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Abstract. We prove the geometric Satake equivalence for étale metaplectic covers of

reductive group schemes and extend the Langlands parametrization of V. Lafforgue to
genuine cusp forms defined on their associated covering groups.
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Introduction

This article is a contibution to the Langlands program for covering groups, as proposed
by Weissman, Gan, and Gao [Wei18] [GG18]. Its goal is to parametrize genuine cusp forms
over a global function field by spectral data, defined in terms of an L-group.

Such a parametrization has been anticipated by V. Lafforgue [Laf18, §14] and Gan–Gao
[GG18, §14, Question (L)]. V. Lafforgue has moreover indicated a path towards it via the
arguments of op.cit., combined with a strong version of the geometric Satake equivalence
for covering groups, which in principle should follow from Finkelberg–Lysenko [FL10], Reich
[Rei12], and Gaitsgory–Lysenko [GL18].

The present article is intended to realize this vision in what we believe is its appropriate
generality. More concretely, the class of covering groups treated in this article includes the
ones defined by Brylinski–Deligne [BD01] using algebraic K-theory, but generally contains
more objects when the reductive group is not simply connected. In this sense, our scope is
larger than the one envisioned by Weissman [Wei18] and Gan–Gao [GG18].

By making this generalization, we also make the problem simpler, essentially because étale
cohomology is better understood than algebraic K-theory. This alternative perspective goes
back to Deligne [Del96] and is rediscovered by Gaitsgory–Lysenko [GL18] under a different
guise. To keep our narrative consistent, we use [Zha22] as our only input concerning covering
groups, although many results proved there have analogues in [GL18].

0.1. Main result.

0.1.1. Let F be a global field of characteristic p ≠ 0. Denote by AF the topological ring of
its adèles.

Let ` ≠ p be a prime and choose an algebraic closure Q` ⊃ Q`. Let A ⊂ Q×
` be a finite

subgroup whose order is indivisible by p.
Our group-theoretic input is a pair (G, µ), where G is a reductive group over F and µ is

a rigidified section of the (higher) étale stack B4A(1) over the classifying stack BG, i.e. a
section equipped with a trivialization along the unit e ∶ Spec(F) → BG.

The datum µ is called an étale metaplectic cover of G in [Zha22]. It categorifies a class in
the reduced étale cohomology group H4

e(BG,A(1)). In the special case where G is simply
connected, the space of étale metaplectic covers is discrete, and our formalism coincides with
the one in [Del96].

0.1.2. From the pair (G, µ), we extract two pieces of “classical” structures. (To construct
them, it is essential to start with µ rather than the cohomology class it represents.)

The first one is a central extension of topological groups:

1→ A→ G̃F → G(AF) → 1, (0.1)

equipped with a canonical splitting over G(F) ⊂ G(AF). The central extension (0.1) gives
us the notion of a genuine automorphic form: a G(F)-invariant locally constant function

f ∶ G̃F → Q` satisfying the equality f(x̃ ⋅ a) = f(x̃) ⋅ a for each x̃ ∈ G̃F and a ∈ A.
The second piece of structure is a short exact sequence of topological groups:

1→ HF̄(Q`) → LHF,ϑ → Gal(F̄/F) → 1, (0.2)
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where HF̄ is a pinned split reductive group over Q`. It is determined by (G, µ) following a
combinatorial recipe, modulo some immaterial choices such as the algebraic closure F̄. With
(0.2), we arrive at the notion of an L-parameter : an HF̄(Q`)-conjugacy class of sections
σ ∶ Gal(F̄/F) → LHF,ϑ of (0.2).

Remark 0.1.3. For classical applications, one often takes A to be the group µ(F) of roots

of unity in F, whose inclusion in Q×
` is written as an injective character ζ ∶ µ(F) → Q×

` .
Given an integer n ≥ 1 invertible in F, any Brylinski–Deligne extension of G induces an

étale metaplectic cover with A = µn (see [Zha22, §2.3]). When µn(F) has cardinality n, the
covering group (0.1) agrees with the one constructed in [BD01, §10], whereas the L-group
(0.2) is identified with the one constructed by Weissman [Wei18].

Another source of étale metaplectic covers arises from morphisms of complexes π1(G) →
A[2] of Gal(F̄/F)-modules, where π1(G) denotes the algebraic fundamental group of G (see
[Zha22, §5.3]). Over a p-adic local field, they induce covering groups of Kaletha [Kal22].

0.1.4. The main result of this article is a parametrization of the cuspidal part of genuine
automorphic forms by L-parameters.

In order to formulate this parametrization, we need an additional piece of information
having to do with the maximal torus Z of the center ZG ⊂ G.

To wit, the covering group of Z(AF) induced from (0.1) is generally not commutative.
However, there is a canonically defined isogeny of tori Z♯ → Z such that the induced covering
group Z̃♯F → Z♯(AF) is commutative and its image in G̃F is central.

We shall fix a lattice (i.e. discrete and cocompact subgroup) Ξ ⊂ Z♯(F)/Z̃♯F which projects
isomorphically onto its image in Z♯(F)/Z♯(AF).

Furthermore, the restriction of (0.1) to P(AF), for each parabolic subgroup P ⊂ G, canon-
ically descends to the Levi quotient M(AF). We can thus define the cuspidal part of com-

pactly supported genuine automorphic forms on G(F)Ξ/G̃F, by imposing the vanishing of
constant terms for all proper parabolic subgroups P ⊂ G.

Our main theorem, in its most classical form, is a decomposition of this Q`-vector space
according to L-parameters.

Theorem A. There is a canonical decomposition:

Funcusp(G(F)Ξ/G̃F,A ⊂ Q×
` ) ≅⊕

[σ]

H[σ], (0.3)

where [σ] ranges over HF̄(Q`)-conjugacy classes of sections of (0.2).

0.1.5. The spectral decomposition (0.3) arises as the limiting case of its integral variant,
Theorem 4.3.11, which contains additional information such as the compatibility with the
Satake isomorphism for covering groups, cf. [McN12].

Taking this compatibility for granted, Theorem A fulfills the “automorphic-to-Galois”
direction of Langlands reciprocity for genuine cusp forms. In the absence of covering groups,
this result is established by Drinfeld for GL2 [Dri87b] [Dri88] [Dri87a], L. Lafforgue for GLn
[Laf02], and V. Lafforgue for all reductive groups [Laf18].

0.2. Outline of the proof.

0.2.1. The proof of Theorem A is an adaptation of [Laf18]. First, we must formulate an
integral version of the problem in order to use the tools of algebraic geometry.

Let X be smooth, proper, geometrically connected curve over a finite field k with generic
point η = Spec(F). Let D ⊂ X be a k-finite closed subscheme and X̊ be its complement.

The notations Q` and A are as in §0.1.1.
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We replace the group-theoretic input by a pair (G, µ), where G → X is a smooth affine

group scheme whose base change to X̊ is reductive and µ is a rigidified section of B4A(1)
over BX̊(G), the classifying stack of the base change of G to X̊.

0.2.2. Denote by BunG,D the moduli stack of G-torsors over X rigidified along D.
The étale metaplectic cover µ defines an A-gerbe GD over BunG,D, via the categorification

of a transgression map on étale cohomology:

[X] ∶ H4
e(BX̊(G),A(1)) → H2(BunG,D,A).

The A-gerbe GD geometrizes the covering group G̃F in the sense that a process akin to taking
the trace of Frobenius yields a set-theoretic A-torsor:

B̃unG,D → BunG,D(k), (0.4)

whose pullback along the adèlic uniformation map G(AF) → BunG,D(k) recovers G̃F.
It is more natural, especially for nonsplit reductive groups, to replace genuine automorphic

forms by A-equivariant functions on B̃unG,D, and the spectral decomposition theorem will
hold for this larger space of functions.

0.2.3. There are two other important geometric objects associated to G: the local Hecke
stack and the moduli stack of Shtukas defined by Drinfeld [Dri87b] and Varshavsky [Var04].

For a nonempty finite set I, these objects are ind-algebraic stacks over X̊I, related by a
morphism defined as restriction to the parametrized formal disks:

res ∶ ShtI
G,D → HecI

G.

The rigidified section µ also defines an étale A-gerbe G I over HecI
G, which geometrizes the

local covering groups G̃x → G(Fx) together with their canonical splittings over the maximal

compact subgroups G(Ox), for each x ∈ X̊.

The key observation is that G I is canonically trivialized over ShtI
G,D. In particular, G I-

twisted `-adic sheaves on HecI
G pull back to untwisted sheaves over ShtI

G,D, so their compactly

supported cohomology are usual `-adic sheaves over X̊I.
Moreoever, G I is canonically trivialized over the unit section e of HecI

G, so e!(Q`) may

be viewed as a G I-twisted sheaf over HecI
G. Applying the above process to e!(Q`), we find

the constant sheaf over X̊I with coefficients in compactly supported A-equivariant functions
on B̃unG,D. This is how cohomology of Shtukas encodes genuine automorphic forms.

Remark 0.2.4. In the main body of the text, these constructions will be applied to the
quotient stack Ξ/ShtI

G,D, where Ξ ⊂ B̃unZ♯,∞D is a lattice analogous to the one in §0.1.4, but
let us ignore this difference for now.

0.2.5. Turning to the spectral side, we extract from the pair (G, µ) a locally constant étale

sheaf over X̊ of pinned split reductive groups H over Q`, together with an E∞-monoidal
morphism:

νϑ ∶ ẐH → B2
X̊
(A), (0.5)

where ẐH denotes the sheaf of characters of the center ZH ⊂ H.
The subscript ϑ in (0.5) refers to a twist by the {±1}-gerbe of theta characteristics over X̊

(relevant only when the characteristic p ≠ 2). The somewhat curious Corollary 4.2.7 shows
that it is essentially equivalent to Weissman’s meta-Galois group.

The pair (H, νϑ) is our version of the metaplectic dual data. It is closely related to the
same-named notion in [GL18], although we use the construction in [Zha22, §6] which is valid
in the number field situation as well.
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In the absence of an étale metaplectic cover, H would be the sheaf-theoretic version of
Langlands’ L-group associated to G. The object νϑ is particular to the metaplectic context,
and can be concretely described as an extension of stacks of Picard groupoids over X̊:

BX̊(A) → ̃̂
ZH → ẐH. (0.6)

0.2.6. Here, we encounter an interesting phenomenon which is only visible on the geometric

level:
̃̂
ZH is generally not strictly commutative. Equivalently put, (0.5) generally does not

come from a morphism of complexes ẐH → A[2] of sheaves of abelian groups.

However, we may modify the commutativity constraint on
̃̂
ZH in a canonical way to make

it strictly commutative. This gives us a morphism of complexes:

0νϑ ∶ ẐH → A[2]. (0.7)

Inducing along A ⊂ Q×
` , (0.7) defines an étale ZH(Q`)-gerbe over X̊.

The L-group is a way to repackage the data (H, 0νϑ). Namely, if D ≠ ∅, after choosing a
geometric point η̄ = Spec(F̄) → η and a rigidification of 0νϑ along η̄, we obtain a short exact
sequence of topological groups:

1→ Hη̄(Q`) → LHX̊,ϑ → π1(X̊, η̄) → 1. (0.8)

The generic form of the L-group (0.2) occurs as its pullback to π1(η, η̄), with notational
change Hη̄ = HF̄.

0.2.7. As in [Laf18], the L-group enters through the geometric Satake equivalence.
In our context, this equivalence will make (H, νϑ) appear naturally. Indeed, we consider

the stack of (finite-rank) H-representations on lisse Q`-sheaves over X̊. This is an étale stack

of tensor categories equipped with a grading by ẐH.
The E∞-monoidal morphism νϑ allows us to twist this étale stack, whose global section

over X̊ is a new tensor category RepH,νϑ
.

On the other hand, we consider the category SatG,G of G -twisted constructible complexes

of Q`-sheaves on the local Hecke stack HecG, which are universally locally acyclic and have
pullbacks to the affine Grassmannian being perverse relative to X̊. (For the moment, we

assume I = {1} and omit it from the notations HecI
G and G I.)

The category SatG,G admits a natural tensor structure, coming from the fusion product.
We modify the commutativity constraint in the usual manner (having to do with 2ρ̌) to ob-
tain a new tensor category +SatG,G . This modification ensures that the normalized constant

term functor, defined using a half-integral Tate twist Q`( 1
2
), is symmetric monoidal.

Theorem B. For a fixed Q`( 1
2
), there is a canonical equivalence of tensor categories:

+SatG,G ≅ RepH,νϑ
. (0.9)

0.2.8. Theorem B is the special case of Theorem 2.4.4 for I = {1}, although the additional
challenges presented by general I are mostly notational.

Assuming the general form of equivalence (0.9), we obtain a system of (non-symmetric
monoidal) functors parametrized by nonempty finite sets I:

Repalg((LHX̊,ϑ)I) RepHI,0νI
ϑ

RepHI,νI
ϑ

+SatG,G I Ind(Lis(X̊I)).

≅

monoidal

≅ Shtuka

(0.10)
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Here, the source is the category of continuous finite-dimensional representations of the
product (LHX̊,ϑ)I whose restrictions to Hη̄(Q`)I lift to algebraic representations of HI

η̄. The

vertical functor is the monoidal equivalence induced from the identification 0νϑ ≅ νϑ as E1-
monoidal morphisms. The next two functors are the geometric Satake equivalence (0.9),
respectively the cohomology of Shtukas discussed in §0.2.3.

There are furthermore iterated variants of the functors (0.10), attached to ordered parti-
tions of I. They are needed to equip the target of (0.10) with equivariance structures with

respect to the partial Frobenii on X̊I.
Given this input, we are in a position to apply the machinery of [Laf18, §5-7] and [Xue20b]:

it proves that the image of (0.10) lifts to Ind(Rep(π1(X̊, η̄)I)). The spectral decomposition
of genuine cusp forms then follows verbatim from [Laf18, §9-11].

