. Using
Lemma 3.2.4, we find functors of tensor categories:

Rep}rﬂ/ql9 y @ILisyé(Al)(XI)
AleA

= Pervg (H Gr%{[?})/xl SN PeI'VgI(GI'IT)/XI = SatITgI, (321)

i€l
where SatIT 1 18 equipped with the tensor structure induced from the Eo.-monoidal mor-

phism ¢! : Grlf - B?U (A). This tensor structure naturally extends the convolution monoidal
structure ox on SatIT’gI.

Equiped with this tensor structure, Sau‘clrgI still coincides with (Satlf,gl, *x,e1(E)) defined
by the fusion product, as it lifts the latter to an E.,-monoid in the 2-category of symmetric
monoidal categories, c¢f. Remark 2.3.13.

It remains to show that the functor m; in (3.21) is an equivalence. By universal local
acyclicity, both categories embed fully faithfully in their analogues over the pairwise disjoint
locus XP ¢ X! (see §2.3.10), where they are both equivalent to Sat?}’gl. This implies that m,
is fully faithful. To see that it is essentially surjective, we observe that an object .F € Sat’l’“)gI
belongs to SatIT)%,I if and only if its restriction to each xN xx1 XP extends to a lisse E-sheaf

on X/\I, as the essential image of (2.19) is closed under direct summands. g

3.2.5. We relax the condition b =0, i.e. u stands for any étale metaplectic cover of T.
We shall construct the geometric Satake equivalence (2.23) for split tori.

Construction of (2.23) for G=T. Let T! - T be the isogeny of split tori corresponding to
At c A asin §3.1.1.

The metaplectic dual pair (H,v) is precisely the pair H = T!, v : At - B%(A) associated
to T! and the restriction of y as in §3.2.1.

The equivalence (2.23) is thus the composition of the inverse of (3.2) with (3.18):

I ~ I ~ I
SatT’gI ~ SatTu’gI ~ RepHI,Vlg.

Theorem 2.4.4 for tori is proved. O

3.3. The abelian category Satg .

3.3.1. Let us now turn to the context where G — X is split reductive with chosen Borel
subgroup B c G. Choose furthermore a splitting of B - T and view T as a maximal torus
of G.

The goal of this subsection is to determine SatIG 1 as an abelian category for I = {1}. To
lighten the notations, we omit the superscript I in ‘this subsection.

3.3.2. Write A* c A for the submonoid consisting of dominant cocharacters. Each X € A*
determines a Schubert cell Grgy as the L, G-orbit of X*, embedded in CGrg along (3.3) and
the closed immersion Grr c Grg.

The closure of Gr) is identified with Gr§ := Ux,<x Grél. Denote by j* : Gryy c Grg the
open immersion.

Write P ¢ G for the standard parabolic subgroup corresponding to the simple roots
annihilated by A. It has Levi quotient M*. The quotient map L,G — G induces a map on
their homogeneous spaces Gré - G/P*, see [Zhul7, §2.1]. Its quotient by L, G on the source
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and G on the target defines a map L,G\Grgy - Bx(P*), hence a map py» fitting into the
following commutative diagram:

XA > XA

-

Hecg P L,G\Gry —— X (3.22)

Bx(M}) —— X

3.3.3. Since M” is reductive, the groupoid of rigidified A-gerbes over Bx(M?) is identified
with the discrete abelian group Hom(m(M?*),A(~1)). This follows, for example, from
[Zha22, Proposition 5.1.11].

The natural map T — M? induces a surjection A — 71(M?*) whose kernel is spanned by
simple coroots whose associated roots are annihilated by A. Via this map, rigidified A-gerbes
over Bx(M?) form an abelian subgroup of those over Bx(T).

Recall the rigidified A-gerbe W*(=A) defined in §3.1.4. The identity (1.23) implies that
TN defines a rigidified A-gerbe over Bx (M*).

3.3.4. The following Lemma is a generalization (and corollary) of Lemma 3.1.6. It is an
analogue of [FL10, Lemma 2.4] in étale cohomology.

Lemma 3.3.5. For each A € A*, there is a canonical isomorphism of A-gerbes, in reference
to the morphisms in (3.22):

()G =2 p o (V) ® (P ) (2. (3.23)
or A =0, this is the identity automorphism of the trivial A-gerbe.
For A=0, th he id h f th A b

Proof. Since the kernel of L, G - G is pro-unipotent, pulling back by py» defines an equiv-
alence on the groupoid of (rigidified) A-gerbes.
By Lemma 3.1.6, we already have an isomorphism:

e (i)Y = vy(N).

It remains to show that (i*)*¥ ® p*ry(N)® ! equals W) as rigidified A-gerbes over
Bx(M?). This statement can be proved after pulling back along Bx(T) — Bx(M?), where
it again reduces to Lemma 3.1.6. g

3.3.6. Let A € AP+ := Al n A*. The isomorphism (3.23) shows that pulling back along the
projection p carries the A-gerbe vy(\) to the restriction of 4.

In particular, any vy(\)-twisted E-local system & over X pulls back to a ¥-twisted L, G-
equivariant E-local system p*(&) over Gr)c‘;. Up to cohomological shift and Tate twist, we
may form its intermediate extension along j* as an object of Satq, @:

ICs = (1M)up €((p. A)[(20, )] € Satcy.
Here, (p,\) € 7 and the Tate twist is formed with the aid of E(3).
Proposition 3.3.7. The functor below is an equivalence of E-linear abelian categories:

@ Lis,,n(X) > Satcy, (6~ @ ICs. (3.24)
AeAbt AeAbt
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Proof. For each A € Ab* the morphism p in (3.22) is smooth with connected fibers. Tt
follows that (3.24) restricts to a fully faithful functor on each summand.

By the definition of intermediate extensions, the images of distinct summands under (3.24)
are orthogonal. Thus (3.24) is fully faithful. It remains to show that it is also essentially
surjective, i.e. any .Z € Satg g is a direct sum of objects of the form ICgx over A € Ab*.

For each \ € A*, we let F* ¢ Lis,, (1) (X, E) denote the restriction of .7 to XA IE A ¢ Ab+,
it follows from Lemma 1.3.5 and Lemma 3.3.5 that .Z* = 0, so the restriction of .Z to Grg
vanishes by L,G-equivariance. If A € Ab*, the restriction of .# to Gr)(‘; is given by p*(F?*).
Thus .Z is an iterated extension of the objects IC zx over A € Ab*.

It remains to show that for A; # A2, the images of Lis,, (,)(X) and Lis, (x,)(X) in Satg,«
have no nonsplit extensions. Since their images are orthogonal, it suffices to prove that there
are no nonsplit extensions of their fibers at a geometric point of X. This is proved by Reich
([Reil2, Proposition IV.6.13]).4 O

Remark 3.3.8. For G =T, the decomposition (3.24) coincides with (3.21) appearing in the
proof of Proposition 3.2.2.

Contrary to the case of tori, (3.24) is incompatible with the monoidal structure on Satg ¢,
i.e. the monoidal product of two homogeneous objects is in general inhomogeneous.

3.4. Constant terms: construction.

3.4.1. Suppose that P c G is a standard parabolic subgroup with unipotent radical Np c P
and Levi quotient P - M.
The restriction of 1 to B(P) canonically descends to an étale metaplectic cover of M.

3.4.2. For a nonempty finite set I, the construction of §2.2 for M produces an A-gerbe 4
over Hecy;. We have an isomorphism of A-gerbes:

P (") 2q" (%) (3.25)

along the canonical morphisms p : Hec{; - HecIG and q: Hec% - Hec{\/l.
Define the (naive) constant term functor to be the following functor of E-linear stable
co-categories, using the isomorphism (3.25):

CT} : Shvg: (Hecg) — Shvg]h(Hec}v[), F > qp  (F). (3.26)

3.4.3. Since the connected components of Hec{v[ are enumerated by (M), the sum of
positive roots occurring in Np defines a character 2pp : 71 (M) — Z, which we view as a
locally constant function on Hecy. (In particular, 25p = 25.)

We shall adjust (3.26) by a cohomological shift by 2pp and Tate twist by pp (with the
aid of E(3)). The result will be a tensor functor on the Satake categories with modified
commutativity constraints, as defined in §2.4.

Proposition 3.4.4. The functor (3.26) induces an exact tensor functor:

CTh(pp)[20p] : *Satg g1 — *satIM,gBIA. (3.27)

‘In a previous version, I erroneously asserted that this statement follows from the argument of [MV07]
which reduces it to Lusztig’s parity vanishing. However, the proof of the parity vanishing does not apply in
the twisted context because the gerbes are nontrivial when pulled back to the Demazure resolutions. Reich’s
argument uses instead the fact that the convolution product of simple perverse sheaves is semisimple. I
thank Dennis Gaitsgory for pointing out this error.
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Proof. The proof is identical to its non-metaplectic counterpart and follows from Braden’s
hyperbolic localization theorem. We briefly indicate the argument.

Claim: CTL(pp)[2pp] carries the abelian subcategory SatIGgI to Sat!

ML

Indeed, after establishing the claim, the tensor structure on CT% (pp)[25p] arises from its
commutation with the external fusion products (see §2.3.10). Note that due to the degree
shift [2pp], the Koszul sign rule implies that CTL(pp)[2pp] is compatible with exchanging
factors after modifying the commutativity constraints.