0.2.9. Finally, we mention one place where the proof of Theorem B differs from its non-
metapletic counterpart. The assertion is of étale local nature on X̊, so we may assume that
G splits and replace X̊ by any smooth curve X, not necessarily connected.

One unique feature of the metaplectic context is the absence of a natural fiber functor
out of +SatG,G , even at a geometric point of X. This creates difficulties in applying the
Tannakian formalism.

Let us work with a fixed Borel subgroup and a maximal torus T ⊂ B ⊂ G. The étale
metaplectic cover µ induces one for T and defines an A-gerbe GT over the Hecke stack HecT.
We thus have a constant term functor at our disposal:

CTB(ρ̌)[2ρ̌] ∶ +SatG,G → SatT,GT
. (0.11)

Let us assume that the case for tori is already proved, so SatT,GT
is identified with the

tensor category RepTH,νϑ
of νϑ-twisted category of representations of the metaplectic dual

torus TH on lisse Q`-sheaves. (The νϑ-twist invokes a natural surjection of the character

sheaf of TH onto ẐH.)
The tensor category RepTH,νϑ

does not admit a natural fiber functor to Lis(X), unless
we undo the νϑ-twist. Therefore, we wish to twist both the source and target of (0.11) by
ν⊗−1
ϑ and apply a relative Tannakian formalism to the resulting functor:

(+SatG,G )ν⊗−1
ϑ
→ (SatT,GT

)ν⊗−1
ϑ

≅ RepTH
→ Lis(X).

However, in order to twist +SatG,G , we must construct a ẐH-grading on it compatible
with the tensor structure. In the non-metaplectic context, this would be the π1(G)-grading

coming from the connected components of HecG. The ẐH-grading is in general finer. Its
existence on the level of abelian categories poses no difficulty, but its compatibility with the
tensor structure is not at all obvious.

We shall reduce the problem to studying the weights occurring in (0.11), which have to
do with the behavior of the A-gerbe G on Mirkovic–Vilonen cycles. The desired statement
follows from a description of how G interacts with the action of the adjoint torus, which
eventually reduces to a calculation of Deligne [Del96, §4] (as reformulated in [Zha22, §5.5].)

Our proof of Theorem B owes much intellectual debt to pioneering works on the subject
by Finkelberg–Lysenko [FL10] and Reich [Rei12], although it does not rely on their results.1

We have also benefitted from the notion of relative perversity, recently developed by Hansen
and Scholze [HS23], which streamlined many arguments.

1The aforementioned challenge was already present in [FL10], but went unnoticed because of a mistake
in [FL10, §4.2], where the “fiber functor” used in the Tannakian formalism was not symmetric monoidal (as

pointed out in [Rei12, V.1]). The issue was not resolved in [Rei12], because the proof of its Lemma IV.7.8

mistakenly asserted that the ẐH-grading on +SatG,G could be obtained from the π1(G)-grading.
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1. Preparation

This section collects some preliminary notions which will be used in the remainder of the
article. We also use it as an opportunity to introduce notations.

The first topic is the formalism of `-adic sheaves twisted by a gerbe banded by the group
of units of the coefficient field. In particular, we explain in §1.4 how they encode genuine
functions. The second topic is the notion of étale metaplectic covers and their L-groups,
which we recall in §1.5-1.6.

1.1. A-gerbes.

1.1.1. We work over a base scheme S.

1.1.2. Suppose that G is an étale sheaf of groups over S. We denote by BS(G) the classifying
stack of G sheafified in the étale topology. The term G-torsor over an S-scheme X refers to
a section of BS(G) over X.

If the base scheme S is clear from the context, we shall suppress it from the notation.

1.1.3. When G is furthermore abelian, we write Bn(G) for the n-fold delooping as an étale
stack of ∞-groupoids for any integer n ≥ 1, see [Zha22, §1].

For an S-scheme X, the ∞-groupoid of sections Maps(X,Bn(G)) has homotopy groups
described by the étale cohomology groups of X valued in G:

πiMaps(X,Bn(G)) ≅ Hn−i(X,G).
The term G-gerbe over an S-scheme X refers to a section of B2(G) over X.
The 2-groupoid of G-gerbes over X carries a natural E∞-monoidal structure, and we use

⊗ to denote the product operation.

Remark 1.1.4. This notion of G-gerbe is equivalent to the more classical notion of a “gerbe
banded by G”, which is a stack over X equipped with additional structures.

The dictionary goes as follows: given a section of B2(G) over X, we let G be the étale
stack over X whose sections over an X-scheme X1 are rigidifications of the composition:
X1 → X→ B2(G), i.e. factorizations of it through the canonical section e ∶ S→ B2(G).

In particular, the groupoid G (X1) is equipped with an action of the monoidal groupoid
of G-torsors on X1: each G-torsor t defines an automorphism of the canonical section X1 →
S
eÐ→ B2(G) and carries g ∈ G (X1) to the composition g ⋅ t ∈ G (X1).

1.1.5. Suppose that X is a connected S-scheme equipped with a geometric point x̄. Let
π1(X, x̄) denote the profinite fundamental group.

Let Z be a locally constant étale sheaf of finite abelian groups over X. Its geometric fiber
Zx̄ is thus equipped with a continuous action of π1(X, x̄).

Denote by Z 2(π1(X, x̄),Zx̄) the groupoid of short exact sequences of profinite groups:

1→ Zx̄ → Π→ π1(X, x̄) → 1,

such that the conjugation action of Π on Zx̄ factors through the natural π1(X, x̄)-action.
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1.1.6. To interpret Z-gerbes in terms of π1(X, x̄), the following condition on X is needed:

For any finite abelian group A,
any class of H2(X,A) vanishes over a finite étale cover of X.

(1.1)

Examples of such X include spectra of fields (automatic) and Henselian local rings ([Sta18,
09ZI]) as well as all connected affine Fp-schemes ([Ach17, Theorem 1.1.1]), although we are
only interested in the case where X is an affine curve over a finite field, where (1.1) can be
verified directly.

An example of an S-scheme failing condition (1.1) is the projective line.

1.1.7. Let X, x̄, Z be as in §1.1.5. Denote by Mapsx̄(X,B2(Z)) the (1-)groupoid of A-gerbes
over X rigidified along x̄.

If X satisfies condition (1.1), the usual comparison between étale and Galois cohomology
lifts to a canonical equivalence of Picard groupoids:

Mapsx̄(X,B2(Z)) ≅ Z 2(π1(X, x̄),Zx̄). (1.2)

Following [Wei18, §19], we refer to the image of a rigidified A-gerbe (G , ḡ) under (1.2) as
the “fundamental group” of (G , ḡ) and denote it as follows:

1→ Zx̄ → π1(G , ḡ) → π1(X, x̄) → 1. (1.3)

Here, the rigidification ḡ of G along x̄ may equivalently be viewed as a geometric point of
G lifting x̄.

Construction of (1.2). Let X̃ denote the universal cover of (X, x̄): it is the pro-object of
the category of finite étale X-schemes which co-represents the fiber functor (p ∶ X1 → X) ↦
p−1(x̄). In particular, x̄ canonically lifts to X̃, so we may view it as a geometric point of X̃.

Let G be a Z-gerbe over X. Condition (1.1) implies that the pullback G̃ of G to X̃ is
constant. Thus for each σ ∈ π1(X, x̄), we obtain an automorphism:

G̃x̄ ≅ G̃σ(x̄) ≅ G̃x̄, (1.4)

where the first map is provided by the constancy of G̃ and the second map is the descent
datum of G̃ along X̃→ X.

Any rigidification ḡ of G along x̄ may be viewed as a section of G̃x̄. The automorphism
(1.4) acts on ḡ as multiplication by a (set-theoretic) Zx̄-torsor tσ.

The association σ ↦ tσ is multiplicative in the following sense: for two elements σ1, σ2 ∈
π1(X, x̄), there is an identification of Zx̄-torsors:

(σ2)∗(tσ1) ⊗ tσ2 ≅ tσ1σ2 , (1.5)

where (σ2)∗(tσ1) is the Zx̄-torsor induced from tσ1 along σ−1
2 (i.e. z ∈ Zx̄ acts through σ2).

The identification (1.5) satisfies the natural cocycle condition. Furthermore, te is canonically
trivialized, satisfying the unit condition with respect to (1.5).

Therefore, the union:
π1(G , ḡ) ∶= ⊔

σ∈π1(X,x̄)

tσ.

defines an extension of π1(X, x̄) by Zx̄, with multiplication induced from (1.5). This con-
cludes the definition of the functor (1.2) in the forward direction. It is symmetric monoidal
with respect to the natural symmetric monoidal structures on both sides.

To show that (1.2) is an equivalence, we observe that it induces the isomorphism between
H2(X,Z) and H2(π1(X, x̄),Zx̄) on π0 (owing to condition (1.1)). On π1, it induces the iso-
morphism of abelian groups between Mapsx̄(X,B(Z)) and maps f ∶ π1(X, x̄) → Zx̄ satisfying
σ−1

2 (f(σ1))f(σ2) = f(σ1σ2) for each σ1, σ2 ∈ π1(X, x̄). �
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Remark 1.1.8. If Z = A is the constant étale sheaf with values in a finite abelian group A,
the isomorphism Ax̄ ≅ A induces a retract:

Maps(X,B2(A)) →Mapsx̄(X,B2(A)), G ↦ G ⊗ G ⊗−1
x̄ . (1.6)

On the other hand, the groupoid Z 2(π1(X, x̄),Ax̄) is equivalent to that of central exten-
sions of π1(X, x̄) by A, which we denote by CExt(π1(X, x̄),A). Hence, the composition of
(1.6) with (1.2) is a functor of Picard groupoids:

Maps(X,B2(A)) → CExt(π1(X, x̄),A). (1.7)

The functor (1.7) induces an equivalence after 1-truncation.

1.2. Twisted `-adic sheaves.

1.2.1. We continue to work over a base scheme S. We fix a prime ` invertible on S and an
algebraic closure Q` ⊂ Q`.

Let E be an intermediate field Q` ⊂ E ⊂ Q` and A ⊂ E× be a finite subgroup whose order
is also invertible on S.

1.2.2. For any S-scheme X, we have the ∞-category Shv(X,E) of constructible complexes
of E-sheaves on X. This is the ∞-category denoted by Dcons(X,E) in [HRS23] where E is
equipped with the `-adic topology.

1.2.3. In the presence of an A-gerbe G on X, there is a variant: the ∞-category ShvG (X)
of G -twisted constructible complexes of E-sheaves on X.

To define it, consider the abelian category A (X) of proétale E-sheaves on X. The associ-
ation X1 ↦ A (X1) is a stack of abelian categories on the small étale site of X, to be denoted
(temporarily) by A .

Since A is a subgroup of E×, it acts on the identity endofunctor of A . The construction
of [Zha22, Appendix A] then yields a stack A G . Its global section is an abelian category
AG (X). Then we may form its derived ∞-category DG (X) and ShvG (X) ⊂ DG (X) is the full
∞-subcategory characterized by the constructibility condition of [HRS23, Definition 1.1].

1.2.4. For brevity, we shall call an object of ShvG (X) a “G -twisted E-sheaf” on X.
Such an object is said to be lisse or a G -twisted E-local system if it is dualizable and

belongs to the heart AG (X) of DG (X). They form an abelian category LisG (X).

Remark 1.2.5. Any trivialization of G induces an equivalence of ∞-categories between
ShvG (X) and Shv(X).

Since G is locally trivial in the étale topology, constructions on Shv(X) of étale local
nature automatically carry over to ShvG (X).

1.2.6. It is convenient to consider the 2-category of pairs (X,G ), where X is an S-scheme
(or more generally, an S-prestack) and G is an A-gerbe over X.

A morphism (X1,G1) → (X2,G2) consists of a morphism f ∶ X1 → X2 and an isomorphism

α ∶ G1
∼Ð→ f∗(G2).

A 2-morphism (f1, α1) → (f2, α2) is an equality f1 = f2 ∶ X1 → X2 together with a
2-morphism α1 → α2 in the 2-category of A-gerbes on X1. All 2-morphisms are invertible.

1.2.7. Given a morphism (X1,G1) → (X2,G2) as in §1.2.6, there is a pullback functor
f∗ ∶ ShvG2(X2) → ShvG1(X1).

If f is separated and of finite presentation, we also have a functor f! ∶ ShvG1(X1) →
ShvG2(X2). (By our convention, functors are derived unless otherwise stated.)



10 YIFEI ZHAO

The adjunctions (f∗, f∗), (f !, f!) exist on the twisted categories of E-sheaves whenever
they exist on the untwisted ones.

Indeed, these functors are constructed from the usual functors by étale descent, in view
of Remark 1.2.5.

Remark 1.2.8. Suppose that X is connected, Noetherian, and geometrically unibranch.
Let x̄ be a geometric point of X. Recall that lisse E-sheaves on X are equivalent to continu-
ous π1(X, x̄)-representations on finite-dimensional E-vector spaces, the functor being taking
fibers at x̄.

Assume that X satisfies condition (1.1). Then an A-gerbe G on X with rigidification ḡ
along x̄ defines a central extension (1.3).

Taking fibers at x̄ yields an equivalence between G -twisted lisse E-sheaves on X and
continuous π1(G , ḡ)-representations on finite-dimensional E-vector spaces such that A acts
through the inclusion A ⊂ E×.

1.3. A vanishing lemma.

1.3.1. We remain in the context of §1.2.1.

1.3.2. Let G be an étale sheaf of groups over S. There is an equivalence of groupoids
between A-gerbes on B(G) rigidified along e ∶ S→ B(G) (simply called “rigidified A-gerbes”
below) and monoidal morphisms G→ B(A).

In turn, monoidal morphisms G→ B(A) are equivalent to multiplicative A-torsors on G.
They induce character E-local systems on G along the inclusion A ⊂ E×.

1.3.3. Suppose that G acts on an S-scheme X. Let G be a rigidified A-gerbe on B(G).
Denote by χG the induced character E-local system on G.

By abuse of notation, we write ShvG (X/G) for the ∞-category of E-sheaves on X/G
twisted by the pullback of G along X/G→ B(G).

The ∞-category ShvG (X/G) admits a more concrete description: it is the ∞-category
of E-sheaves on X equipped with G-equivariance structures against the character E-local
system χG .

1.3.4. Let X be a separated S-scheme of finite presentation. We write Γ(X,−) (resp. Γc(X,−))
for the direct image functors p∗(−) (resp. p!(−)) along the structure morphism p ∶ X → S.
Similar conventions apply to Hi(X,−) and Hi

c(X,−).
The following lemma is a variant of the standard fact that an E-sheaf equivariant against

a nontrivial character on the stabilizer group must vanish.

Lemma 1.3.5. Let G be a separated group S-scheme of finite presentation acting on X.
Let G be a rigidified A-gerbe on B(G), with induced character E-local system χG on G. If
H0(Gs̄, χG ) = 0 for all geometric points s̄ of S, then any object F ∈ ShvG (X/G) satisfies:

Hi
c(X,F ) = 0 for all i ≥ 0. (1.8)

(In particular, we find ShvG (B(G)) = 0 by setting X = S.)

Proof. The vanishing (1.8) can be verified at geometric points of S, so we may assume that
S is the spectrum of an algebraically closed field.

Write f ∶ X→ X/G for the quotient in the étale topology. It suffices to show f!(F ) = 0.
Consider the Cartesian diagram:

X ×G X

X X/G

act

pr f

f

(1.9)
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where act (resp. pr) stands for the action (resp. projection) map.
We view F as an E-sheaf on X which is G-equivariant against χG . Base change along

(1.9), the equivariance structure, and projection formula imply an isomorphism:

f∗f!(F ) ≅ F ⊠ Γc(G, χG ). (1.10)

It remains to show Γc(G, χG ) = 0.
For X = G and F = χG , (1.10) reads:

E ⊠ Γc(G, χG ) ≅ χG ⊠ Γc(G, χG ). (1.11)

In particular, any nonzero Hi
c(G, χG ) implies the existence of a nonzero section of χG . �

1.3.6. Let us discuss an example for which the condition of Lemma 1.3.5 is satisfied.
Suppose that G = Gm,S is the multiplicative group over S. For each integer n ≥ 0 invertible

over S, the degree-n Kummer cover of Gm,S defines a character µn-torsor on Gm,S.
In particular, we have a monoidal morphism:

Ψ ∶ Gm,S → lim
n≥0

invertible

B(µn). (1.12)

For each section a of the étale sheaf A(−1), we thus obtain a monoidal morphism a∗(Ψ) ∶
Gm,S → B(A). We also write Ψa ∶= a∗(Ψ) and keep the same notation for the induced
character E-local system on Gm,S.

When a is nowhere vanishing on S, there holds H0(Gm,s̄,Ψa) = 0 at all geometric points s̄
of S. Indeed, this follows from the vanishing of π1(Gm,s̄, e)-invariants of the corresponding
1-dimensional character.

1.4. Frobenius.

1.4.1. Suppose that the base scheme S = Spec(k), where k is a finite field of cardinality q.
Let A be a finite abelian group whose order is coprime to q.

For any k-scheme X, we write FrX ∶ X → X for the absolute Frobenius endomorphism: it
acts as identity on the topological space ∣X∣ and the qth power map on OX.

1.4.2. Consider the special case x = Spec(k). Then any A-torsor t on x defines a character
Gal(k̄/k) → A for any algebraic closure k ⊂ k̄, and the image of the geometric Frobenius
ϕx ∈ Gal(k̄/k) may be called the trace-of-Frobenius of t.

When a coefficient field E with A ⊂ E× is supplied, this is indeed the trace of ϕx on the
1-dimensional representation induced from t along A ⊂ E×.

1.4.3. We shall describe an analogous construction for A-gerbes on a k-scheme (or k-stack)
X. It is helpful to perform this construction in two steps:

X

B2(A)

G ⇒
XFr

B(A)

Tr(Fr∣G ) ⇒
X(k)

B(A)

Tr(Fr∣G )(k) (1.13)

In other words, we shall first extract an étale A-torsor Tr(Fr ∣ G ) over the FrX-fixed point
locus XFr ⊂ X, defined to be the fiber product:

XFr X

X X ×X

(id,FrX)

∆

(1.14)

and then set Tr(Fr ∣ G )(k) to be its set (or groupoid) of k-points.



12 YIFEI ZHAO

1.4.4. Recall that for any k-scheme X, the endofunctor Fr∗X on the 2-groupoid of A-gerbes
over X is naturally isomorphic to the identity (the “baffling theorem” [Sta18, 03SN]).

Let us explicitly describe the value of this natural isomorphism at an A-gerbe G :

Fr∗X(G ) ≅ G . (1.15)

For any étale morphism f ∶ X1 → X, the groupoid Fr∗X(G )(X1) is the filtered colimit of G (U)
over étale morphisms u ∶ U → X through which FrX ○ f factors. This index category has an
initial object, given by (U, u) = (X1, f) and the factorization FrX ○ f = f ○FrX1 . The colimit
is thus identified with G (X1).

Let us now give two constructions of Tr(Fr ∣ G ).

Construction 1. Since FrX restricts to the identity map on XFr, we obtain a “tautological”
identification Fr∗X(G ) ≅ G of A-gerbes over XFr.

The A-torsor Tr(FrX ∣ G ) over XFr is defined so that the action by it renders the following
diagram of A-gerbes over XFr commutative:

Fr∗X(G ) G

Fr∗X(G ) G

taut

id ⋅Tr(FrX∣G )

(1.15)

(1.16)

where taut refers to the tautological identification. �

Remark 1.4.5. For an étale morphism f ∶ X1 → XFr, the automorphism of G (X1) defined
by the action of Tr(FrX ∣ G ) is the pullback along the XFr-automorphism Fr−1

X1
∶ X1 → X1.

(Note that FrX being invertible over XFr implies that FrX1 is as well.)

Construction 2. The identification (1.15) yields an isomorphism between the endomorphism
FrB2(A) of B2(A) and the identity.

Hence we find an isomorphism:

B2(A)Fr ≅ B2(A) ×B(A), (G , α) ↦ (G ,G −1 ⊗ α), (1.17)

where the isomorphism α ∶ G ≅ Fr∗X(G ) is viewed as an automorphism of G via the identifi-
cation (1.15), so G −1 ⊗ α is an automorphism of the trivial A-gerbe, i.e. an A-torsor.

The A-torsor Tr(FrX ∣ G ) over XFr is set to be the composition:

XFr → B2(A)Fr → B(A),
where the second map is the projection of (1.17) onto its second factor. �

1.4.6. Let us argue that Tr(Fr ∣ G )(k) is indeed a set-theoretic A-torsor over X(k).
Namely, we must show that its fiber over any x ∈ X(k) is nonempty. To see this, it suffices

to note that H2(x,A) = 0, so any A-gerbe over x admits a section. The choice of any such
section trivializes Tr(Fr ∣ G ) over x.

Remark 1.4.7. Suppose now that x = Spec(k) and an algebraic closure k ⊂ k̄ is chosen. We
write x̄ = Spec(k̄).

Then the fiber of Tr(Fr ∣ G )(k) over x ∈ X(k) is identified with the preimage in π1(G , ḡ)
of the geometric Frobenius element ϕx ∈ Gal(k̄/k), for any rigidification ḡ of G along x̄.

Indeed, since the fiber of Tr(Fr ∣ G )(k) over x is nonempty, it is identified with the fiber
of Tr(Fr ∣ G )(k̄) over x̄. Its description in Remark 1.4.5 coincides with the definition of tσ
in §1.1.7 for σ = ϕx and any rigidification ḡ of G along x̄.
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Remark 1.4.8. Suppose that k ⊂ k1 is a finite extension. Let X1 be a k1-scheme, whose
restriction of scalars along k ⊂ k1 is denoted by X ∶= res(X1). To each A-gerbe G1 over X1,
we may associate an A-gerbe Nm(G1) over X. To define it, we restrict G1 along the counit
map Xk1 ∶= X × Spec(k1) → X1 and take its image under the norm map:

Γ(Xk1 ,A[2]) → Γ(X,A[2]),
which exists thanks to Xk1 → X being finite étale.

The trace-of-Frobenius construction may be performed for G1 (using the ∣k1∣th power
Frobenius) as well as Nm(G1) (using the ∣k∣th power Frobenius). They yield canonically
isomorphic set-theoretic A-torsors:

Tr(FrX1 ∣ G1) Tr(FrX ∣ Nm(G1))

X1(k1) X(k)

≅

≅

(1.18)

1.4.9. Let us bring in the coefficient field E as in §1.2.1 and assume that A ⊂ E×.
Let X be a k-scheme locally of finite type equipped with an A-gerbe G . Denote by X̃ the

set-theoretic A-torsor Tr(Fr ∣ G )(k) over X(k).
Let Func(X̃,A ⊂ E×) denote the E-vector space of compactly supported functions f ∶ X̃→

E such that f(x̃ ⋅a) = f(x̃) ⋅a for each a ∈ A. Elements of Func(X̃,A ⊂ E×) are called genuine

functions over X̃ with respect to the inclusion A ⊂ E×.
In this set-up, there is a canonical isomorphism of E-vector spaces:

Func(X̃,A ⊂ E×) ≅ H0
c(XFr,Tr(FrX ∣ G )⊗−1), (1.19)

where H0
c(XFr,−) denotes the colimit of functors H0

c(U,−) over quasi-compact open sub-
schemes U ⊂ XFr.

1.4.10. We are now in a position to explain how genuine functions arise from twisted E-local
systems as defined in §1.2: this is the mechanism by which the cohomology of Shtukas will
define genuine automorphic forms.

Consider the A-gerbe G ⊠ (G ⊗−1) over X ×X. In reference to (1.14), its restriction along
∆ is canonically trivial, as is its restriction along (id,FrX) by the isomorphism (1.15).

In particular, the restriction G0 of G ⊠ (G ⊗−1) to XFr admits two sections, corresponding
to the two circuits of (1.14). If we write g ∈ G0(XFr) for the section induced from the lower
circuit, then the section induced from the upper is identified with g ⋅Tr(FrX ∣ G ).

Now, we let F be the G0-twisted E-local system on XFr, which is identified with E using
the section g (see Remark 1.2.5). The same F is identified with Tr(FrX ∣ G )⊗−1 using the
section g ⋅Tr(FrX ∣ G ).

In other words, taking H0
c(XFr,F ) using the section of G0 induced from the upper circuit

of (1.14) yields the E-vector space Func(X̃,A ⊂ E×).

1.5. Étale metaplectic covers.

1.5.1. Let S be a scheme and A be a finite abelian group whose order is invertible on S.
Suppose that X is an S-scheme and G→ X is a smooth affine group scheme.

1.5.2. An étale metaplectic cover of G → X with values in A is defined to be a section of
B4A(1) over BX(G) equipped with a rigidification along e ∶ X→ BX(G).

Recall that the subscript in BX means taking the classifying stack of G relative to X (as
opposed to the base scheme S.)
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Note that a rigidified section of B4A(1) over BX(G) may be equivalently viewed as a
morphism of E1-monoidal stacks G→ B3

XA(1) over X.

Remark 1.5.3. This definition agrees with the one in [Zha22, §2] and we refer the reader
to op.cit. for its relationship with classical metaplectic covers as well as their geometrization
by means of K-theory.

It is imperative to point out that this definition is essentially contained in [Del96].

1.5.4. Suppose that X is the spectrum of a local nonarchimedean field Fx. Then an étale
metaplectic cover µ defines a central extension of topological groups:2

1→ A→ G̃x → G(Fx) → 1. (1.20)

If X is instead the spectrum of the rings of integers Ox ⊂ Fx, then the extension (1.20)
produced by restricting (G, µ) to Spec(Fx) admits a canonical splitting over G(Ox).
1.5.5. If X is the spectrum of a global field F without real places, then an étale metaplectic
cover µ defines a central extension of topological groups:

1→ A→ G̃F → G(AF) → 1, (1.21)

where AF denotes the topological ring of adèles of F. Furthermore, (1.21) is equipped with
a canonical splitting over G(F).

For each nonarchimedean place x of X, the restriction of (1.21) along the inclusion
G(Fx) ⊂ G(AF) recovers the central extension (1.20).

When A occurs as a subgroup of E× for a field E, we have the E-vector space:

Fun(G(F)/G̃F,A ⊂ E×) (1.22)

of G(F)-invariant locally constant functions f ∶ G̃F → E satisfying f(x̃ ⋅a) = f(x̃) ⋅a for every

x̃ ∈ G̃F and a ∈ A. They are called genuine automorphic forms on G̃F.
Roughly speaking, the Langlands program for étale metaplectic covers seeks to understand

the decomposition of various subspaces of (1.22) according to “spectral data”, defined in
terms of an L-group associated to (G, µ).
1.6. The L-group.

1.6.1. We keep the notations of §1.5.1. Furthermore, we bring in the coefficient field E as
in §1.2.1 and assume that A ⊂ E×.