To prove the claim, we may split the Levi quotients of B and P and view M as a subgroup
of G contaning the maximal torus T. Let P~ c¢ G be the parabolic subgroup opposite to
P. The local Hecke stack Heciy is equipped with projections p~, ¢~ to Hec{;, respectively
Hec%v[. There is a functor:

CTy! : Shvgi (Heeg ) > Shvgy (Heerr), 2 = (¢7)«(p)' (F). (3.28)

Braden’s theorem (as stated in [DG14]) identifies the functor (3.26) with (3.28). Its forma-
tion commutes with base change along S — X! for any k-scheme S.

To show that CT; preserves universal local acyclicity relative to X!, we base change to the
spectrum of a rank-1 valuation ring and observe that the characterization [HS23, Theorem
4.4(iv)] holds for CT;’I_.

To show that CTh(pp)[2pp] is t-exact with respect to the perverse t-structure relative to
X! we base change to any geometric point of X! and reduce to the case I = {1}. The argument
of [MVO07, §3] then shows that CTé,l}(pp)[Z,ép] is right t-exact and CT{l_}’!(ﬁp)[Zﬁp] is left
t-exact. U

Remark 3.4.5. The tensor functor (3.27) is compatible with compositions. More pre-
cisely, for a parabolic subgroup P; ¢ M with Levi quotient P; - M;, the composition of
CTlP1 (pp,)[2pp, ] with CTL(pp)[2pp] is canonically isomorphic to CT{;,O (pp,)[2pp, |, where
Py denotes the parabolic subgroup Py := P x; P; c G.

Remark 3.4.6. The Levi quotient of any Borel subgroup B c G is identified with the
universal Cartan T, and the tensor functor CTR(5)[25] (3.27) is independent of the choice
of B ¢ G. More precisely, given two Borel subgroups By,Bs c G, there is a canonical
isomorphism of tensor functors:

CTh, (5)[25) = CTh, () [20], (3.29)

subject to the natural compatibility for three Borel subgroups.

Let us first construct (3.29) subject to the choice of a section g € G such that the inner
automorphism int, of G carries By to Ba.

Indeed, the moduli description of Hecé shows that int, induces the identity automorphism
on HeCIG. Thus pulling back along int, yields a commutative diagram:

* Saté7g1 I*d> +SatIG7gI

CTEZ(ﬁ)[Zﬁ]l lCT}sl (»(27] (3.30)
I (intg)* I
SatTh%1 — Sa‘cTz,g%2

Here, Ty (resp. T) denotes the maximal quotient torus of By (resp. Bs), so the isomorphism
int, : Ty 2 T9 is encoded in the definition of T. The commutative diagram (3.30) yields an
isomorphism F, of the two functors in (3.29).
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It remains to prove that for B = B; = By and g € B, the isomorphism F, equals the identity
automorphism of CTg(5)[24], where the endofunctor (int,)* of Sautlm4 is trivialized as int,
induces the identity on T.

For this statement, we construct the automorphisms F, as a family over g € B, i.e. they
define an automorphism of the functor Eg & CTg(5)[2p] valued in E-sheaves over B x Hecrp.
This automorphism equals the identity, because it restricts to the identity over e x HeclT and
B is smooth and connected.

3.5. Constant terms: vanishing.

3.5.1. In this subsection, we specialize to the case I = {1} and study the behavior of the
constant term functor (3.26) associated to the Borel subgroup B c G.

We denote the Weyl group of G by W. It canonically acts on A. Asin §3.3, we temporarily
drop the superscript {1}.

3.5.2. Note that for any X € Af and w € W, the difference A\ — w(\) belongs to A*".

Recall that the Ee-monoidal morphism ! : A¥ - B%(A) is canonically trivialized over
AF" (see §1.6.5). Since Q vanishes over A¥" the Z-linear morphism wg : Af - B%(A) of
§1.6.17 is likewise trivialized over Ab".

Therefore, vy is equipped with a canonical W-invariance structure.

3.5.3. According to Proposition 3.3.7, the functor CTg(p)[24] is the direct sum of functors
indexed by pairs of elements A € Ab*, \; € Al:

CTR™ (p)[25) : Lis,, () (X) € *Satg.«

CTg(p)[2p
IO, Sat gy > Lisy, ) (X). (3.31)

The next Proposition describes the behavior of (3.31). Its proof will occupy the remainder
of this subsection.

Proposition 3.5.4. Let A ¢ Ab* and A\ € AY. The following statements hold:

(1) if Ay € WA, then CT%”\I(/B)[2/3] is equivalent to the identity functor (in reference to
the canonical W-invariance structure on vy);
(2) if M ¢ A+ ABT then CTR™M (5)[25] = 0.

3.5.5. In the remainder of this subsection, we fix a splitting of B - T and regard T as a
maximal torus in G.

For each A € A, we write S* for the base change of Grg - Gry to X*. Using the locally
closed immersion Grg — Grg, we may view S* as a locally closed sub-indscheme of Grg. In
particular, we may form the subschemes Grg' nS™, Grg NS c Grg.

For X e Ab* and \; € Al the pair (Gré n S 4) of a scheme equipped with an A-gerbe
maps to the pairs (X,vy(A)) and (X,v9(A1)), as induced from the two inclusions in the
following diagram:

Gra o GranS™ ¢ SM

lpA lp l’” (3.32)
XA S X XM
and the isomorphism of Lemma 3.3.5.

The identifications of 4 over Gre, n S™ with both p*ry(\) and p*vg(A1) compose into
an isomorphism:

112

p (M) 2p g (). (3.33)
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If Ay €e WA, the identification (3.33) coincides with the one induced from the W-invariance
structure of vy.

Proof of Proposition 3.5.4(1). This part is identical to the non-metaplectic context. Indeed,
when A; € W -\, the inclusion Grg nSM c Gr§* nSM is an isomorphism and both schemes
are identified with the L,N-orbit of X* (see the proof of [MV07, Theorem 3.2]).

The projection p in (3.32) is thus an affine space bundle of fiber rank (p, A; + A). Hence
the functor pip* is canonically equivalent to the value of (—p)[-2p] at A+ A1. As CTQ’)‘1 is
identified with pip*, the desired conclusion follows. O

3.5.6. To prove Proposition 3.5.4(2), we need an additional piece of datum associated to
the isomorphism (3.33).

To define it, we briefly return to a more abstract setting: S is any base scheme and A is
a finite abelian group, H — S is a group scheme, and Y is an S-scheme equipped with an
H-action.

Suppose that ¥;, % are A-gerbes over Y equipped with H-equivariance structures. Let
f % 2% be an isomorphism of plain A-gerbes over Y. Consider the diagram formed by
the action, respectively projection maps from HxY to Y:

o () 25 pr (%)
l (3.34)
" act™(f) "
act* (%) —= act* (%)

The diagram (3.34) needs not commute. The quotient of its upper circuit by its lower
circuit defines an A-torsor over H x Y rigidified along e x Y, which we call the obstruction of
f to be H-equivariant.’

3.5.7. We shall apply the above construction to the isomorphism (3.33) of A-gerbes over
Gré‘; N SM, equipped with the Tyg-action. Here, T,.q is the maximal torus of the adjoint
group G,q induced from T, acting by automorphisms of G. (We write A.q for the sheaf of
cocharacters of T.) The A-gerbes p*vy(\) and p*vy(A1) are Taq-equivariant, as they are
pulled back from X.

Using the isomorphism (3.5) between rigidified A-torsors over T,q and characters A,q —
A(-1), we may describe the obstruction of (3.33) to be T,q4-equivariant as a locally constant
section:

M e Hom(Aaq, A(-1)) over Gryy nS™M. (3.35)

3.5.8. Note that the equality (1.23) shows that the restriction of b to A ® A, where Ag. ¢ A
is the span of coroots, extends to a bilinear form:

bihag ®Age > A(-1), (A €Auq,ae®) > Q(a)() a). (3.36)

Lemma 3.5.9. Suppose that A € Ab*, Ay € Al are such that Gryy n S™ # @. (This implies
A= A1 € Ase.) Then the obstruction (3.35) of the isomorphism (3.33) to be Taq-equivariant
is equal to the constant character b(—, A1 — \).

Proof. The calculation can be performed over k-points of X. From now on, we fix a k-point
of X with local uniformizer w. The notations Gre, and S™ now stand for their base changes

5This terminology should not be taken seriously, as it says nothing about the cocycle condition. The only
case of interest for us is when H is a torus, where the obstructions are discrete and the cocycle conditions
are automatic.



METAPLECTIC SPECTRAL DECOMPOSITION 43

to Z. The closed immersion X* — Grg, corresponds to the k-point #* of Grgy. It lifts to a
k-point @ of L(G).

Let B~ ¢ G denote the Borel subgroup opposite to B. It has associated L(N~)-orbit S™*
of Z* for each \ € A.

Recall that each irreducible component of Grgy nSM intersects nontrivially with the “Za-
stava space” S™%0(N) A SN where wy € W stands for the longest element. Indeed, the fact
that Gry, N S™*0) is dense in Gryy shows that any irreducible component of Gre, N SM is
contained in S—wo(») n S* . If it belonged to the complement of S~ A SM | it would
be of dimension strictly less than (X + A1, g) by the dimension calculation of Zastava spaces
([BFGMO02, 5.10]), but Grg, nS* is pure of dimension (A + Ay, 5) ([MV07, Theorem 3.2]).

Let us consider the analogue of (3.32) for the Zastava space:

ST nsM < sM

S o
[ I [ (3.37)
Py

S T = M
and the induced isomorphism of A-gerbes over S™* n S*t:
P rg(N) 2p rg(A). (3.38)

It suffices to prove: the obstruction of (3.38) to be Taq-equivariant is equal to b(—, A1 —N).
Indeed, the desired statement over Gré NSt will then follow from the equality l~)(—, A1—A) =
b(—, A —wo (X)), as wo(\) — A € Ab" is annihilated by Q.