1.6.2. We also assume that G → X is a reductive group scheme. Let Λ (resp. Λ̌) be the
étale sheaf of cocharacters of the universal Cartan T→ X of G.

The based root data of G consist of a sheaf of coroots (resp. simple coroots) Φ (resp. ∆)
with ∆ ⊂ Φ ⊂ Λ, a sheaf of roots (resp. simple roots) Φ̌ (resp. ∆̌) with ∆̌ ⊂ Φ̌ ⊂ Λ̌, and an
isomorphism Φ ≅ Φ̌. The image of α ∈ Φ under this isomorphism is denoted by α̌.

1.6.3. To each étale metaplectic cover µ of G → X with values in A, the recipe of [Zha22,
§6] defines its metaplectic dual data (H, ν), where:

(1) H is a locally constant étale sheaf over X of pinned split reductive groups over E;

(2) ν ∶ ẐH → B2
X(A) is an E∞-monoidal morphism.

Here, ZH denotes the center of H, ẐH the abelian group of its characters, viewed as a
locally constant étale sheaf of abelian groups over X.

We shall partially recall the construction of (H, ν) below.

2The construction of (1.20) uses local Tate duality, which requires fixing an isomorphism Gal(k̄x/kx) ≅ Ẑ,

where kx denotes the residue field of Fx. We normalize this isomorphism so that 1 ∈ Ẑ corresponds to the
geometric Frobenius element.
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Remark 1.6.4. The construction of H is due to Lusztig [Lus93] and its role in the theory
of metaplectic covers is explained by Finkelberg–Lysenko [FL10] and McNamara [McN12].

The construction of ν is essentially due to Weissman [Wei18] when µ comes from K-theory
and due to Gaitsgory–Lysenko [GL18] when X is a smooth curve, following a priori different
approaches.

1.6.5. Given an étale metaplectic cover µ of G → X, we first extract a triplet of invariants
(Q, ν♯, ϕ), where:

(1) Q is an A(−1)-valued quadratic form on Λ;
(2) ν♯ ∶ Λ♯ → B2

X(A) is an E∞-monoidal morphism, or equivalently an extension of stacks
of Picard groupoids over X:

BX(A) → Λ̃♯ → Λ♯,

(3) ϕ is an E∞-monoidal trivialization of ν♯ over Λ♯,r ⊂ Λ♯.

Here, Λ♯ ⊂ Λ denotes the kernel of the symmetric form b associated to Q and Λ♯,r ⊂ Λ the
Z-span of the set:

ord(Q(α)) ⋅ α, for each α ∈ Φ.

The fact that Λ♯,r belongs to Λ♯ follows from the equality satisfied by Q:

b(α,λ) = Q(α)⟨α̌, λ⟩, for each α ∈ Φ, λ ∈ Λ. (1.23)

1.6.6. Let us sketch the construction of (Q, ν♯, ϕ) and provide pointers to [Zha22]. The
construction is performed étale locally on X using a Borel subgroup B ⊂ G, but it turns out
to be independent of this choice ([Zha22, §5.2]) and thus globalizes.

First, we restrict µ along B(B) → B(G), which canonically descends to an étale meta-
plectic cover µT of T.

The quadratic form Q is the unique discrete invariant of µT, in view of the isomorphism
between H4(BT,A(1)) and quadratic forms on Λ ([Zha22, §4.3]).

Next, the restriction µT♯ of µT to B(T♯) acquires a canonical E∞-monoidal structure
([Zha22, §4.6]). Taking rigidified sections of µT♯ over B(Gm), we find a morphism of sheaves
of E∞-monoids over X:

Λ♯ → Γe(BGm,B4A(1)). (1.24)

However, étale metaplectic covers of Gm admit a Z-linear splitting into its Z-linear com-
ponent and the associated quadratic form [Zha22, Remark 4.2.8]:

Γe(BGm,B4A(1)) ≅ B2
X(A) ⊕A(−1). (1.25)

Set ν♯ to be the composition of (1.24) with the projection onto the first factor in (1.25).
Finally, the trivialization ϕ arises from a calculation with SL2 ([Zha22, §6.1.5]).

Remark 1.6.7. By construction, the composition of (1.24) with the projection onto the
second factor in (1.25) equals the restriction of Q to Λ♯, which is a Z-linear map Λ♯ → A(−1)
taking values in the subsheaf of 2-torsion elements, because b vanishes over Λ♯.

The restriction of Q to Λ♯,r vanishes, so we obtain a map:

Q ∶ Λ♯/Λ♯,r → A(−1). (1.26)

Remark 1.6.8. It is possible to enhance the data (Q, ν♯, ϕ) to complete invariants of étale
metaplectic covers ([Zha22, §5.1]), although we will not need this fact.

Note that due to the 2-categorical nature of these data, they are more difficult to state
than their K-theoretic analogues defined in [BD01].

1.6.9. Let us now construct the metaplectic dual data (H, ν) from the triple (Q, ν♯, ϕ).



16 YIFEI ZHAO

Construction. Let us write Λ̌♯ for the Z-linear dual of Λ♯. For each α ∈ Φ, we set

α♯ = ord(Q(α)) ⋅ α ∈ Λ♯;

α̌♯ = ord(Q(α))−1 ⋅ α̌ ∈ Λ̌♯.

Let Φ♯ (resp. Φ̌♯) be the span of α♯ (resp. α̌♯) and ∆♯ (resp. ∆̌♯) its subset corresponding
to α ∈ ∆ (resp. α̌ ∈ ∆̌). Then the collection ∆♯ ⊂ Φ♯ ⊂ Λ♯, ∆̌♯ ⊂ Φ̌♯ ⊂ Λ̌♯, with bijection
Φ♯ ≅ Φ̌♯, α♯ ↦ α̌♯, defines a locally constant sheaf of based root data over X.

The sheaf H is defined to be the associated sheaf of pinned split reductive groups over E:
it has characters in Λ♯, roots in Φ♯, simple roots in ∆♯, etc.

By this definition, we have a canonical isomorphism of sheaves of abelian groups:

ẐH ≅ Λ♯/Λ♯,r, (1.27)

so the data (ν♯, ϕ) of §1.6.5 may be interpreted as an E∞-monoidal morphism ẐH → B2
X(A).

This concludes the definition of (H, ν) alluded to in §1.6.3. �

1.6.10. In order to define the L-group, we need to pass to the component of ν which is Z-
linear, i.e. corresponding to a morphism of complexes ẐH → A[2] of étale sheaves of abelian
groups over X (see [Zha22, §6.2]). This is because ν can be nontrivial even over a geometric
point of X, whereas the L-group does not capture this information.

Let us perform this construction in a more abstract setting: M denotes an étale sheaf
of abelian groups over X. An E∞-monoidal morphism ν ∶ M → B2

X(A) corresponds to a

symmetric monoidal extension M̃ of M by BX(A).
Associating to each m ∈ M̃ the commutativity constraint of m⊗m defines a character of

M valued in the subsheaf A[2] ⊂ A of 2-torsion elements. This character vanishes ⇔ M̃ is
strictly commutative ⇔ ν is Z-linear.

Therefore, we have a fiber sequence:

MapsZ(M,B2(A)) →MapsE∞(M,B2(A)) → Hom(M,A[2]) (1.28)

1.6.11. The fiber sequence (1.28) canonically splits.

Construction. If A[2] ≠ 0, there is nothing to construct. If A[2] = 0, the inclusion A ⊂ E×

identifies A[2] with Z/2.
Given a homomorphism ε ∶ M → A[2], we define the E∞-monoidal morphism εν ∶ M →

B2(A) to be the trivial E1-monoidal morphism, whose E∞-monoidal structure is defined by
the commutativity constraint:

(M̃ ∋m1,m2) ↦ (−1)ε(m1)ε(m2)

on the associated monoidal extension M̃ of M by B(A). The association ε↦ εν provides the
desired splitting of (1.28). �

1.6.12. Let us now return to the metaplectic dual data (H, ν).
Along the split fiber sequence (1.28) with M ∶= ẐH, the E∞-monoidal morphism ν ∶ ẐH →

B2
X(A) has a Z-linear component, to be viewed as a morphism of complexes:

0ν ∶ ẐH → A[2]. (1.29)

This datum is equivalent to a global section of the complex (ẐH)∗ ⊗A[2] over X, where

(ẐH)∗ denotes the Z-linear dual of ẐH as a complex.
Inducing along the inclusion A ⊂ E× and replacing E by a finite extension if necessary, 0ν

determines a global section of:

(ẐH)∗ ⊗E×[2] ≅ ZH(E)[2],
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i.e. an étale ZH(E)-gerbe over X.

Remark 1.6.13. When A[2] ≠ 0, there is a canonical isomorphism A(−1)[2] ≅ A[2].

Using [Zha22, Proposition 4.6.6], we may identify the image of ν in Hom(ẐH,A[2]) with
the morphism (1.26) (which is valued in A(−1)[2], or equivalently A[2]), under the identifi-

cation ẐH ≅ Λ♯/Λ♯,r.
However, we will not use this fact in the present article.

Remark 1.6.14. In what follows, we will use the same notation ν (resp. 0ν) for the E∞-

monoidal morphism ẐH → B2
X(E×) (resp. Z-linear morphism ẐH → B2

X(E×), or section of
ZH(E)[2]) induced along A ⊂ E×.

1.6.15. Let us now assume that X is connected, Noetherian, geometrically unibranch, and
satisfies condition (1.1). Fix a geometric point x̄ of X.

By taking the fiber at x̄, we obtain a pinned split reductive group Hx̄ over E equipped
with a π1(X, x̄)-action preserving the pinning.

Since ẐH is finitely generated, 0ν is trivial over a finite étale cover of X. Fixing a rigidifi-
cation ḡ of 0ν along x̄ and applying the construction of §1.1.7 to finite subgroups of E×, we
find an extension of topological groups:

1→ ZH,x̄(E) → π1(0ν, ḡ) → π1(X, x̄) → 1, (1.30)

where the π1(0ν, ḡ)-action on ZH,x̄(E) factors through the given π1(X, x̄)-action.
Inducing (1.30) along the π1(X, x̄)-equivariant inclusion ZH,x̄(E) ⊂ Hx̄(E), we obtain an

extension of topological groups, to be referred to as the L-group of (G, µ) over X:

1→ Hx̄(E) → LHX → π1(X, x̄) → 1. (1.31)

Remark 1.6.16. By construction, LHX is induced from a finite quotient π1(X, x̄) ↠ Γ and
the corresponding extension LHΓ of Γ by H(E) can be equipped with an algebraic structure
with neutral component H.

The main difference between LHX and the L-group of a reductive group is that the quotient
map LHX → π1(X, x̄) is not equipped with a canonical section.

1.6.17. Let L be a line bundle over X, viewed as a morphism of complexes Z → Gm[1].
Tensoring with A(−1) and composing with the Kummer isomorphism Ψ ∶ A(−1)⊗Gm ≅ A[1],
we obtain a morphism Ψ∗(L ) ∶ A(−1) → A[2].

We shall denote the composition of (1.26) with Ψ∗(L ) by:

L Q ∶ ẐH → A[2]. (1.32)

Since (1.26) factors through the subsheaf of 2-torsion elements, (1.32) is trivialized by any
choice of a square root of L .

1.6.18. In the particular case where X is a smooth curve over a field, we may take L ∶= ωX

in (1.32) to arrive at a morphism of complexes:

ωQ
X ∶ ẐH → A[2]. (1.33)

We shall use the notation νϑ (resp. 0νϑ) for the product of ν (resp. 0ν) with ωQ
X . The

subscript is interpreted as a “twist by the gerbe of ϑ-characteristics.”
After fixing a geometric point x̄ of X and a rigidification of (1.33) along x̄, the Z-linear

morphism 0νϑ defines an extension:

1→ Hx̄(E) → LHX,ϑ → π1(X, x̄) → 1. (1.34)
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It is also induced along ZH,x̄(E) ⊂ Hx̄(E) from the Baer sum of (1.30) and the central
extension defined by (1.33).

These constructions have obvious analogues when X is replaced by the spectra of its field
of fractions F, its local fields Fx, or rings of integers Ox.

Remark 1.6.19. In §4.2 below, we shall explain the relationship between ϑ-characteristics
and Weissman’s meta-Galois group as defined in [Wei18, §4].

In particular, when X is the field of fractions of a curve over a finite field, it will follow
that (1.34) coincides with Weissman’s L-group when µ comes from algebraic K-theory.

1.7. Twisted H-representations.

1.7.1. We work over a base scheme S, a finite abelian group A, and a coefficient field E as
in §1.2.1. Let X be an S-scheme.

Let H→ X be a locally constant étale sheaf of pinned split reductive groups over E. Write
ZH ⊂ H for its center and ẐH its character group, viewed as an étale sheaf of abelian groups
over X. Suppose that we are supplied with an E∞-monoidal morphism ν ∶ ẐH → B2

X(A).
In this context, we shall define an étale stack of tensor categories Rep

{1}
H,ν on X. By “tensor

category”, we mean an E-linear symmetric monoidal abelian category.

1.7.2. Denote by LisX the tensor category of lisse E-sheaves on X.
Note that OH may be viewed as a Hopf algebra in Ind(LisX). In particular, there is the

notion of an H-representation on a lisse E-sheaf : it is an object F ∈ LisX equipped with a
morphism F →F ⊗OH in Ind(LisX) satisfying the axioms defining a coaction.

Let Rep
{1}
H denote the tensor category of H-representations on lisse E-sheaves over X.

The forgetful functor Rep
{1}
H → LisX is E-linear and symmetric monoidal.

1.7.3. The construction X↦ Rep
{1}
H being of étale local nature, we obtain a stack of tensor

categories Rep
{1}
H on the étale site of X. It admits a decomposition according to the weights

of the ZH-action, compatible with the tensor structure:

Rep
{1}
H ≅ ⊕

λ∈ẐH

Rep
{1},λ
H . (1.35)

Since A acts by automorphisms of the identity endofunctor of Rep
{1}
H , we may form the

ν-twisted stack of tensor categories Rep
{1}
H,ν as in [Zha22, Appendix A].

Finally, we define Rep
{1}
H,ν to be the global section of Rep

{1}
H,ν .

Remark 1.7.4. There is a decomposition inherited from (1.35):

Rep
{1}
H,ν ≅ ⊕

λ∈ŽH

(Rep
{1},λ
H )ν(λ), (1.36)

where each summand is the ν(λ)-twist of the abelian E-linear categories Rep
{1},λ
H .

The symmetric monoidal structure on Rep
{1}
H,ν is induced from that of Rep

{1}
H and the

E∞-monoidal structure of ν. Concretely, the monoidal product is given by:

(Rep
{1},λ1

H )ν(λ1) × (Rep
{1},λ2

H )ν(λ2) → (Rep
{1},λ1+λ2

H )ν(λ1)⊗ν(λ2)

≅ (Rep
{1},λ1+λ2

H )ν(λ1+λ2).

Remark 1.7.5. Suppose that X is connected, Noetherian, geometrically unibranch, and
satisfies condition (1.1). Suppose also that ν is Z-linear. (In practice, ν will be one of the
objects 0ν, 0νϑ defined in §1.6.)
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We fix a geometric point x̄ of X and a rigidification ḡ of ν along x̄. Then the L-group

(1.31) can be used to give a “hands-on” description of Rep
{1}
H,ν .

Indeed, given a profinite group Γ and an extension LH of Γ by Hx̄(E), we write Repalg
LH

for

the category of finite-dimensional continuous representations of LH whose restriction along
Hx̄(E) ⊂ LH lifts to an algebraic representation of Hx̄.

Applied to LHX, this contruction yields a tensor category canonically equivalent to that
of ν-twisted H-representations:

Repalg
LHX

≅ Rep
{1}
H,ν . (1.37)

Under the equivalence (1.37), the underlying (algebraic) Hx̄-representation of an object

V ∈ Repalg
LHX

is isomorphic to the fiber of the corresponding object in Rep
{1}
H,ν at x̄, by passing

through the rigidification ḡ.

1.7.6. The construction of Rep
{1}
H,ν has a multiple-point generalization, which justifies the

superscript in the notation.
Indeed, for a nonempty finite set I, we have an E∞-monoidal morphism of étale sheaves

over XI out of an external direct sum of copies of ẐH:

νI ∶ ẐI
H → B2

XI(A), (λi)i∈I ↦
ò

i∈I

ν(λi). (1.38)

Viewing HI as a locally constant étale sheaf over XI of pinned split reductive groups
over E, the corresponding étale sheaf ẐHI is identified with ẐI

H. The construction of §1.7.3,
applied to XI, HI, and νI, yields a stack of tensor categories RepI

HI,νI over XI, and we set

RepI
HI,νI to be its global section.

1.7.7. The E∞-monoidal structure on νI (for varying I) induces its compatibility data with
respect to restrictions along the diagonals.

More precisely, given a surjection of nonempty finite sets p ∶ I↠ J, giving rise to the diag-
onal immersion ∆p ∶ XJ → XI, we obtain an isomorphism (∆p)∗νI ≅ νJ. These isomorphisms
are compatible with compositions in the obvious sense.

Correspondingly the association (I ≠ ∅) ↦ RepI
HI,νI defines a functor from the category

of nonempty finite sets with surjections to the 2-category of tensor categories. It carries a
surjection p ∶ I↠ J to the composition:

RepI
HI,νI → RepJ

(∆p)∗(HI),νJ
→ RepJ

HJ,νJ
(1.39)

where the first functor is the restriction along ∆p, whereas the second functor is the restric-
tion of the action along the diagonal HJ → (∆p)∗(HI).

2. Geometric Satake equivalence

The goal of this section is to state the geometric Satake equivalence for étale metaplectic
covers: Theorem 2.4.4. It is the metaplectic analogue of the equivalence of Mirković–Vilonen
[MV07] and Gaitsgory [Gai07, Theorem 2.6].

Sections §2.1–2.3 are preparatory. The main equivalence is stated in §2.4. In §2.5, we shall
use it to define a collection of functors, called “Satake functors”, which play an instrumental
role in the proof of the spectral decomposition theorem in §4.

2.0.1. Throughout this section, we work over a field k. The letter S is reserved for arbitrary
(“test”) affine k-schemes.
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Let ` be a prime invertible in k and fix an algebraic closure Q` ⊂ Q`. The coefficient field
E will be an intermediate field Q` ⊂ E ⊂ Q`.3 Let A ⊂ E× be a finite subgroup whose order
is invertible in k.

Let X be a smooth curve over k and G → X be a smooth affine group scheme. Let µ be
an A-valued étale metaplectic cover of G, i.e. a rigidified section of B4A(1) over BX(G).
2.1. The local Hecke stack.

2.1.1. Let I be a nonempty finite set.
For an S-point xI of XI, we write ΓxI for the scheme-theoretic union of the graphs of

xi ∶ S → X (over i ∈ I), DxI for the formal completion of S ×X along ΓxI , and D̊xI the open

subscheme DxI −ΓxI . We call DxI (resp. D̊xI) the formal disk (resp. formal punctured disk)
around ΓxI .

We shall define a number of étale stacks over XI. Their groupoids of lifts of an S-point
xI of XI are tabulated below:

LI
+(G) a section of G over DxI

LI(G) a section of G over D̊xI

GrI
G a G-torsor P over DxI equipped with α ∶ P0 x

I

∼ P

HecI
G G-torsors P0, P1 over DxI equipped with α ∶ P0

xI

∼ P1

(2.1)

Here, P0 stands for the trivial G-torsor over DxI , and the notation P0
xI

∼ P1 for two
G-torsors over DxI means an isomorphism of them off ΓxI .

The étale sheaves LI
+(G) and LI(G) are valued in groups. The étale sheaf GrI

G is ind-
schematic of ind-finite type.

If G→ X is reductive, GrI
G is furthemore ind-proper.

Remark 2.1.2. Since G is smooth, there are canonical isomorphisms GrI
G ≅ LIG/LI

+G and

HecI
G ≅ LI

+G/LIG/LI
+G, where the quotients are taken in the étale topology. The quotient

map π ∶ GrI
G → HecI

G sends (P, α) to the triple (P0,P, α).
2.1.3. Given a surjection of nonempty finite sets p ∶ I ↠ J, we write Ij ∶= f−1(j) and view
p as an unordered partition of I. Denote by Xp ⊂ XI the “disjoint locus”, i.e. the open
subscheme where Γ

x
Ij1

∩ Γ
x

Ij2
= ∅ if j1 ≠ j2 ∈ J.

We have a canonical isomorphism of étale stacks over Xp via restriction to each DXIj :

ϕp ∶ HecI
G ×XI Xp ≅ (∏

j∈J

Hec
Ij
G) ×XI Xp. (2.2)

The isomorphism (2.2) is compatible with refinements of partitions. Namely, given two
composable surjections of nonempty finite sets p ∶ I ↠ J, q ∶ J ↠ K, we have containments
Xp ⊂ Xq⋅p ⊂ XI. For each k ∈ K, p restricts to the partition pk ∶ Ik ∶= (q ⋅ p)−1(k) ↠ Jk. There
is a commutative diagram:

HecI
G ×XI Xp (∏k∈K HecIk

G ) ×XI Xp

(∏j∈J Hec
Ij
G) ×XI Xp ∏k∈K(∏j∈Jk Hec

Ij
G) ×XI Xp

ϕp

ϕq⋅p

∏k∈K ϕ
pk

≅

(2.3)

Furthermore, given three composable surjections of nonempty finite sets, the isomorphism
of arrows rendering (2.3) commutative satisifes the evident cocycle condition.

3It would be interesting to treat integral cofficients, but I have not attempted to do so.
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The isomorphism (2.2) and the commutativity (2.3) satisfying the cocycle condition are

referred to as the factorization structure of HecI
G (for varying I).

Remark 2.1.4. If J is equipped with an ordering, or equivalently if I admits an ordered
partition I = I1 ⊔⋯⊔ Ik, then we change the notation Xp to XI1,⋯,Ik and analogously for the

base change of the prestacks in (2.1): HecI1,⋯,Ik
G ∶= HecI

G ×XI XI1,⋯,Ik

2.1.5. Given an ordered partition I = I1 ⊔ ⋯ ⊔ Ik as nonempty finite sets, we shall consider

another étale stack H̃ecI1,⋯,Ik
G over XI whose lift of an S-point xI of XI consists of G-torsors

P0,⋯,Pk together with isomorphisms:

(P0
xI1∼ P1

xI2∼ ⋯ xIk∼ Pk). (2.4)

The functors pa of remembering each segment (xIa ,Pa−1
xIa

∼ Pa) (over 1 ≤ a ≤ k) and the

functor m of remebering their composition (xI,P0
xI

∼ Pk) define two morphisms:

H̃ecI1,⋯,Ik
G ∏1≤a≤k HecIa

G

HecI
G

∏pa

m (2.5)

Over the disjoint locus XI1,⋯,Ik , both maps in (2.5) restrict to isomorphisms and their
composition is identified with the factorization isomorphism (2.2) associated to the under-
lying unordered partition I→ {1,⋯, k}.

This construction has an obvious analogue for the affine Grassmannian, namely an ind-

scheme G̃rI1,⋯,Ik
G → XI classifying the same data (2.4) as H̃ecI1,⋯,Ik

G , together with an addi-
tional trivialization of P0.

2.1.6. Given a nonempty finite set I, the association:

([k] ∈ ∆op) ↦ H̃ec
I,[k]
G ∶= H̃ecI1,⋯,Ik

G ×XI1⊔⋯⊔Ik XI, (2.6)

with I1 = ⋯ = Ik ∶= I defines a simplicial étale stack over XI.

By convention, we set H̃ec
I,[0]
G ∶= BXI(LI

+(G)), i.e. the stack classifying a G-torsor P
over DxI with no modifications. Morphisms in ∆op are carried to compositions of the
corresponding segment of modifications in (2.4).

This simplicial étale stack is canonically identified with the Čech nerve of the morphism:

BXI(LI
+(G)) → BXI(LI(G)). (2.7)

Evidently, its value at [1] is HecI
G. In particular, the simplicial system (2.6) may be viewed

as an additional structure on HecI
G which we call the convolution structure.

2.2. The local A-gerbe.

2.2.1. Let I be a nonempty finite set.
We shall use the étale metaplectic cover µ to define an A-gerbe G I on HecI

G. Furthermore,
G I (for varying I) will come equipped with canonical compatibility data with respect to the

factorization and convolution structures of HecI
G.

The A-gerbe G I is not new: it features prominently in [Rei12] and [GL18], and we will
explain in Remark 2.2.8 how their approach is related to ours.
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2.2.2. We start by defining an E1-monoidal section of B2(A) over LI(G), trivialized as such
over LI

+(G), i.e. a commutative diagram of E1-monoidal morphisms:

LI
+(G) XI

LI(G) B2
XI(A)

e (2.8)

Construction. For an S-point xI of XI, we give names to the natural morphisms in the
following diagram as displayed:

ΓxI DxI D̊xI

ΓxI S ×X S ×X − ΓxI

S

î

id

ĵ

i

p

j

Viewing µ as an E1-monoidal morphism G → B3
XA(1), we obtain an E1-monoidal mor-

phism by taking its section over D̊xI → X:

µ∗ ∶ Γ(D̊xI ,G) → Γ(D̊xI ,B3
XA(1)). (2.9)

Note that the target is the ∞-groupoid associated to the connective truncation of the
complex Γ(DxI , ĵ∗A(1)[3]).

Using the Cousin complex and the Gabber–Fujiwara formal base change theorem [Fuj95,
Corollary 6.6.4] (see [BM21, Theorem 6.11] for a proof avoiding the Noetherian hypothesis),
we find morphisms of complexes:

Γ(DxI , ĵ∗A(1)[3]) → Γ(ΓxI , î!A(1)[4])
≅ Γ(ΓxI , i!A(1)[4]) ≅ Γ(ΓxI , (p ⋅ i)!A[2]) → Γ(S,A[2]), (2.10)

where the last two maps use the smoothness of p and the properness of p ⋅ i, respectively.
Composing (2.9) with the morphism on underlying ∞-groupoids of (2.10), we obtain an

E1-monoidal morphism:

Γ(D̊xI ,G) → Γ(S,B2(A)), (2.11)

trivialized as such over Γ(DxI ,G). The construction being functorial in the S-point xI, we
obtain the commutative diagram (2.8). �

Remark 2.2.3. Fix a closed point x ∈ X and write L(G)x for the fiber of L{1}(G) at x.
The construction of the E1-monoidal morphism L(G)x → B2

x(A) in §2.2.2 only requires µ

to be defined over D̊x (instead of X). Furthermore, it is E1-monoidally trivial over the first
congruence group scheme:

G1,x ∶= Ker(L+(G)x → Gx),
because G1,x is pro-unipotent. (However, lifting this trivialization to one over L+(G)x in
general requires µ to be defined over Dx.)

2.2.4. The commutative diagram (2.8) is equivalent to a section of B3(A) over BXI(LI(G))
trivialized over BXI(LI

+(G)).
Taking Čech nerves, we obtain a morphism of simplicial étale stacks:

H̃ec
I,[k]
G → B2(A)×k, [k] ∈ ∆op, (2.12)
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where the target [k] ↦ B2(A)×k is the Čech nerve of the morphism Spec(k) → B3(A).
Finally, we define G I to be the value of (2.12) at [1].