To calculate the obstruction of (3.38) to be T,4-equivariant, we may assume A\; = 0.
Indeed, because ¢ is induced from an [E;-monoidal morphism L(G) — B2(A), pulling back
(3.38) along the isomorphism defined by multiplication by w™1:

oM SN 80y g A qgM

yields the product of the isomorphism p*vy(A-A1) 2 p*vy(0) with the identity automorphism
of p g (M).

The assumption A; = 0 forces A € Ay, so S7* N SY is contained in the neutral component
of GI‘(;,.

Let Ggc — G denote the simply connected form of G, with induced maximal torus T, c
Gge. Write S2*, 8% for the corresponding orbits in Grg,, and pg : S N S2, — 7 for the
projection. The pullback of (3.38) to S;;* nSY. is the composition of isomorphisms:

(Pse) Vo (N) 2 Yee 2 (psc) “v9(0), (3.39)

where %, denotes (the restriction of) the A-gerbe over Grg,_, defined by the pullback . of
w along B(Gg.) = B(G). The two isomorphisms in (3.39) are induced from the inclusion of
SzAn Sl in SA, respectively SP..

Since the k-points of Grg_ map bijectively to those of the neutral component of Grg, it
suffices to calculate the obstruction of (3.39) to be T,q-equivariant. (Note that T.q acts by
automorphisms of Gy, as the latter is functorially attached to G.)

We shall now appeal to the canonical T ,q-equivariance structure of %,.. Indeed, the rigid-
ified morphism fis. : B(Gge) - B*A(1) is Tag-equivariant, and the “(Taq, Tse)-commutator”
of the induced E;-monoidal morphism Ty, - B3A(1) is the bi-rigidified morphism:

Tad X Tsc - B2A(]—),
defined by the pairing b (see [Zha22, §5.5]).
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As in the proof of Lemma 3.1.6 (task (2)), the A-gerbe % ® (psc)*v9(A)®~1 over S
descends to the rigidified A-gerbe TN gver Bz3(Taq). Similarly, the A-gerbe %, ®
(pse)*v9(0)® ! over S, descends to the (trivial) rigidified A-gerbe WP(~9) over Byo(Taq).
The obstruction of (3.39) to be Taq-equivariant is thus the difference of obstructions:

_6(_5 0) + B(_7 )‘) = 5(_7 A)
This establishes the desired equality. O

Remark 3.5.10. The proof of Lemma 3.5.9 also establishes its variant where Grgy n SM is
replaced by the Zastava space S™* n S*.

Proof of Proposition 3.5.4(2). The \-summand of Satg « consists of intermediate extensions
of ¥-twisted E-local systems along Gré c Gré)‘, so their restrictions to any boundary stratum
Gr/c\;2 lie in perverse cohomological degrees < —(2p, A2) — 1. The t-exactness of CTV™ (5)[25]
implies that only the open stratum Grg\; N S* contributes. In other words, it is isomorphic
to the degree-0 piece of the functor:

pp" (9, A+ AN [(20, A+ Aa)] = Lisy, () (X) = Shvy, (1) (X)), (3.40)

defined by the isomorphism (3.33) of A-gerbes.

We shall prove that (3.40) vanishes. This statement can be verified over k-points, so we
fix a k-point Z of X and trivialize the A-gerbes vy(\)z and vy(\;)z over Z.

The isomorphism (3.33) thus defines an A-torsor 7 over Gré nSM | and the image of E
under (3.40) is isomorphic, up to cohomological shift and Tate twist, to the complex:

[ (Gra nSM, .2), (3.41)

where .Z is the rank-1 E-local system induced from 7 along A c E*.

If A\ — X\ ¢ Ay, then Gré NSM = @ and (3.41) clearly vanishes.

Suppose that A\; =X € Agc. We write A\ -\ =Y, doa for a € A and d,, € Z. The hypothesis
A1 = A ¢ AT means that d,, is indivisible by ord(Q(«)) for some « € A.

By Lemma 3.5.9, the A-torsor 7 is Tag-equivariant against the multiplicative A-torsor
YoM-A) | Using Lemma 1.3.5, we see that (3.41) vanishes as long as HO(Tyq, ¥P(-A172)) =
0. The latter vanishing follows from the hypothesis \; -\ ¢ Ab", as the pullback of Wb(=A1=2)
along the fundamental coweight & : G, — Taq dual to & € A yields PaQ(e) O

3.6. Constant terms: fiber functor.

3.6.1. We return to the context of §3.4.1. The goal of this subsection is to use the constant
term functor associated to B to construct a “fiber functor” for SatIG7gI.

Our first task is to record a corollary of Proposition 3.5.4(1), which concerns those prop-
erties reflected by the constant term functor.

Lemma 3.6.2. For any nonempty finite set 1, the functor CTL(pp)[2pp] (3.27) satisfies
the following properties:
(1) it is conservative;
(2) an object of SthI(HecIG) is universally locally acyclic relative to X' if and only if
its 1mage 1.

Proof. Since the functors (3.27) are compatible with compositions (Remark 3.4.5), we may
assume P = B.
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Statement (1) is reduced to its analogue over k-points of X!, thus to the case I = {1} after
possibly replacing G by a product of copies of G. Then it follows from the decomposition
(3.24) and the special case of Proposition 3.5.4(1) for Ay = A € Ab*.

Statement (2) follows from the criterion [HS23, Theorem 4.4(iv)] of universal local acyclic-
ity and the conservativity of CTg(p)[2p]. O

3.6.3. Our second task is to construct a decomposition of E-linear abelian categories:

I
Satg gz @ TSatdy, (3.42)
Ne(Zg)!
which is compatible with the tensor structure on +SatIG g1y e
(1) the unit e;(E) belongs to +Satléfgl;
I I I I
(2) the monoidal product of F#; € +Sat1(§j\€1¢1 and %, € *Satlcl:’\él belongs to +Saté:\€;;”\2.

Furthermore, the decomposition (3.42) is of étale local nature over X'.

Construction of (3.42). Let 7: A¥ > Zy denote the projection map. (Recall that Zy is the
quotient of At by Ab".) We proceed in increasing generality.
Case: 1={1}. For each A € Zy, we define the direct summand:

A :
+Satg,;,{1} = @u Lis,, (x+)(X) c +Satg’;{l}, (3.43)
ATeAbt
W(Ae+):A

according to the decomposition (3.24).

It is clear that e;(E) belongs to +Saté17}g;(<)1}.
To prove the compatibility with monoidal product, we note that by Proposition 3.5.4, the

summand (3.43) consists precisely of objects in +Satt , whose images under CTI{;} (p)[20]

G,g1
are supported on the strata X*1, for A\; € At with m()\;) = A\. However, for the torus T, the
decomposition (3.24) is compatible with the monoidal product. Thus the same holds for the
decomposition of +Satg7; (1, defined by the summands (3.43).

Case: disjoint locus. For a nonempty finite set I, we consider the identity map p = idy.
The open subscheme X? ¢ X! is the pairwise disjoint locus.
For each Al € (Z)", we set:

AT
Satgy g © TSaty, o (3.44)

to be the full subcategory consisting of objects whose images under CTk(p)[25] are sup-
ported on the strata X1, for Ae (AN with 7(A\}) = AL

The fact that the full subcategories (3.44) induce a direct sum decomposition of J'Saut’é,gI
compatible with its tensor structure follows from the case for I = {1}.

Case: general. Let I, p, ! be as above. We set:

*Satlyy: © *Sath 4 (3.45)

to be the full subcategory consisting of objects whose restrictions along X? c X! belong to
the full subcategory (3.44).
The fact that (3.45) induces a direct sum decomposition of *Satg, . follows from the

closedness of the full subcategory +SatIG,%I c +Satg7g1 under direct summands. Its compat-

ibility with tensor structure follows from the case for the disjoint locus. O
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Remark 3.6.4. For I = {1}, the decomposition (3.42) coarsens the decomposition (3.24).
However, the latter decomposition is incompatible with the tensor structure unless G = T
(¢f. Remark 3.3.8).

3.6.5. Using the decomposition (3.42), being of étale local nature over X!, we may twist the
tensor category +SatIG 1 by the Eq,-monoidal morphism negative to V119 (i.e. the formation

(1.38) applied to v§~1):
(rp)® ™ (Ze)' > BXa(A),  (\a)ser = [X]ro(\)® "
i€l
This process yields a tensor category (*Sat, gl)(%)®,l,
Combining CTL(p)[2p] with the geometric Satake equivalence for split tori (§3.2.5), we
find a tensor functor:
CTg(5)[27]

Wl (+Sat£;,g1)(l,119)®71 (Satzf,%{,)(l/é)@’l

= (Repyy 1 )1 )er 2 Reppy — Lis(X), (3.46)

where Ty ¢ H is the maximal torus (with character lattice At), and the last functor is the
one forgetting the T}-action.

Remark 3.6.6. The tensor functor w' satisfies the following additional properties:
(1) it is conservative (Lemma 3.6.2(1));
(2) it is exact (Proposition 3.4.4);
(3) it is independent of the choice of B (Remark 3.4.6);

3.7. Tannakian reconstruction.

3.7.1. Consider the 2-category whose objects are tensor (i.e. E-linear symmetric monoidal
abelian) categories, whose morphisms are tensor functors, and whose 2-morphisms are nat-
ural transformations compatible with the tensor structures.

A tensor category is called rigid if all of its objects are dualizable. Note that in a rigid
tensor category, the monoidal product with any object is exact.