Remark 2.2.5. We view the simplicial morphism (2.12) as expressing the compatibility

between G I and the convolution structure of HecI
G.

For instance, the commutation of (2.12) with the three face maps ([1] → [2]) ∈ ∆ contain

the following isomorphism of A-gerbes on H̃ec
I,[2]
G :

m∗(G I) ≅ p∗1(G I) ⊗ p∗2(G I), (2.13)

where the morphisms p2, m, p1 send an S-point (P0
xI

∼ P1
xI

∼ P2) of H̃ec
I,[2]
G to S-points

(P1
xI

∼ P2), (P0
xI

∼ P2), respectively (P0
xI

∼ P1), of HecI
G.

The commutation of (2.12) with the degeneracy map ([1] → [0]) ∈ ∆ expresses the fact

that G I is canonically rigidified along the unit e ∶ BXI(LI
+(G)) → HecI

G.

2.2.6. We note a variant of the compatibility between G I and the convolution structure, for

the Hecke stack H̃ecI1,⋯,Ik
G associated to an ordered partition I = I1 ⊔⋯ ⊔ Ik.

Namely, along the two morphisms of (2.5), we have a canonical isomorphism of A-gerbes

on H̃ecI1,⋯,Ik
G :

m∗(G I) ≅ ⊗
1≤a≤k

p∗a(G Ia). (2.14)

To see this, we express H̃ecI1,⋯,Ik
G as the quotient of the group stack L̃I1,⋯,Ik(G) → XI,

whose lift of an S-point xI of XI consists of sections ga of G over DxI − ΓxIa (for 1 ≤ a ≤ k),
by the actions of (k + 1) copies of LI

+G via the fomulas:

h ⋅ (g1,⋯, gk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(hg1, g2,⋯, gk)
(g1h

−1, hg2,⋯, gk)
⋮

(g1,⋯, gk−1, gkh
−1)

Given an S-point (xI, g1,⋯, gk) of L̃I1,⋯,Ik(G), the section in Γ(ΓxI , i!A(1)) defined by
the sum of the sections in Γ(ΓxIa , i!xIaA(1)) (for ixIa ∶ ΓxIa → S × X the closed immersion)

via (2.9) is identified with the section defined by (xI, g1⋯gk) ∈ LI(G). This identification
induces the isomorphism (2.14).

The isomorphism (2.14) is compatible with refinements of the ordered partition of I, in
the evident sense.

2.2.7. Finally, the A-gerbe G I is also compatible with the factorization structure on HecI
G

(for varying I) in the following sense: (2.2) is upgraded to an isomorphism in the 2-category

of prestacks equipped with an A-gerbe (see §1.2.6) where the A-gerbe over HecI
G is G I and

the A-gerbe over ∏j∈J Hec
Ij
G is the external product

Ò

j∈J G Ij .

The 2-isomorphism rendering (2.3) commutative and the cocycle condition it satisfies also
lift to the 2-category of such pairs.

Remark 2.2.8. The restriction of G I along GrI
G → HecI

G defines a “symmetric factorization
A-gerbe” in the sense of [Rei12]. The symmetry datum is encoded by the 2-isomorphism of

(2.3) corresponding to I↠ J
qÐ→ J where q is an automorphism.

Contrary to [Rei12] and [GL18], we do not take factorization A-gerbes as parameters for
covering groups, although they turn out to be equivalent to étale metaplectic covers over a
smooth curve [Zha20]. An advantage of étale metaplectic covers is that their compatibility

with the convolution structure on HecI
G (and H̃ecI1,⋯,Ik

G ) is essentially tautological.
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2.2.9. Suppose that k is a finite field, I = {1}, and x ∈ X is a k-point.

Let us assume that µ is only defined over D̊x ≅ Spec(Fx). Recall that µ gives rise to a

central extension G̃x of G(Fx) by A (1.20). Let us recover this central extension from the

A-gerbe G {1} via the trace-of-Frobenius construction (see §1.4).

Indeed, write L(G)x for the base change of L{1}(G) to x and Gx for the restriction of

G {1} to L(G)x. Note that k-points of L(G)x are canonically identified with G(Fx). We shall
construct an isomorphism of multiplicative A-torsors over the group G(Fx):

Tr(Fr ∣ Gx)(k) ≅ G̃x. (2.15)

Construction. By the constructions of §2.2.2 and [Zha22, §2.1], the two sides of (2.15) arise
as the compositions of µ ∶ G → B3A(1) with the morphisms on E1-monoids induced from
the two circuits of the following diagram:

Γ(Fx,A(1)[3]) Γ(x,A[2])

Γ(Fx,A(1)[2])[1] A[1]

Cousin

≅ Tr(Fr∣−)

Tate

(2.16)

Here, the bottom horizontal arrow is induced from the Tate-duality map H2(Fx,A(1)) ≅ A.
It remains to note that (2.16) commutes thanks to our normalization of the Tate duality

map (see §1.5.4). �

Remark 2.2.10. If x ∈ X is a closed point with residue field k1 ⊃ k, a small modification is
needed to recover the central extension G̃x from geometry.

Namely, we consider the Weil restriction res(L(G)x) of L(G)x along x → Spec(k). The
A-gerbe Gx defines an A-gerbe Nm(Gx) over res(L(G)x) (see Remark 1.4.8) and we obtain
an isomorphism of multiplicative A-torsors over G(Fx):

Tr(Fr ∣ Nm(Gx))(k) ≅ G̃x,

by combining (1.18) and (2.15).

Remark 2.2.11. It follows from the identification (2.15) that G̃x is canonically split over
the first congruence subgroup G1,x(k) (Remark 2.2.3). If µ is defined over Dx, this splitting
extends to one over G(Ox) by the same remark and coincides with the one in §1.5.4.

2.3. The Satake category.

2.3.1. Let S be a k-scheme. Let Y be a separated S-scheme of finite presentation equipped
with an A-gerbe G .

Recall the ∞-category ShvG (Y) of G -twisted sheaves on Y defined in §1.2.
Denote by ShvG (Y)/S ⊂ ShvG (Y) the full ∞-subcategory of G -twisted sheaves universally

locally acyclic relative to Y → S. The condition of universal local acyclicity is well-defined
for G -twisted sheaves because it is of étale local nature on the source.

The ∞-category ShvG (Y) admits a perverse t-structure relative to Y → S, see [HS23,
Theorem 1.1]. Let PervG (Y) denote its heart. We refer to its objects simply as “perverse
sheaves” on Y.

The full ∞-subcategory ShvG (Y)/S inherits a t-structure ([HS23, Theorem 6.7]). In
particular, we have the abelian category:

PervG (Y)/S ∶= PervG (Y) ∩ ShvG (Y)/S.
These notions generalize to the situation where Y is an ind-scheme of ind-finite presen-

tation via left Kan extension.
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2.3.2. Let us now assume that G→ X is a split reductive group scheme.
Let I be a nonempty finite set. Recall the A-gerbe G I on HecI

G defined by µ in §2.2.
The Satake category is the full subcategory

SatI
G,G I ⊂ ShvG I(HecI

G)

characterized by the following property: an object belongs to SatI
G,G I if its pullback along

π ∶ GrI
G → HecI

G (see Remark 2.1.2) belongs to PervG I(GrI
G)/XI .

Remark 2.3.3. As in the non-twisted setting, SatI
G,G I is an abelian category and the

pullback functor defines a fully faithful embedding:

π∗ ∶ SatI
G,G I ⊂ PervG I(GrI

G)/XI .

In particular, we may view objects of SatI
G,G I as G I-twisted universally locally acyclic

perverse sheaves on GrI
G satisfying an extra “equivariance” condition.

2.3.4. Let us equip SatG,G I with a symmetric monoidal structure, where the monoidal
product is given either by the “convolution”, or the “fusion” product.

The construction explained below is a straightforward adaptation of its non-metaplectic
counterpart. We choose to follow the approach of [FS21, VI] instead of [MV07].

2.3.5. To begin with, since HecI
G admits a convolution structure (§2.1.6) and G I is compat-

ible with it (§2.2.4), the ∞-category ShvG I(HecI
G) admits an E1-monoidal structure.

More concretely, the monoidal product is given by:

F1 ○XI F2 ∶=m!(p∗1F1 ⊗ p∗2F2), (2.17)

passing through the isomorphism (2.13) of A-gerbes. The monoidal unit is given by e!(E)
using the rigidification of G I along e. It clearly belongs to SatI

G,G I .

This E1-monoidal structure is inherited by the full subcategory ShvG I(HecI
G)/XI : the

ind-algebraic stack H̃ec
I,[2]
G is étale locally isomorphic to a product of HecI

G with GrI
G and

universal local acyclicity is preserved under proper pushforward.

2.3.6. Suppose that I admits an ordered partition into nonempty finite sets I = I1 ⊔⋯ ⊔ Ik.
Let Fa be an object of ShvG Ia (HecIa

G ), for 1 ≤ a ≤ k.
We may form their external convolution product using the morphisms in (2.5) and the

isomorphism of A-gerbes (2.14):

○1≤a≤k Fa ∶=m!( ⊗
1≤a≤k

p∗aFa) ∈ ShvG I(HecI
G). (2.18)

Lemma 2.3.7. If each Fa belongs to SatIa
G,G Ia

, then ○1≤a≤kFa belongs to SatI
G,G I .

Proof. The fact that ○1≤a≤kFa is universally locally acyclic relative to XI is argued as in
§2.3.5. It remains to show that ○1≤a≤kFa is perverse over GrI

G relative to XI.
The universal local acyclicity condition implies that this sheaf has zero vanishing cycle

along any specialization of geometric points in XI. Hence its restrictions to geometric fibers
of GrI

G → XI are isomorphic to the nearby cycles of
Ò

1≤a≤kFa over the pairwise disjoint

locus in XI. However, perversity is preserved under the nearby cycle functor [Ill94, Corollaire
4.5]. �

2.3.8. For later convenience, we define a variant of the Satake category associated to a
nonempty finite set I equipped with an ordered partition I ≅ ⊔1≤a≤k Ia into nonempty subsets:

S̃atI1,⋯,Ik
G,G I ⊂ ShvG I(H̃ecI1,⋯,Ik

G ),
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characterized by universal local acyclicity and perversity over G̃rI1,⋯,Ik
G . Here, the A-gerbe

is the pullback of G I along the morphism m in (2.5).

Under the hypothesis of Lemma 2.3.7, the sheaf⊗1≤a≤k p
∗
aFa belongs to S̃atI1,⋯,Ik

G,G I , passing

through the identification of A-gerbes (2.14). Indeed, this is already established in the proof
of Lemma 2.3.7.

2.3.9. The triple (SatI
G,G I , ○X, e!(E)) admits the structure of a monoidal category.

Construction. The construction (2.18) for two copies of the same nonempty finite set I

produces an object F1 ○F2 ∈ ShvG I⊔I(HecI⊔I
G ). Its restriction along the diagonal XI → XI⊔I

is canonically identified with F1 ○X F2.
Combining this observation with Lemma 2.3.7, we see that the E1-monoidal structure on

ShvG I(HecI
G)/XI constructed in §2.3.5 is inherited by SatI

G,G I . �

2.3.10. Given an unordered partition p ∶ I ↠ J, i.e. I ≅ ⊔j∈J Ij as in §2.1.3, we define a
“disjoint” variant of the Satake category:

Satp
G,G I ⊂ ShvG I(HecI

G ×X Xp),

as the full subcategory consisting of objects whose pullback to GrI
G ×X Xp belongs to

PervG I(GrI
G ×X Xp)/Xp .

By [HS23, Theorem 6.8], the restriction functor is fully faithful:

SatI
G,G I ⊂ Satp

G,G I , F ↦F ∣Xp , (2.19)

and its essential image is stable under subquotients.

Given Fj ∈ Sat
Ij

G,G Ij
for each j ∈ J, the external tensor product

Ò

j∈J Fj is a (
Ò

j∈J G Ij)-
twisted sheaf over ∏j∈J Hec

Ij
G . Its restriction

Ò

j∈J Fj ∣Xp may be viewed as a G I-twisted

sheaf over HecI
G ×X Xp using the factorization isomorphism (2.2) and its compatibility with

the A-gerbes (see §2.2.7).
Note that

Ò

j∈J Fj ∣Xp belongs to the essential image of (2.19), and we call the corre-
sponding object the external fusion product :

⋆j∈J Fj ∈ SatI
G,G I . (2.20)

Indeed, given any ordering J ≅ {1,⋯, k}, we may form ○1≤a≤kFa ∈ SatI
G,G I using Lemma

2.3.7 whose restriction along Xp ⊂ XI is identified with
Ò

j∈J Fj ∣Xp .

Remark 2.3.11. By this argument, any ordering on J induces an isomorphism between the
external convolution product (2.18) and the external fusion product (2.20).

2.3.12. Finally, for a nonempty finite set I, the fusion product of two objects F1,F2 ∈
SatI

G,G I is defined to be the restriction of F1 ⋆F2 ∈ SatI⊔I
G,G I⊔I along the diagonal XI → XI⊔I:

F1 ⋆XI F2 ∶= (F1 ⋆F2)∣XI . (2.21)

The triple (SatI
G,G I ,⋆X, e!(E)) admits the structure of a symmetric monoidal category.

The commutativity constraint comes from the fact that the formation of F1 ⋆F2 uses the
unique unordered partition of {1,2}.

Furthermore, Remark 2.3.11 implies that the monoidal structures corresponding to ○X

and ⋆X are identified.
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Remark 2.3.13. Fargues–Scholze [FS21, VI] explains another way to identify these monoidal
structures, which is more natural from a higher categorical perspective.

To wit, the convolution structure upgrades (SatI
G,G I ,⋆X, e!(E)) to an E1-monoidal object

in the 2-category of symmetric monoidal categories, so the two monoidal structures are
identified by a variant of the Eckmann–Hilton argument.

Remark 2.3.14. Note that given a surjection of nonempty finite sets p ∶ I↠ J, with corre-
sponding diagonal ∆p ∶ XJ → XI, the restriction of G I to HecI

G ×XI XJ ≅ HecJ
G is canonically

isomorphic to G J. These isomorphisms are furthermore compatible with compositions.
It follows that the association (I ≠ ∅) ↦ SatI

G,G I defines a functor from the category of

nonempty finite sets with surjections to the 2-category of tensor categories.

2.4. The equivalence.

2.4.1. We now assume that G → X is a reductive group scheme. Notations for the based
root data of G are as in §1.6.2.

Recall that the algebraic fundamental group of G is the sheaf of abelian groups π1(G) ∶=
Λ/Λr, where Λr is the span of Φ.

Let 2ρ̌ ∈ Λ̌ denote the sum of positive roots. Its reduction mod 2 defines a character of
π1(G) valued in Z/2.

In order to state a properly normalized version of the Satake equivalence, we shall assume
the existence of and fix a square root E( 1

2
) of E(1).

2.4.2. For a nonempty finite set I, we tweak the commutativity constraint of SatI
G,G I in the

usual way.
Indeed, the connected components of GrI

G are indexed by π1(G). The symmetric monoidal
category SatI

G,G I acquires a decomposition according to the support of its object:

SatI
G,G I ≅ ⊕

λ∈π1(G)

(SatI
G,G I)λ. (2.22)

This decomposition is compatible with the monoidal structure in the following sense: the
monoidal unit has pure grading 0 ∈ π1(G), and the monoidal product of two objects of pure
grading λ1, λ2 has pure gradings λ1 + λ2.

Set +SatI
G,G I ∶= SatI

G,G I as a monoidal category, but whose commutativity constraint for

a pair of objects from (SatI
G,G I)λ1 , (SatI

G,G I)λ2 is multiplied by (−1)⟨2ρ̌,λ1⟩⟨2ρ̌,λ2⟩.

2.4.3. Let (H, ν) be the metaplectic dual data associated to (G, µ) as in §1.6. Recall the
twist νϑ of ν by the ϑ-characteristic of X (see §1.6.18).

Applying the construction of §1.7.6 to the pair (H, νϑ), we obtain a tensor category

RepI
HI,νI

ϑ
for each nonempty finite set I.

Theorem 2.4.4 (Geometric Satake equivalence). For each nonempty finite set I, there is a
canonical equivalence of tensor categories:

+SatI
G,G I ≅ RepI

HI,νI
ϑ
. (2.23)

2.4.5. The equivalence (2.23) which we shall construct comes equipped with two additional
pieces of compatibility data.
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First, it is compatible with restrictions along the diagonals. Namely, the following diagram
is canonically commutative for every surjection of nonempty finite sets p ∶ I↠ J:

+SatI
G,G I RepI

HI,νI
ϑ

+SatJ
G,G J RepJ

HJ,νJ
ϑ

(∆p
)
∗

≅

(1.39)

≅

(2.24)

where ∆p ∶ XJ → XI denotes the corresponding diagonal. The isomorphism of functors
rendering (2.24) commutative is compatible with compositions.

Secondly, external fusion product (2.20) of the Satake category corresponds to the external
tensor product of representations. Namely, writing Ij ∶= p−1(j), the following diagram is
canonically commutative:

∏j∈J
+Sat

Ij

G,G Ij
∏j∈J Rep

Ij

HIj ,ν
Ij
ϑ

+SatI
G,G I RepI

HI,νI
ϑ

≅

⋆ ⊠

≅

(2.25)

compatibly with compositions.

Remark 2.4.6. The equivalence (2.23) is of étale local nature over X. In particular, it may
be viewed as an equivalence of stacks of tensor categories on the étale site of X.

2.4.7. Let us specialize to the case I = {1}. Viewing (2.23) as an equivalence of stacks of
tensor categories on Xét, its stalk at a closed point x ∈ X yields an equivalence of tensor
categories:

+SatG,G ,x ≅ RepH,νϑ,x
. (2.26)

Choosing an algebraic closure kx ⊂ k̄x (corresponding to a morphism x̄ → x), the right-
hand-side of (2.26) is monoidally equivalent to RepH,0νϑ,x

, hence to the representation cat-

egory Repalg(LHx,ϑ) according to Remark 1.7.5. (To define LHx,ϑ, one may need to replace
E by a finite extension.)

If X satisfies condition (1.1), the local (integral) L-group LHx,ϑ is also identified with the
restriction of LHX,ϑ along π1(x, x̄) → π1(X, x̄).

2.4.8. Suppose that k is a finite field. We obtain a homomorphism of E-algebras:

K0(Repalg(LHx,ϑ)) ⊗E ≅ K0(+SatG,G ,x) ⊗E

→ Func(G(Ox)/G̃x/G(Ox),A ⊂ E×), (2.27)

where the first isomorphism is the application of the monoidal invariant K0(−)⊗E to (2.26),
and the second homomorphism is the trace of the geometric Frobenius ϕx ∈ Gal(k̄x/kx) at
each kx-point of HecG,x.

For an object V ∈ Repalg(LHx,ϑ), we denote by hV,x its image under (2.27), and call it
the (unramified) Hecke operator associated to V at the point x.

Remark 2.4.9. Let Hϕx ⊂ LHx,ϑ denote the preimage of ϕx. Using the argument of [Zhu17,
§5.6], it is possible to show that (2.27) factors through an isomorphism of E-algebras:

Γ(Hϕx//H,O) ≅ Func(G(Ox)/G̃x/G(Ox),A ⊂ E×) (2.28)
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where the left-hand-side is the E-algebra of algebraic functions on Hϕx invariant under H-

conjugation. It receives a morphism from K0(Repalg(LHx,ϑ)) ⊗ E by mapping V to the
character of its restriction to Hϕx .

The isomorphism (2.28) for metaplectic covers arising from algebraic K-theory over any
local field has already been obtained by McNamara [McN12, Theorem 10.1]. We will not
use (2.28) in this article.

2.5. The Satake functors.

2.5.1. We keep the notations of §2.4.

2.5.2. For a nonempty finite set I, we replace +SatI
G,G I by SatI

G,G I on one side of the geo-

metric Satake equivalence and νϑ by its Z-linear component 0νϑ (see §1.6) in the formation
of the other side. Both modifications only change the commutativity constraint.

In this manner, we obtain from (2.23) an equivalence of monoidal categories:

SatI
G,G I ≅ RepI

HI,0νI
ϑ
. (2.29)

For a surjection of nonempty finite sets p ∶ I ↠ J, the compatibility data of (2.29) with
respect to restrictions along the diagonal and external fusion products are given by (2.24)
and (2.25) on the underlying monoidal categories.

2.5.3. Let us now assume that X is connected and satisfies condition (1.1).
We fix a geometric point η̄ of X and a rigidification of 0νϑ along η̄. In this set-up, we

have the extension (1.34):

1→ Hη̄(E) → LHX,ϑ → π1(X, η̄) → 1,

where Hη̄ is the fiber of H at η̄, viewed as a pinned split reductive group over E.

2.5.4. Let I be a nonempty finite set together with an ordered partition I ≅ ⊔1≤a≤k Ia into
nonempty finite subsets.

Composition of the equivalence (1.37), the external tensor product, and (2.29) defines a
functor of monoidal categories:

∏
i∈I

Repalg(LHX,ϑ) ≅∏
i∈I

Rep
{i}
H,0νϑ

⊠Ð→ ∏
1≤a≤k

RepIa
HIa ,0νIa

ϑ

≅ ∏
1≤a≤k

SatIa
G,G Ia

⊗p
∗
aÐÐ→ S̃atI1,⋯,Ik

G,G I , (2.30)

where the functors p∗a are pullbacks along the morphism in (2.5) (see §2.3.8).

We shall argue that (2.30) factors through the category Repalg((LHX,ϑ)I). This can be
done by playing with the regular representation as in [Gai07, Appendix B], but we supply
another argument.

2.5.5. Let Γ be a profinite group and LH an extension of Γ by Hη̄(E). For a nonempty
finite set I, the I-fold product (LH)I is an extension of ΓI by HI

η̄(E). In particular, we may

form the tensor category Repalg((LH)I) (see Remark 1.7.5).
Recall the notion of tensor product of E-linear abelian categories in [Del90, 5.1]: it is the

universal recipient of E-multilinear functors which are right exact in each factor.
Over a perfect field, the tensor product of tensor categories satisfying a finiteness condition

acquires a canonical tensor structure ([Del90, 5.17]). This applies to Repalg(LH).
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Lemma 2.5.6. The tensor product of restrictions of representations along each projection
(LH)I → LH induces an equivalence of tensor categories:

⊗
i∈I

Repalg(LH) ≅ Repalg((LH)I). (2.31)

Proof. The tensor category Repalg(LH) is Tannakian with fiber functor ω being the functor
of forgetting the LH-action. The sheaf of automorphisms Aut(ω) is thus representable by

an affine group scheme LHalg over E, and Repalg(LH) is equivalent to the category of finite-
dimensional representations of LHalg.

Given a finite-dimensional E-vector space V, its lift to an object of Repalg((LH)I) is
equivalent to commuting continuous actions of LH indexed by I, satisfying the algebraicity
condition over H(E): this is equivalent to an action of (LHalg)I. Hence we have ((LH)I)alg ≅
(LHalg)I and the equivalence (2.31) follows from [Del90, 6.21]. �

2.5.7. The functor (2.30), being E-multilinear and right exact in each factor, canonically
factors through a right exact monoidal functor according to Lemma 2.5.6:

S I1,⋯,Ik ∶ Repalg((LHX,ϑ)I) → S̃atI1,⋯,Ik
G,G I . (2.32)

We shall call S I1,⋯,Ik the Satake functor associated to the nonempty finite set I together
with the ordered partition I ≅ ⊔1≤a≤k Ia.

Furthermore, the functors (2.32) are compatible with change of the partitioned set. More
precisely, given nonempty finite sets I, J, nonempty ordered finite sets K1, K2 and a com-
mutative diagram of surjective morphisms where q is order-preserving:

I K1 {1,⋯, k1}

J K2 {1,⋯, k2}

p q

≅

≅

(2.33)

we have a canonically commutative diagram of E-linear abelian categories:

Repalg((LHX,ϑ)I) S̃at
I1,⋯,Ik1

G,G I

Repalg((LHX,ϑ)J) S̃at
J1,⋯,Jk2

G,G J

S
I1,⋯,Ik1

(∆p
)
∗

(mq)!⋅(∆
p
)
∗

S
J1,⋯,Jk2

(2.34)

Here, mq ∶ H̃ec
I1,⋯,Ik1

G ×XI XJ → H̃ec
J1,⋯,Jk2

G is defined by composing the modifications corre-
sponding to those segments in K1 defined by fibers of q.

The commutativity of (2.34) follows from a combination of (2.24), (2.25), and the identi-
fication of external fusion and convolution products (Remark 2.3.11). It is compatible with
compositions of squares of the type (2.33).

Remark 2.5.8. Our Satake functors and their compatibility data (2.34) are parallel to the
assertions of [Laf18, Théorème 1.17].

Indeed, (c) of loc.cit. comes from our definition of the Satake functors. Assertions (b)
and (d) are obtained by setting I = J, respectively K1 = K2 in (2.34). (However, we only
use functoriality with respect to surjective maps.) The remaining assertion (a) will be
established in the course of the proof of Theorem 2.4.4.
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3. Proofs

This section is entirely dedicated to the proof of Theorem 2.4.4. The proof follows the
same overarching structure as [MV07] and shares many common features with [FL10].

The first two subsections §3.1–3.2 treat the case for split tori. The difficulties in this case
are mostly of categorical nature, and closely related statements have appeared in [Rei12]
and [GL18]. However, since our metaplectic dual data are not defined using factorization
gerbes, our results are not direct consequences of [Rei12, GL18].

Then, we study SatI
G,G I for I = {1} as an abelian category in §3.3. The methods in the

non-metaplectic setting carry over with minimal modifications.
Subsections §3.4–3.6 are dedicated to the study of the constant term functor. The con-

struction of the “fiber functor” in the metaplectic context differs substantially from the
non-metaplectic one. It requires constructing a tensor decomposition of SatI

G,G I according

to ZI
H-weights. The method we use involves a study of the A-gerbe G I over the Mirković-

Vilonen cycles, which is hopefully interesting in its own right.
The last subsection §3.7 reconstructs H using a relative Tannakian formalism. It is a

variant of [FS21, VI.10] and contains few surprises.

3.0.1. We remain in the context of §2.0.1 throughout this section. Furthermore, we assume
the existence of and fix a square root E( 1

2
) of E(1). (It will be used from §3.3 onwards.)

For a nonempty finite set I, the notation G I stands for the A-gerbe on HecI
G constructed

in §2.2. The metaplectic dual data (H, ν) are defined as in §1.6.

3.1. Split tori: reduction to T♯.

3.1.1. Suppose that G = T is a split torus with sheaf of cocharacters Λ.
Recall from §1.6.5 that µ defines a quadratic form Q on Λ, and we let Λ♯ ⊂ Λ be the

kernel of the associated symmetric form b. Let f ∶ T♯ → T denote the corresponding isogeny
of split tori. For a nonempty finite set I, we obtain a morphism:

f I ∶ GrI
T♯ → GrI

T. (3.1)

We use the same notation for the map on Hecke stacks f I ∶ HecI
T♯ → HecI

T. The pullback
of G I along f I is identified with the A-gerbe associated to the restriction of µ to T♯, by
functoriality of the construction. The notation G I is retained for its restriction.