3.7.2. Let A be a rigid tensor category. The following categories are related by a pair of
adjoint functors:
(1) commutative Hopf algebras in Ind(A);
(2) pairs (C,w) where C is a rigid tensor category under A and w : C - A is a
conservative, exact, A-linear tensor functor.

The functor (1) = (2) associates to a Hopf algebra o/ € Ind(A) its tensor category of
comodules C := Comod (A) on objects of A and the forgetful functor w.

Its left adjoint (2) = (1) associates to a pair (C,w) the object Ind(w) - w®(1) e Ind(A),
where 1 € A is the tensor unit. Here, the ind-extension Ind(w) preserves all colimits, and
thus admits a right adjoint w®. Since Ind(w) is a tensor functor, w® preserves commutative
algebras. The coalgebra structure is induced from the comonad Ind(w) - w®. The existence
of inverse follows from the rigidity of C.

Lemma 3.7.3. The adjunction in §3.7.2 is an equivalence.

Proof. We show that the counit and unit are isomorphisms.

Counit. Let o/ € A be a bi-algebra. The right adjoint w® is given by (-) ® @7, where .« is
viewed as an .27-comodule by its coalgebra structure. The counit map Ind(w) - w®(1) — &
is thus an isomorphism.



METAPLECTIC SPECTRAL DECOMPOSITION 47

Unit. Let (C,w) be a pair as in §3.7.2(2). The functor Ind(w) remains conservative,
so the adjunction (Ind(w),w®) satisfies the hypothesis of the Barr-Beck theorem, i.e. it is
comonadic. We see that Ind(C) is equivalent to the category of (Ind(w)-w™)-comodules in
Ind(A), compatibly with the forgetful functors.

Since Ind(w) is Ind(A)-linear, so is the functor w®. This shows that the comonad Ind(w)-
w® is identified with tensoring by the coalgebra .o := Ind(w) - w®(1).

Finally, we must show that C c Ind(C) coincides with the full subcategory of objects
whose image under Ind(w) belongs to A. Since C (resp. A) is abelian, hence idempotent-
complete, it is the full subcategory of compact objects of Ind(C) (resp. Ind(A)). We con-
clude using the observation that Ind(w) respects and reflects compactness. O

3.7.4. For a nonempty finite set I, the tensor category *Satf, . admits a Lis(X')-structure
supplied by ey, for e: X! — HeCIG being the unit section.

Moreoever, *SatIG o1 is rigid. Indeed, by the definition of the fusion product, we can check
the dualizability of an object in +SatIG 41 over the pairwise disjoint locus of X!. There, the
statement reduces to k-points and the case I = {1}, where it follows from the argument of
[Zhul7, Theorem 5.2.9)].

The same assertions are inherited by the twisted tensor category (*Saté’gl)(ulg)@_l, SO

Lemma 3.7.3 produces a commutative Hopf algebra &7 € Ind(Lis(X1)).

Proposition 3.7.5. There is a canonical isomorphism of Hopf algebras:
"2 O eInd(Lis(X")). (3.47)

3.7.6. Let H; denote the locally constant étale sheaf over X of affine group schemes over E
corresponding to A{1},

The isomorphism (3.47) for G = T is constructed in §3.2.5. The composition of all but
the last functor in the definition of wi'} (3.46) yields a homomorphism from the maximal
torus Ty c H to Hy.

The isomorphism H; = H supplied by (3.47) will extend the identity map on Ty.

Lemma 3.7.7. The following statements hold:

(1) Hy is a sheaf of reductive group schemes;
(2) the map Ty - Hy realizes Ty as a mazimal torus of Hy.

Proof. Both statements may be verified over k-points of X. We shall now fix a k-point
and write Hy 7 (resp. Tw z) for the stalk of Hy (resp. Tw) at Z.

By Proposition 3.3.7, the underlying E-linear abelian category of finite-dimensional rep-
resentations of H; ; decomposes as a sum of copies of the category of finite-dimensional
E-vector spaces, indexed by Ab*. We write &> € Repy ..z for the object corresponding to
the 1-dimensional E-vector space E and index A\ € Ab*.

Observe that Hj ; is of finite type. Indeed, Ab* is finitely generated as a monoid and
EM*A2 appears as a summand of &M ® &2 by Proposition 3.5.4(1). Thus Repy, ; has a
finite number of tensor generators, so [DM82, Proposition 2.20] applies.

Next, H; z is connected because it does not have nontrivial finite tensor subcategories
([DM82, Corollary 2.22]).

Finally, H; z is reductive because Repy, ; is semisimple ([DM82, Proposition 2.23]) ac-
cording to its aforementioned decomposition. This proves statement (1).

By Proposition 3.5.4(1), any object of Repr,, ; is a subobject of an object coming from
Repy, z- The morphism Ty z — Hyz is thus a closed immersion by [DMS82, Proposition
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2.21(b)]. The argument of [Zhul7, Lemma 5.3.17], substituting Proposition 3.5.4 for Theo-
rem 5.3.9 in loc.cit., shows that Tq z is a maximal torus. O

3.7.8. Let us fix a R—point Z of X. We shall upgrade the maximal torus Ty z c Hy z to a
pinning of the reductive group scheme H; ;.

Denote by 2py € Al the sum of positive coroots of Hz. As in [BR18, §9.2], we choose
a Borel subgroup By, z ¢ Hiz containing Ty z such that 2py is a dominant cocharacter
with respect to By, z. This choice has the property that the dominant characters of Ty z
it defines agree with those defined by By z ¢ Hz (see [BR18, Lemma 9.5]).

We record the data which have been constructed:

Tez < Bm,z ¢ Higz

l (3.48)

Lemma 3.7.9. The two rows of (3.48) induce the same based root data on the character
lattice of Tw z.

Proof. The construction of By, z being compatible with the constant term functor (3.27), we
reduce to the case where G is of semisimple rank one. There, we must show that By, z ¢ Hy z
has a unique simple root given by ord(Q(«))a € A, and its associated coroot is given by
ord(Q(a)) .

To identify the simple roots, it suffices to show that the Ty z-weights of the simple object
EX e Repy, ; for A € Ab* (notations as in the proof of Lemma 3.7.7) is given by:

A—d-ord(Q(a))a, 0<d<ord(Q(a)) ). (3.49)

We argue as in [FL10, §4.4]. Proposition 3.5.4(2) implies that the Ty z-weights of & are
contained in the set (3.49). To show that they exhaust the latter, it suffices to prove that
the A-torsor 7M1 over Gréj NS2* defined by (3.33) and arbitrary trivializations of vy(\)z,
v9(A1)z is (non-canonically) trivial whenever A; belongs to (3.49).

The statement for the extremal cases A1 = A, A\; = 54(A) follows from Proposition 3.5.4(1).
It remains to treat the intermediate cases:

M= A-d-ord(Q(a))a, 1<d<ord(Q(a)) H{a,\)-1.

Write a := (p, A} and aq := (p, \1) where p:= @/2, so a >0 and |a;| < a. Identifying N with
Ga, the L(N)z-action on #*' induces an isomorphism:

A 2 L (Ge)z /@ ™ Ly (Gy)s 2 GrE, n Sy, (3.50)

Under (3.50), the open subscheme Grg\;@ﬂSgl corresponds to the locus with invertible leading
coefficient in @™ "L, (G, )z, hence to G,, x A%T@~1 ¢ A%*%1 The projection of Grg\;@ NS
onto G,, intertwines the T,q-action with G,,-multiplication.

The A-torsor 721 canonically descends to G,,, where it is (non-canonically) trivial be-
cause TMM s T.q-equivariant by Lemma 3.5.9.

The identification of simple roots of By, z ¢ H; z being complete, the identification of sim-
ple coroots follows, because ord(Q(«a)) 'é is the unique cocharacter pairing non-negatively
with all dominant characters of Ty ; and yields 2 when paired with ord(Q(«a))a. O

3.7.10. Let us now upgrade the top row of (3.48) to a pinning on Hj 7.
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Construction. The decomposition (3.42) gives rise to two tensor functors:

Repj, 7 © Repy, ; > @ Modg, (3.51)
AeZy

where Rep%l,i denotes the summand corresponding to 0 € ZH, and the second functor is the

decomposition of w'} according to Zy-weights.
Both functors in (3.51) commute with fiber functors to Modg. Thus they define mor-
phisms of affine groups schemes over E:

1> Zyz—>Hiz>H) ;> 1 (3.52)

x

The criterion [EHS07, Theorem A.1(iii)] shows that (3.52) is a short exact sequence. The
identification of root data (Lemma 3.7.9) shows that H(fj is the adjoint group of H; 5. It is
equipped with an induced maximal torus and a Borel subgroup:

T, - < By, z cHY ;. (3.53)

Suppose first that G is of semisimple rank one. Then the same holds for H; z, and H?,z
has the root data of PGLs. Any two isomorphisms H(l)’j ~ PGLy matching (3.53) with the
standard triple G,,, ¢ B ¢ PGLs differ by the inner automorphism of PGLs defined by a
unique element a € G,,. The adjoint action of PGLy on the vector space E®3 differs from
its twist by any nontrivial element a € G,,.

Consider the simple object &rd(Q(@)a ¢ Rep%lj. Its image under wil} is canonically
equivalent to E®3, using the Tate twist introduced in our constant term functor. Thus there
is a unique isomorphism between the triple (3.53) and the standard triple G,, c B c PGLq
under which &4 Q@) corresponds to the adjoint action of PGLy on E®3.

Under this isomorphism, the pinning of PGLy transfers to H(l)’i. Since H; z — H(f’i, is an
isomorphism on root subgroups, H; z inherits a pinning.

For a general reductive group scheme G, the pinning on H; z is constructed from the
constant term functors and the semisimple rank one case. O

3.7.11. Combining Lemma 3.7.9 and the construction in §3.7.10 of a pinning on H; z, we
obtain a canonical isomorphism of pinned reductive group schemes over E:

Hi z = Hgz, (3.54)

for every k-point z of X.
Finally, we shall lift (3.54) to the desired isomorphism (3.47).

Proof of Proposition 3.7.5. We construct the isomorphism (3.47) in increasing generality.

Case: 1 = {1}. Claim: H; is constant as an étale sheaf over X. Once this claim is
established, the desired isomorphism H; = H is supplied by (3.54) at any k-point Z.

To prove that H; is constant, we may assume that X is connected with a fixed k-point Z.
Then H; is recovered from its fiber H; z equipped with the m1(X, Z)-action. It remains to
show that this (X, Z)-action is trivial.

Since the tensor functor Repy, ; - Repr,,
whose target @{TIH} is constant, the (X, Z)-action on the maximal torus Ty z c Hy 7 is
trivial. This shows that (X, Z) acts trivially on the based root data of Hj 5.

It remains to show that the m (X, Z)-action preserves the pinning on Hj 7z constructed in
§3.7.10. We may do so under the additional assumption that G is of semisimple rank one,

and it suffices to show that 71 (X, Z) acts trivially on the adjoint group H?’i.

; arises as the fiber at Z of a tensor functor

By functoriality of the intermediate extension, the simple object &°rd(Q(a)a ¢ Rep% \E
is 71 (X, Z)-equivariant compatibly with the fiber functor. Thus the corresponding action of
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HY ; on E®? is m; (X, Z)-equivariant. However, the induced homomorphism H{ ; -~ GL(E®?)
is injective, as it coincides with the adjoint representation of PGLo. It follows that 71 (X, )
acts trivially on H?’j.
Case: general. Let I be any nonempty finite set. The external fusion product of SautIG,gI
induces a morphism of Hopf algebras:
o 5 b eInd(Lis(XD)). (3.55)
iel
It suffices to prove that (3.55) is an isomorphism.
This assertion can be proved over the pairwise disjoint locus in X' and furthermore over
any k-point . There, it follows the compatibility between the isomorphism (3.54) and finite
product of reductive groups. (|

3.7.12. We now prove the geometric Satake equivalence (Theorem 2.4.4) for (G, ).

Construction of (2.23). Suppose first that G is split.
For any nonempty finite set I, the tensor category (*SatIG gl)(yg ye-1 is identified with

RephI by Proposition 3.7.5.

This identification being of étale local nature over X!, we obtain the desired equivalence
of tensor categories (2.23) after twisting both sides by v/}

The nonsplit case follows via étale descent. O

Remark 3.7.13. As an addendum to the proof of Theorem 2.4.4, we note that (2.23) is
compatible with constant term functors, i.e. the square below commutes:

. (2.23) L
"Saty g1 — Repy ol
CTy(p)[27] STy

(2.23)

Satl — RepITI Ul
2 L)

T, %L
where the right vertical arrow is the restriction along the maximal torus Th c HL. (Recall
that CTg(5)[24] is independent of the choice of B according to Remark 3.4.6.)

The compatibility statements in §2.4.5 follow directly from the construction of the equiv-
alence.

4. GLOBAL FUNCTION FIELDS

This section contains our results particular to smooth curves over a finite field.

In §4.1, we propagate the A-gerbe ' defined in §2.2 to various moduli spaces associated
to a global curve. The crucial observation is that ¢! is canonically trivialized over the
moduli stack of Shtukas, allowing us to obtain the space of genuine automorphic forms from
its cohomology. This geometric origin of genuine automorphic forms is already indicated by
V. Lafforgue in [Lafl8, §14] in a narrower context.

In §4.2, we prove a lemma concerning Artin reciprocity. It implies that in the function
field context, Weissman’s meta-Galois group ([Weil8, §4]) is the central extension associated
to the {£1}-gerbe of theta characteristics. This is a slightly surprising fact, but it follows
from very natural considerations.

Finally, we explain in §4.3-4.4 how to extend the arguments of V. Lafforgue [Laf18] (using
improvements by Xue [Xue20a], [Xue20b]) to obtain the spectral decomposition of genuine
cusp forms defined on covering groups.
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4.0.1. Let k be a finite field of cardinality ¢q. For any k-scheme S, we write Frg for the ¢qth
power Frobenius endomorphism of S.

Let X be a smooth, proper, and geometrically connected curve over k. Denote by F its
field of fractions and A (resp. Op) its ring of (resp. integral) adeles.

The coeflicient field E is as in §2.0.1. We assume that ¢ has a square root in E which will
be fixed: this corresponds to the choice of E(%) used in the geometric Satake equivalence
(see §2.4).

Let D ¢ X be a k-finite closed subscheme and write X := X - D for its open complement.

Let G - X be a smooth affine group scheme with connected geometric fibers, equipped
with an étale metaplectic cover p defined over X.

4.1. The global A-gerbe.

4.1.1. Let Bung,p denote the stack whose S-points, for any affine k-scheme S, consist of
pairs (P, ¢) where P is a G-torsor over S x X and ¢ is a rigidification of P along S x D.
For each nonempty finite set I, let HecaD denote the stack whose S-points consist of an

S-point 2! of X!, pairs (Po,d0), (P1,¢1) of G-torsors over S x X rigidified along D, and an
isomorphism of them off the union of graphs I' ;1 ¢ S x X.
We refer to such an isomorphisms as a “modification” at 2! and denote it by:

(Po,60)  (P1,61)-

4.1.2. If I is equipped with an ordered partition into nonempty ﬁnite sets [ 2 Iy u---uly, we

write Hech’ =1 for the stack whose S- -points consist of an S-point z! of X! and modifications:

(Po,00) ™ (P1,n) ™~ "~ (P, ), (4.1)
where each 2's denotes the corresponding S-point of Xle (for 1 <a<k).

Restricting the data (4.1) to the formal disk D, defines a morphism from Hec I’“ to
the local iterated Hecke stack Hech’ ol of §2.1. For each 0 < a < k, remembering (Pa7 ®a)
defines a morphism p, : HecI“L')’I’“ - Bung p.

Finally, an S-point of the moduli stack of iterated Shtukas Shth’ JF consists of an S-point

(4.1) of Heclé b’ 1% together with an isomorphism:

(P, ¢r) = " (Po, ¢o) := (Frs x idx )" (Po, ¢o)- (4.2)
Some of the relevant morphisms are recorded in the diagram below, where the square is

Cartesian by definition:

Iy, p
Shtg ;™ —""— Bung,p

l l(id,FrB"nGYD)

(Po;Pk)
Hec IéD I P2 Bung p x Bung p

lres (4.3)

St PR 18
HecG

)(’(I
4.1.3. We shall functorially assign an étale A-gerbe ¢p over Bung p to p.
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Construction. The projection map p : Bung p x X - Bung p, being proper and smooth of
relative dimension one, defines a morphism of complexes p,(A(1)[4]) — A[2]. Its global
section over Bung p yields the “transgression” map:

[X]:T'(Bung,p x X,A(1)[4]) - I'(Bung,p, A[2]).

Let us view the universal G-torsor as a morphism of X-stacks P : Bung p x X - Bx(G)
whose base change Pp along D c X is rigidified.
Consider the commutative diagram below:

[e(BpG,A[2]) — Te(BxG,A(1)[4]) —— Te(Bx G, A(1)[4])

Jr I

I'(Bung,p x D,A[2]) — I'(Bung,p x X, A(1)[4]) (4.4)

IS

F(BUHG7D, A[?D

where I'. denotes the complex of rigidified sections, and the top row is the triangle induced
from the Cousin triangles associated to D - X and Bp(G) - Bx(G).

The rigidification of Pp induces a trivialization of the restriction of [X]-P* in (4.4) to
I'e(Bp(G),A[2]). Hence [X]-P* factors through a morphism:

Fe(B)ZG7A(1)[4]) - F(BUHG’D,A[2]). (45)
The desired functor p — %, is obtained from (4.5) upon taking connective truncations
and passing to the underlying oco-groupoids. 0

Remark 4.1.4. If D = @, then the rigidification of u along e : X - By (G) is not needed for
the construction of 4p.

Remark 4.1.5. Suppose that G is split reductive.

Inspecting the top row in (4.4) and using the computation of étale cohomology of B(G) in
degrees < 3 (see [Zha22, §5.1]), we see that u may not extend across D, and when p extends
across some point z € D, the choice of possible extensions is not unique.

In particular, the étale metaplectic cover u generally contains more data than its restric-
tion to the generic point 7 € X.

4.1.6. Denote by Kp the kernel of the projection G(Opr) - G(Op). The gluing maps yield
an inclusion of groupoids:

G(F)\G(Ap)/KD c BunGVD(k), (46)
whose essential image consists of pairs (P, ¢) where P is generically trivial. (This uses the
vanishing of H!(&,,G) for a closed point z € X, which follows from Lang’s isogeny.)

The additional pieces of Bung p(k) are labeled by the Shafarevich set:
II'(F,G) = Ker(H'(F,G) » [ H'(F., G)).
zeX

Namely, restriction of a G-torsor to the generic point defines a surjective map of pointed
groupoids Bung p (k) — III'(F,G) and (4.6) concides with its kernel.

4.1.7. Recall that p defines a central extension Gp of G(Ar) by A, equipped with canonical
splittings over G(F) and Kp (see §1.5.4 and §2.2.9).

On the other hand, Tr(Fr | %) (k) is a set-theoretic A-torsor Bung p over Bung p(k).
Its restriction along (4.6) is identified with the set-theoretic A-torsor G(F)\Gp/Kp.
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To explain this identification, we note that for each closed point x € X with residue field
k1 o k, the gluing map G(F,) - Bung p(k) arises as the k-points of a map:

res(L(G),) —» Bung p, (4.7)

where res(L(G),) is the Weil restriction of L(G), along k; > k. Indeed, an S-point of
res(L(G),) is equivalent to a section of G over the punctured formal disk around Sxz c SxX
(because the map (S x X)x, - S x X is étale.) This section may be used to glue the trivial
bundles on (S x X) — (S x z) and the formal disk around S x z using the Beauville-Laszlo
Theorem, defining (4.7).

Comparing the constructions of §2.2.2 and §4.1.3, we see that ¢p pulls back to Nm(%,.)
along (4.7), using the notations of Remark 2.2.10. The same remark implies that Bung,p (k)
pulls back to G, along the gluing map G(F,) - Bung p(k). If z € X, this identification is
compatible with the sections over G(&,), and if x € D, it is compatible with the sections
over the first congruence subgroup K, := ker(G(&,) - G(ky)).

To see that Bung p(k) pulls back to G(F)\Gg/Kp along (4.6), we perform the same
construction for a finite collection of closed points {z;} (i € I), compare the sections of
[T, G., over the subgroup G(X - Ujer #) © [Tieg G(F,), and pass to the colimit as in the
definition of Gp [Zha22, §2.2].

4.1.8. Let I be a nonempty finite set equipped with an ordered partition into nonempty
finite subsets I~ I; u---u 1.
Recall that  defines an étale A-gerbe ¥' over Hecl,. We may form its pullback &' 1k :=

m*(%") along the composition map m : ﬁgégl’f - Hecg (see §2.1.5). Its further pullback
T over ﬁEEIC}’DI"
L.

along the restriction map in (4.3) defines an A-gerbe gél’""

Let us construct an isomorphism of A-gerbes over I-’fe?:IéD ’
Py (%b) @ (%) 2 G (48)

Construction. In view of the isomorphism (2.14), it suffices to construct (4.8) in the special
case k = 1, as the general case will be a product of the isomorphisms associated to each I,
(for 1<a<k).

I
Consider now an S-point of Hec{;,D given by the modification datum (Pg, ¢o) ~ (P1,¢1).

Let i: Ty c Sx X and ¢ : Iy ¢ D,r denote the closed immersions. The construction of
§2.2.2 involves a morphism of complexes:

D(L,r, ' A(L)[4]) > T(S, A[2]). (4.9)

The restriction of pj (%) ® p (% )® ! to S is defined by the image of the section Pg(u) -
Pi(w) under (4.9), where each Py, P; is viewed as a morphism S x X — B(G). It defines a
section of i'A(1)[4] using the isomorphism Py = Py off T',r.

Under the identification #*A(1)[4] = 7*A(1)[4], this section is also defined by the restric-
tions of Py, P to D, and their identification over ]03301. The image of this section under
(4.9) is precisely the restriction of ¥ to S. O

4.1.9. Let I 21, u---ul be as above.
We shall trivialize the restriction of the A-gerbe @'1* to Shtg:]s’lk.

Construction. Indeed, the isomorphism (4.8) exhibits this restriction as the pullback of % ®
Friune o (%p)®~! along the morphism py : Shtg:]g "  Bung p, but there is an isomorphism
Friung p (9D) & 9p supplied by (1.15). O
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4.1.10. In particular, direct image with compact support along the projection ShtIé:]S’I’“ -

X! defines a functor of oo-categories:
Shvgn, -y (Hee ™) - Ind(Shv(X")), .F = Lo(Shtg "™, ). (4.10)

Here, the functor of compactly supported cohomology of a constructible E-sheaf is well-
defined because Shtlé"f)"l’“ is a union of quasi-compact open substacks which are ind-algebraic
stacks of ind-finite type [Lafl8, Lemme 12.19].

4.1.11. For a nonempty finite set I, consider the unit e;(E) of the Satake category defined
using the trivialization of ¢! along the unit section of Hecl, (see §2.3).

Recall also the E-vector space Func(ﬁﬁﬁgp,A c EX) of genuine functions of compact
support on %G,D.

We shall construct a canonical isomorphism of ind-constructible sheaves over X1

I'.(Shtg p,er(E)) = Fun,(Bung,p, A c EX) ® E. (4.11)

Construction. The base change of ShtIG)D along the unit section X! - HecIG is identified
with the following fiber product:

(Bung p )™ x X — Bung,p

l J/(id’FrB“nG,D )

Bung p x X! RN Bung p x Bung p

We shall obtain (4.11) by playing with two distinct trivializations of the restriction of ¢! to
(Bung p ) x X, coming from §4.1.9 respectively the unit section of Hec{;.

To wit, the image of e;(E) under (4.10) is calculated as follows: we start with the constant
sheaf E over Bung p « X! view it as twisted by the trivial A-gerbe A*(%pr¥E), pull it back
to (Bung p)™ x X! and view it as twisted by the equivalent A-gerbe (id, Freunc p) (%D
421) but trivialized by (1.15), and finally take its l-direct image towards X!

The fact that this procedure yields Func(mG,DA cE*)®E is observed in §1.4.10. O

4.2. A lemma for G,,.

4.2.1. We assume D # @ in this subsection.

Let coD denote the formal completion of X along D. Write n = Spec(F) for the generic
point of X and choose an algebraic closure F ¢ F, with 7 := Spec(F).

An S-point of the stack Bung ..p consists of a G-torsor over S x X equipped with a
trivialization over the formal disk around S x D c S x X, or equivalently a G-torsor over
SxX equipped with a trivialization over the punctured formal disk around Sx D c S x X.
In particular, it is well-defined even when G is only a smooth affine group scheme over X.

4.2.2. The Artin reciprocity map is an isomorphism of topological abelian groups:
Art s 7 (X, 7)? = Bung,, e (k)P0 (4.12)

where the target denotes the profinite completion of Bung,, cp(k). It is normalized so that
the geometric Frobenius element ¢, € Gal(k,/k,), for each closed point z € X with residue
field k,, maps to &(z). (Note that Bung,, cp is a scheme when D # @.)

On the other hand, we have the Abel-Jacobi morphism:

AJ:X > Bung,, wp, = O(x),

where O(z) is equipped with its canonical trivialization over coD, as x ¢ D.
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4.2.3. Recall the notion of the trace of Frobenius of an A-gerbe from §1.4.
The following lemma shows that the Abel-Jacobi morphism geometrizes Artin reciprocity
on the level of “character A-gerbes”.

Lemma 4.2.4. The following diagram is canonically commutative:
Mapsy, (Bung,, .n, B?(A)) AL, Maps(X,B2(A))
lTr(Fr\—)(k) l(u) (4.13)
Mapsz (Bung,, wp(k), B(A)) 2% CExt(m (X, 7),A)

(Since A is finite, every multiplicative A-torsor over Bung,, «p(k) descends along its profi-
nite completion, so Art* is well-defined.)

Proof. We divide the proof into two claims.

Claim 1: (4.13) is commutative over the neutral component.

To prove this assertion, it suffices to consider the loop spaces of (4.13) and show that the
resulting diagram is commutative.

Namely, given a Z-linear morphism Bung,, .op = B(A), or equivalently a commutative
multiplicative A-torsor ¢ over Bung,, .p, we need to compare the character wl():’(,ﬁ) - A
associated to AJ*(¢) with the pullback of Tr(Fr|¢)(k) along (4.12).

Their equality is a familiar fact in geometric class field theory and follows immediately
from the Chebotarev density theorem.

Claim 2: any Z-linear morphism Bung,, cp — B*(A) is (non-canonically) trivial over a
finite extension of k.

Indeed, the commutativity of (4.13) can be verified étale locally over Spec(k), so it will
follow from combining the two claims.

To prove Claim 2, it suffices to establish the vanishing:

Ext’(Bung,, p,A) =0, (4.14)

where Ext denotes the internal Ext-group for étale sheaves over Spec(k).

Replacing k by a finite extension if necessary, the reduced subscheme of D becomes a finite
nonempty collection of k-points 2! of X. We choose an element i € I and fit Bung,, .p into
a system of three short exact sequences:

HiEI Ker(L+ (Gm)z‘ - Gm)

I

Bung,, D Pic®

! !

M;si, Gm — Bung,, ;1 — Pic

I

Z

Here, Pic 2 Bung_, ., is the Picard scheme of X and Pic” is its neutral component.

It thus suffices to prove that MQ(M,A) =0, for M a pro-unipotent group scheme, G,,,
an abelian variety, and Z.

The pro-unipotent case and the case M = Z are clear. For M = G,, or an abelian variety,
we may assume that A = u,,, where n is invertible in k. Morphisms M — p,,[2] of complexes
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are equivalent to morphisms Mp,] - G,,[1], where M,; ¢ M is the subgroup scheme of n-
torsion elements. However, Ml(M[n],Gm) = 0 because M, is finite (locally) free ([GRR72,
VIII, Proposition 3.3.1]). O

4.2.5. Recall that for a sheaf of abelian groups M over Spec(k), the groupoid of Ee,-monoidal
morphisms M — B2(A) fits into the split fiber sequence (1.28).
For M = Bung,, D, the splitting supplies us with a retract:

Mapsg_ (Bung,, «p, B*(A)) - Maps; (Bung,, cn, B*(A)). (4.15)

Observe that the functors denoted by AJ* and Tr(Fr | =) (k) in (4.13) are naturally defined
on Mapsg_ (Bung,, «p,B?(A)), but they both factor through the retract (4.15). Indeed,
they both depend only on the underlying E;-monoidal structure.

Combining this observation, the compatibility in §4.1.7, and Lemma 4.2.4, we find two
commutative squares:

Mapsg_ (By G, BEA(1)) ™8 Mapss_ (Bung,, wp, B%(A)) 225 Maps(X, B*(A))

[ e |am

Maps; (F*\A%/Kwp,B(A)) = Mapsy(Bung,, .n(k), B(A)) Artg CExt(m(}o(,ﬁ),A)
(4.16)

4.2.6. For the moment, let us assume that char(k) # 2 and A = {1} c EX. We shall use
diagram (4.16) to relate Weissman’s meta-Galois group (see [Weil8, §4]) with the {+1}-gerbe
of theta characteristics.

Consider the étale metaplectic cover u: Bx(G,,) - B% ({£1}®?) defined by the cocycle:

A®A-Z[2, (1,1) -1, (4.17)

where A 2 Z is the cocharacter lattice of G,, (see [Zha22, §4.4]).
Its induced topological cover of Ay is the central extension defined by the cocycle:

AF @ A} - {£1}, (a,b)~ [] Hilbs(a,b),
zeX
where Hilb, : F, ® F, - {£1} denotes the quadratic Hilbert symbol at x € X, equipped with
canonical splittings over F* and Oy.
By construction, the image of p under the lower circuit of (4.16) is the meta-Galois group
of X:
1 {1} > 7 (X, 7) » m(X,7) > 1. (4.18)

Corollary 4.2.7. If char(k) # 2, then (4.18) is canonically identified with the central ex-
tension associated to the {+1}-gerbe w)lu(/2 under (1.7).

Proof. Let us trace the image of p under the upper circuit of (4.16).
Indeed, p induces the A-gerbe 4p over Bung,, «p and it suffices to make the identification

AT (%) = w;{/z. This isomorphism is supplied by Lemma 3.1.6 for A =1 € Z. O

Remark 4.2.8. It follows from Corollary 4.2.7 that the meta-Galois group (4.18) for func-
tion fields (global, local, and local integral) is non-canonically split, and is functorial with
respect to finite separable extensions.

These facts are established by Weissman by different means, see [Weil8, §4.2, 4.4].
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The stipulation that, for F of equal characteristic 2, the meta-Galois group is the split
extension [Weil8, §4.1] appears to align with the classical fact that a canonical theta char-
acteristic exists over X when char(k) = 2.

4.2.9. Let T be a split torus and T — T be the isogeny defined in §3.1.1.

Since the restriction of p to By (T!) acquires an Ee-monoidal structure [Zha22, §4.6],
the restriction of ¥p to Bunt: p has the structure of an E.-monoidal morphism Bunt: p -
B2(A). In particular, its trace of Frobenius defines a Z-linear morphism:

Tr(Fr | %p) : Bunm cop(k) - B(E™). (4.19)

The Artin reciprocity map (4.12) induces an equivalence of groupoids between Z-linear
morphisms Bunty op (k) = B(E*) and Z-linear morphisms Weil(X,7)*> - B(H(E)), where
H is identified with the E-torus dual to T!. The latter groupoid admits a functor to central
extensions of Weil(X,7) by H(E).

Using an argument similar to the proof of Corollary 4.2.7, we identify the image of (4.19)
under this functor with (the Weil form of) the L-group “Hy ,.

Thus we obtain a canonical bijection:
R sections of
- LHKﬁ - Weil(X,7) [’
as both sides correspond to null-homotopies of (4.19).

Taking colimit of the bijection (4.20) over increasing D, we obtain a bijection between

{genuine characters} (4.20)

BunTﬁpOD - B

genuine characters TH(F)\T! - E* and sections of “H,, 5 — Weil(n, 7). We thus recover a
part of the Langlands correspondence for covering groups of split tori ([Weil8, Part 3]).

4.3. Cusp forms.

4.3.1. Suppose that the restriction of G to X is reductive and its restriction to Spec(0,,)
for each closed point x € D is parahoric.

4.3.2. Let Z denote the radical of Gy, viewed as an affine group scheme (in fact, a torus)
over X. The symmetric form b associated to p restricts to a bilinear form Az ® A - A(-1),
and we set A“Z c Az to be its kernel. It corresponds to an isogeny of tori Z! — Z. The group
scheme Z! plays the role of the “center” in the metaplectic context.

The stack Bung: .op is defined as in §4.2.1.

Remark 4.3.3. The E-torus dual to Z! is canonically identified with the maximal abelian
quotient H* of H.

Indeed, a character of H® is by definition a section of A! which pairs to zero with
ord(Q(a)) ¢ for each o € A. This is precisely a section of AL = Afn Ay,

4.3.4. Recall that the restriction uzs of u to B(Z#) acquires a canonical Ee-monoidal struc-
ture ([Zha22, §4.6]).

Furthermore, p is B(Z!)-equivariant against pzs with respect to the action of B(Z!') on
B(G) ([Zha22, §5.4]).

These observations imply that Eﬁzu,mp has a commutative multiplicative structure and
acts naturally on mG,D.

4.3.5. Let us now choose a subgroup = c ]’3-?1?12“7]3 which maps isomorphically onto its image
in Bung p(k) and such that Z\Bung p(k) is finite. (One may think of = as the kernel of a
genuine character on Bung p with finite image.)
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Then = is the k-points of a discrete subscheme to be denoted with the same letter:
EcTr(Fr|%up),
which maps isomorphically onto its image in (Bungzy p)*".

4.3.6. Consider the E-vector space of compactly supported functions f : E\BT&G,D - E
such that f(z-a) = f(x)-a for each x € E\Bung p and a € A:

Fun,(E\Bung p, A c E). (4.21)

We shall call such functions genuine automorphic forms.

They define genuine automorphic forms in the sense of §1.5.5 as follows: using the compat-
ibility of §4.1.7, we may restrict along (4.6) to obtain compactly supported genuine functions
over G(F)=2\CGr/Kp.

4.3.7. Suppose that P, is a parabolic subgroup of the restriction G, of G to the generic
point i ¢ X. Then P, extends uniquely to a parabolic subgroup P of Gy. Let P - M denote
its Levi quotient.

The restriction of y to By (P) canonically descends to a rigidified section of B*A(1) over
B (M). In particular, the canonical maps G <~ P — M induce maps of stacks:

Bunp ..p

B / \ (4.22)

BunGwD BuanD

The E-vectors space of genuine cusp forms:
Fune,s, (Z\Bung p, A c EX) (4.23)

is defined to be the subspace of (4.21) consisting of elements which vanish under the integral
transform along (4.22) for all proper parabolic subgroups P, c G,. (The definition of the
integral transform requires fixing a Haar measure on the appropriate unipotent groups, but
its vanishing is independent of this choice.)

Remark 4.3.8. Over the subspace of (4.21) of functions supported on G(F)Z\G(Ar)/Kp,
the cuspidality condition coincides with the one from [BJ79, §3.3].

To check their agreement, one needs the vanishing of IITI* (F,Np) for the unipotent radical
Np c P, which follows from [ABD*66, Exposé XX VI, Corollaire 2.2].

4.3.9. Recall the definition of Hecke operators in §2.4.8: for each closed point z € X and
V e Rep™®(“H,. ), we have associated an element:

hy. . € Fun.(G(0,)\G,/G(O,),A c EX).
It acts on the vector space (4.23) via convolution (f,hv ;) = f * hy , along the multipli-
cation map ép X éz - GF

4.3.10. We are now ready to state the Langlands parametrization of genuine cusp forms on
Bung p/E.

The coefficient field E is taken to be Qy. We recall that that data (G,u) over X define
an L-group as a short exact sequence (see (1.34)):

1 - H;(Qp) - "Hg - m(X,7) - 1.
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Theorem 4.3.11. Assume D # @. There is a canonical decomposition:

Fune,sp(E\Bung,p, A ¢ Q) = @ Hp [, (4.24)
[0]

where [o] ranges over Hy;(Qy)-conjugacy classes of sections of LHX 9= 771(}0(,17),
For each x € X and V Repalg(Lng), the summand Hp [,] is an eigenspace for hy

with eigenvalue Tr([ox]- ¢z | V), where @, € T1(x,%) denotes the geometric Frobenius and
[0:] denotes the Hy;(Q,)-conjugacy class of sections of “H,. 9 — m1(x, ) induced from [o].

4.4. Excursion.

4.4.1. In this subsection, we prove Theorem 4.3.11. The notations are as in §4.3.
In the course of the proof, we will work with a sufficiently large subfield E c Q, finite over
Q¢ and make our choice ql/2 e EX.

4.4.2. For a nonempty finite set I equipped with an ordered partition I = I; u--- U1, we
specialize the commutative diagram (4.3) to G = Z! and restrict along the unit section of
the Hecke stacks.

We record this commutative diagram of stacks, along with the A-gerbes defined by pz;
on some of them:

¥ D
(BUHZLD)Fr X XI —0> Bunsz

l l(id,FrBunZu’D)

&1 (Po.pr) _
Bungz; p x Xt == Bungz: p x Bunzsp — 9z p gg S

lres (425)
e (9y) — B (Li(Z))

5(1
The left column consists of strictly commutative Picard stacks over )O(I, and the right
column consists of those over k. Morphisms in (4.25) are compatible with these structures,
and the A-gerbes admit E-monoidal structures.

The action of Z! on G induces an action of each term in (4.25) on the corresponding term
in (4.3), the morphisms among them being equivariant.

4.4.3. Recall that e*(¥,,) is canonically trivialized as an A-gerbe over By, (L} (Z)) equipped
with an E.-monoidal structure.

Iyyee T

Lemma 4.4.4. The forgetful functor out of By (LL(Z}))-equivariant objects in S’;‘GG_%I is

an equivalence of categories:
— I —
(Satgy i )Pt (1) & Gagia il (4.26)

Proof. The forgetful functor is fully faithful, as By, (L} (Z')) may be written as an inverse
limit of connected smooth algebraic stacks.

To show that it is essentially surjective, it suffices to prove that for each % « Satlé’%;{l’“,
there is an isomorphism relating its pullback under the action and projection maps: ’

act*(F) 2 pr*(F), over By (LL(ZY)) xg Hecd ™™, (4.27)
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extending the natural one over e x Hech’ ' ’I", the extension being necessarily unique.

By universal local acyclicity, it is enough to show that such an extension exists over the
pairwise disjoint locus of X! ([HS23, Theorem 6.8]), and furthermore over any k-point of the
latter. The pointwise statement is a consequence of Proposition 3.3.7. O

4.4.5. Using Lemma 4.4.4, we see that the pullback of any object .% € Saté’?{lk to Shtll’ ol

along the vertical map in (4.3) acquires a (Bunz p YFr_equivariance structure.
In particular, taking direct image with compact support along the projection _\ShtI“ sle
X! defines a functor:
Satg ;i > Ind(Shv(X")), F > To(E\Shtg ™, 7). (4.28)

(Note that E\ShtIGl”B’ * is an ind-algebraic stack of ind-finite type.)
The isomorphism (4.11) identifies the image of e;(E) under (4.28) (for k = 1) with the
constant sheaf over X! with values in Fun,.(Z\Bung p, A c EX).

4.4.6. Finally, we summarize the arguments of V. Lafforgue [Lafl8] and Xue [Xue20b],
which establish the spectral decomposition (4.24), taking as sole input the Satake functors
Shle (2.32) and the cohomology of Shtukas (4.28).

The notion of Shtukas and the method to construct representations of copies of m; (X7 )
using partial Frobenii originated in Drinfeld’s work on GL4 [Dri87b] [Dri88] [Dri87a].

This summary is only included to give detailed references to the results of [Lafl8] and
[Xue20b]. It contains no originality whatsoever.

Proof of Theorem 4.3.11. For a nonempty finite set I, composing the Satake functor .#!
with (4.28) (for k = 1) and taking the middle cohomology group H° yields a functor:
Rep”®((“Hy »)") » Ind(Shv(X")), W > 4w = HY(E\Shtg p, & (W)). (4.29)
Note that there are forgetful functors:
Ind(Rep(m (X, 7)")) — Ind(Lis(X')) ¢ Ind(Shv(X')),

where Rep (7 (X, 7)') denotes the category of finite-dimensional continuous E-linear repre-
sentations of 71 (X,7)L.

Claim: A w canonically lifts to Ind(Rep(m (X, 7))).

The claim is proved using the action of partial Frobenii on .74 w. To wit, for an ordered
partition I 2 I; u---u I into nonempty finite subsets, we have a commutative diagram:

Fry,

= 11’127 Ik = I, Ik, In
E\Shtd's » E\Sht& '

lI'CS erS

B (L (Z)\(IMicasr Hecls) % By (LL(Z9)\(TTycqes Heel)

| |

(4.30)

where the top horizontal morphism sends the data (4.1), (4.2) to

2 'k Tl
(P1,¢1) ~o (P07¢0) ~ (P17¢1)a

and the middle and lower horizontal morphisms are the partial Frobenii, acting as the Frobe-
nius on the factor corresponding to I; and the identity on the remaining factors.
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We view .11 1k as valued in the category of untwisted perverse sheaves over E\Shtg’g oA
by pulling back along the restriction maps to the local Hecke stack and using the trivialization
of the A-gerbe ¥111k over Shtlé ’]'5’1’“ constructed in §4.1.9. Perversity of the pullback follows
from the smoothness and dimension count in [Lafl8, §2].

The trivialization of ¢! over Sht'[;"* is Fry,-equivariant in the sense that it com-
Tk

)

mutes with the canonical isomorphism Frj (&' 1) = @l
Sl and the commutative diagram (4.30), we obtain a natural isomorphism:

(Fry, )~ 1 (W) = /1T (W), (4.31)

Since the outer square of (4.30) is Cartesian up to universal homeomorphisms, (4.31) induces
an isomorphism:

By the construction of

Fh : (Frll)*%,w = %7\;\7. (432)
By re-ordering the partition of I, we obtain similar isomorphisms Fy,,--,Fr,. One sees as
in [Lafl8, §3-4] that the isomorphisms Fy, -+, Fy, pairwise commute and their composition
equals the canonical identification of J# w with its Frobenius pullback.
Using (4.32), we construct the following endomorphism as in [Lafl8, §12.3.3]:

Sv,s € End(s4 w), forze X and V¢ Repalg(LHw,ﬁ).

Note that V (unlike W) is a representation of the local L-group, so the associated “creation”
and “annihilation” operators, corresponding to the unit and counit of V, are only defined
over the subscheme X! x z{1:2} ¢ XI{1.2}, (Informally, Sy, is the trace of the Frobenius
endomorphism on “a copy of V inserted at x”.)

The fact that Sy, restricts to the action of the Hecke operator hy , over (X —z)lis
proved as in [Lafl8, §6].

Furthermore, the E-sheaf 7 10}, wgv is well defined over X! x x, and (4.32) induces an
endomorphism (F{o})deg(“’) of it. The argument of [Lafl8, §7] gives the following identity
(to be thought of as a Cayley-Hamilton theorem for (F{O})deg(w)):

dim (V)
> 1Sy (Fio) @) =0. (4.33)
=0
The isomorphisms (4.32), together with (4.33), imply the claim by [Xue20b, Proposition
1.3.4, Theorem 4.2.3].
Next, we define the subsheaf of cuspidal cohomology 4 w cusp € 4, w either by [Lafl8,
§12.3.4] or by a generalization of [Xue20b, §7] (which is stated for split reductive groups).
It belongs to Rep(my(X,7)). Thus (4.29) induces a system of functors:

Rep™((“Hy_,)") ~ Rep(m1 (X, D)), W > A w.cusp: (4.34)

indexed by nonempty finite sets I, which are compatible with surjections of such. As noted
in §4.4.5, the object J# 1 cusp associated to the trivial representation 1 is isomorphic to the
(finite-dimensional) E-vector space:

Funcusp(E\B_aYlG,DaA c EX)7 (435)

equipped with the trivial 7r1()0(, 7)L-action.

Using the construction of [Lafl8, §9-10], the system of functors (4.34) equips the E-vector
space (4.35) with the action of a commutative E-algebra % (of “excursion operators”), and
[Laf18, §11] associates to each E-point of Spec(#) an H(E;)-conjugacy class of sections of
LH)ﬂ(ﬁ - (5(777) for some finite extension E c E; in Q.
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Finally, the desired decomposition (4.24) is the decomposition of (4.35) according to its
support in Spec(# ®r Q¢). The action of the Hecke operator hy , on the summand Hp [,
is calculated as in [Lafl8, §11].

Remark 4.4.7. Tt follows from the construction that each conjugacy class [o] appearing in
(4.24) is associated to a section ¢ : I' = “Hr 4 of the finite form of the L-group (see Remark
1.6.16) and a finite extension Q; c E in Qy:

1 -Hz(E) > LHI“’ﬁ I =1

Furthermore, the Zariski closure of o(I") ¢ “Hr 4 is a (possibly disconnected) reductive
group, when LHrﬂg is equipped with the algebraic structure induced from Hj.

4.4.8. The spectral decomposition (4.24) is compatible with inclusions of nonempty k-finite
closed subschemes D c Dy of X, i.e. the following diagram is commutative:

HD,[J] c ]—:\uncusp(E\E{IﬁG,Da Ac @z)

l l (4.36)

Hp, [;] © Fungp(E\Bungp,, A c Q)

where the left vertical arrow is induced from 771()0(1, i) — 7r1()o(, 7), for )0(1 = X-Dy, and the
right vertical arrow is the restriction along BTl—flG,Dl - B—ﬁ—r’lgp.

The generic version of the spectral decomposition (0.3) asserted in Theorem A is a formal
consequence of (4.24) and the compatibility (4.36).

Namely, the existence of parahoric models [BT84], combined with [Zha22, Lemma 2.2.5],
shows that the 2-groupoid of pairs (G, u), where G - Spec(F) is a reductive group and pu
is an étale metaplectic cover of G, is the filtered colimit over nonempty k-finite subschemes
D c X of the 2-groupoid of pairs (G, 1), where Gy — X is a smooth affine group scheme,
reductive over X — D and parahoric along D, and p; is an étale metaplectic cover of the
restriction G1 x-p.

We thus obtain (0.3) as the filtered colimit of (4.24), applied to each (Gy,u1) as above,
over nonempty k-finite subschemes D c X.

Remark 4.4.9. In contrast to the non-metaplectic context, the generic version (0.3) does
not allow us to state its compatibility with Satake isomorphism in a canonical manner.

Namely, for x4 to be “unramified” at a closed point « € X involves the datum of an extension
across x which is generally not unique (Remark 4.1.5). Distinct choices of extensions give
rise to distinct sections of G, - G(F,) over G(&,), and correspondingly distinct splittings
of the L-group “Hp y - Gal(F/F) over the inertia subgroup I, c Gal(F,/F,).
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