The goal of this subsection is to prove the following statement.

Proposition 3.1.2. Let I be a nonempty finite set. Then pushforward along (3.1) defines
an equivalence of tensor categories:

SatI
T♯,G I ≅ SatI

T,G I . (3.2)

3.1.3. For a tuple λI = (λi)i∈I of elements of Λ, we have a closed immersion XI → GrI
T

sending an S-point xI to the T-torsor O(∑i∈I λixi) together with its canonical trivialization
off ΓxI . We view its image as a closed subscheme:

XλI

⊂ GrI
T. (3.3)

Since the LI
+(T)-action on GrI

T is trivial, we obtain a closed substack BXλI (LI
+(T)) ⊂ HecI

T

by taking the quotient of (3.3) by the LI
+(T)-action.

Consider the special case I = {1} and λ1 = λ ∈ Λ. Restricting sections of T along Γx ⊂ Dx

defines a morphism L
{1}
+ (T) → T. We label the corresponding morphisms on their classifying
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stacks (relative to Xλ ≅ X) as in the following diagram:

Xλ Xλ

Hec
{1}
T BXλ(L{1}

+ T) X

BX(T) X

e

≅
≅

pT

piλ

≅

(3.4)

3.1.4. Recall from §1.3.6 that any section a ∈ A(−1) defines the multiplicative A-torsor Ψa

on Gm, thus a rigidified section of B2A over BGm.
There is an isomorphism of étale sheaves over X:

Λ̌⊗A(−1) ≅ Mapse(BXT,B2
XA), x⊗ a↦ x∗(Ψa), (3.5)

where the target is the sheaf of rigidified sections of B2(A) over BX(T). This follows from
the calculation of étale cohomlogy of BX(T) as in [Zha22, §4].

In particular, the character b(−, λ) ∶ Λ→ A(−1) defines a rigidified section of B2(A) over

BX(T), to be denoted by Ψb(−,λ).

3.1.5. As observed in [Zha22, §4.5], the E1-monoidal morphism underlying the metaplectic
dual datum ν♯ of §1.6.5 canonically extends from Λ♯ to Λ.

For each λ ∈ Λ, we denote by νϑ(λ) the A-gerbe ν(λ)⊗ωQ(λ)
X , where ω

Q(λ)
X is the A-gerbe

induced from ωX along ΨQ(λ) ∶ Gm → B(A). We shall view the association λ ↦ νϑ(λ) as
a pointed morphism Λ → B2

X(A). Note that its restriction to Λ♯ is the pointed morphism
underlying the E∞-monoidal morphism νϑ defined in §1.6.18.

We now establish the relationship between νϑ and the A-gerbe G {1}.

Lemma 3.1.6. For each λ ∈ Λ, there is a canonical isomorphism of A-gerbes, in reference
to the morphisms in (3.4):

(iλ)∗G {1} ≅ p∗νϑ(λ) ⊗ (pT)∗(Ψb(−,λ)). (3.6)

(For λ = 0, this is the identity automorphism of the trivial A-gerbe.)

3.1.7. We begin the proof of Lemma 3.1.6 with an observation: since the kernel of the
projection LI

+(T) → T is pro-unipotent, pulling back along pT defines an equivalence on the
(resp. discrete) groupoid of (resp. rigidified) A-gerbes.

It thus suffices to perform the two tasks below:

(1) construct a canonical isomorphism:

e∗(iλ)∗G {1} ≅ νϑ(λ); (3.7)

(2) show that the rigidified A-gerbe (iλ)∗G {1}⊗p∗νϑ(λ)⊗−1 equals the character b(−, λ)
under the isomorphism (3.5).

3.1.8. In order to construct the isomorphism (3.7), we shall make use of an observation
about étale metaplectic covers of Gm.

Consider the following commutative diagram of stacks over X:

X X ×X BXGm

X

i

id
p

O(∆)
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where i is the diagonal immersion and p is the projection onto the first factor. Pulling back
along O(∆) and composing with the second row of (2.10), we find a morphism of complexes:

Γe(BXGm,A(1)[4]) O(∆)
∗

ÐÐÐÐ→ Γ(X, i!A(1)[4]) ≃Ð→ Γ(X,A[2]). (3.8)

The second map here is identified with the isomorphism induced from cohomological purity
of the diagonal divisor: i!A(1)[4] ≅ A[2]. Truncating in degrees ≤ 0, the morphism (3.8)
gives rise to a Z-linear morphism:

Γe(BXGm,B4A(1)) → Γ(X,B2A). (3.9)

On the other hand, the Z-linear decomposition (1.25) gives rise to a Z-linear decomposi-
tion below upon taking sections over X:

Γe(BXGm,B4A(1)) ≅ Γ(X,B2A) ⊕ Γ(X,A(−1)). (3.10)

Lemma 3.1.9. Under the decomposition (3.10), the Z-linear morphism (3.9) is the sum of
Γ(X,−) applied to the two morphisms below:

id ∶ B2A→ B2A, and

Ψ∗ωX ∶ A(−1) → B2A defined as in §1.6.17.

Proof. It suffices to identify (3.9) after pre-composition with the inclusion of the first, re-
spectively the second summand in (3.10).

For the first summand, this follows from the fact that:

Γ(X,A[2]) Ψ∗
Ð→ Γe(BXGm,A(1)[4]) O(∆)

∗
ÐÐÐÐ→ Γ(X, i!A(1)[4]) (3.11)

is identified with the purity isomorphism. Here, we have (slightly abusively) used Ψ to
denote the delooping of the Kummer torsor (1.12) over Gm:

Ψ ∶ BXGm → lim
n≥0

invertible

B2(µn), (3.12)

which may be viewed as a limit of rigidified sections of µn[2] over BXGm, so pairing with
them defines the first map in (3.11).

For the second summand, we recall that the inclusion of A(−1) in Γe(BXGm,B4A(1))
is defined by sending a to the ath power of the self-cup product Ψ ∪ Ψ of (3.12), which is
isomorphic to the section Ψa ∈ Γe(BXGm,B2A) induced along the map:

Ψ∗(Luniv) ∶ A[2] → A(1)[4] (3.13)

defined by the universal line bundle Luniv on BXGm as in §1.6.17.
By functoriality of the purity isomorphism with respect to change of coefficients (3.13),

the following diagram is commutative:

Γ(X,A(−1)) Γ(X,A[2])

Γ(X, i!A[2]) Γ(X, i!A(1)[4])

Ψ∗ωX

≅ ≅

Ψ∗O(∆)

(3.14)

Let us view (3.14) as expressing the top horizontal arrow Ψ∗ωX as the composition of
the three other arrows. The latter is indeed isomorphic to the composition of (3.9) with the
inclusion of the summand Γ(X,A(−1)). �
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Proof of Lemma 3.1.6. Let us construct the isomorphism (3.7) for each λ ∈ Λ. Pulling back
µ along the cocharacter λ ∶ Gm → T, we find an étale metaplectic cover λ∗(µ) of Gm.

The construction of G {1} shows that e∗(iλ)∗G {1} is the image of λ∗(µ) under the mor-
phism (3.9). By Lemma 3.1.9, there holds:

e∗(iλ)∗G {1} ≅ ν(λ) ⊗ ωQ(λ)
X ,

where the right hand side is identified with νϑ(λ) by definition.
We now turn to task (2) of §3.1.7. Since it asserts the equality of two sections of Λ̌⊗A(−1)

over Xλ, we may verify it over an arbitrary geometric point x̄ of X.
We omit the superscript {1} and use the subscript “x̄” to mean the base change to x̄.

The base change of Xλ to x̄ will simply be written as x̄λ.
We fix a uniformizer $ at x̄, which defines a geometric point $λ of L(T)x̄.
By construction, the A-gerbe over (HecT)x̄ is defined by an E1-monoidal A-gerbe:

G ∶ L(T)x̄ → B2(A) (3.15)

along with its trivialization over L+(T)x̄ as in (2.8). Indeed, the trivialization equips G
with left and right L+(T)x̄-equivariance structures, which are its descent data along the
projection L(T)x̄ → (HecT)x̄.

As L+(T)x̄ acts trivially on x̄λ, the L+(T)x̄-equivariance structure on e∗(iλ)∗(G ) ≅ Gx̄λ
is described by a rigidified A-torsor τλ over L+(T)x̄. Its value at an S-point t ∈ L+(T)x̄ is
the quotient of the lower circuit by the upper circuit of the square below:

G$λ⋅t G$λ ⊗ Gt

Gt⋅$λ Gt ⊗ G$λ

(3.16)

Here, the horizontal morphisms are the E1-monoidal structure of G , the left vertical arrow
is induced from $λ ⋅ t = t ⋅$λ, and the right vertical arrow is the commutativity constraint
of the 2-groupoid of A-gerbes.

It suffices to identify τλ with Ψb(−,λ) as a rigidified A-torsor over L+(T)x̄, or equivalently
as a rigidified A-torsor over Tx̄.

Recall that µ may be regarded as an E1-monoidal morphism T→ B3
XA(1). The morphism

T × T → B2
XA(1), sending a pair of S-points (t1, t2) to the quotient of the lower circuit by

the upper circuit of the square below (with morphisms analogous to (3.16)):

µt1⋅t2 µt1 ⊗ µt2

µt2⋅t1 µt2 ⊗ µt1

is rigidified along e × T and T × e: it is a “bi-rigidified morphism” in the sense of [Zha22,
§4.4.2]. As such, it agrees with the commutator of the corresponding extension of T by
B2

XA(1), and equals (Ψ ∪Ψ)b by [Zha22, Corollary 4.7.6].

Finally, we observe that (3.15) is obtained from µ by taking sections over D̊x̄, which is
identified with the punctured formal disc of Gm at e. The fiber of (Ψ∪Ψ)b at Tx̄ ×$λ then

induces Ψb(−,λ) along the canonical morphism Γ(D̊x̄,A(1)[2]) → A[1]. �
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Proof of Proposition 3.1.2. Let us embed the Satake categories for T♯ and T into their ana-
logues over the pairwise disjoint locus (corresponding to Xp for p = idI) using (2.19):

SatI
T♯,G I Satp

T♯,G I

SatI
T,G I Satp

T,G I

⊂

(f I
)! (f I

)!

⊂

(3.17)

Here, f I ∶ GrI
T♯ → GrI

T is the closed immersion corresponding to the isogeny f ∶ T♯ → T.
Claim: the right vertical functor in (3.17) is an equivalence.
Indeed, f is an inclusion of connected components over Xp, so it suffices to show that any

F ∈ Satp
T,G I is supported on the union of XλI ×XI Xp with λI is a tuple of elements in Λ♯.

The base change of LI
+(T) to a geometric point x̄I ∈ Xp is identified with ∏i∈I L

{i}
+ (T)x̄i .

Given a tuple λI = (λi)i∈I with λi ∈ Λ, the A-gerbe G I restricts to
Ò

i∈I G
{i}

x̄i
over its classifying

stack, viewed as a substack of (HecI
T)x̄.

By Lemma 1.3.5 and Lemma 3.1.6, it suffices to prove:

H0(∏
i∈I

Tx̄,
ò

i∈I

Ψb(−,λi)) = 0 if some λi ∉ Λ♯.

This follows from the vanishing of global sections of Ψa for a ≠ 0 ∈ A(−1), see §1.3.6.
To show that the left vertical functor in (3.17) is an equivalence, it remains to show that it

is essentially surjective. Since the essential image of (2.19) is closed under direct summands,

an object F ∈ Satp
T,G I belongs to SatI

T,G I if and only if its restriction to each XλI ×XI Xp

extends to a lisse E-sheaf on XλI

. The same assertion for T♯ then concludes the proof. �

Remark 3.1.10. The proof of Proposition 3.1.2 also shows that SatI
T♯ is equivalent to the

abelian category Perv(GrI
T♯)/XI of perverse, universally locally acyclic E-sheaves on GrI

T♯ ,

i.e. the LI
+(T♯)-equivariance condition is automatic.

The analogous statement for T instead of T♯ is emphatically false.

3.2. Split tori: equivalence.

3.2.1. We continue to suppose that G = T is a split torus with sheaf of cocharacters Λ.
Furthemore, we assume that the symmetric form b vanishes, i.e. Λ♯ = Λ.

Under this assumption, the étale metaplectic cover µ ∶ BX(T) → B4
XA(1) canonically lifts

to an E∞-monoidal morphism, see [Zha22, §4.6].
The metaplectic dual data (H, ν) admit a concrete description:

(1) H is the dual torus Ť over E;
(2) ν ∶ Λ → B2

XA is obtained from µ by taking rigidified sections over BXGm, and
composing with the projection from Γe(BXGm,B4

XA(1)) onto B2
XA.

Our current goal is to prove the geometric Satake equivalence for such (T, µ).
Proposition 3.2.2. For a nonempty finite set I, there is a canonical equivalence of tensor
categories:

SatI
T,G I ≅ RepI

ŤI,νI
ϑ

. (3.18)

3.2.3. For a nonempty finite set I, we regard GrI
T as an étale sheaf of abelian groups over

XI, being defined by the quotient LI(T)/LI
+(T). The collection of closed immersions (3.3)

is gathered into a morphism of sheaves of abelian groups ΛI → GrI
T, the source being the

external direct sum of Λ over i ∈ I.
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Since µ admits an E∞-monoidal structure, the commutative diagram (for G = T) lifts to
a commutative diagram of étale sheaves of E∞-monoids over XI. In particular, G I may be
viewed an E∞-monoidal morphism GrI

T → B2
XI(A).

Composing these two morphisms, we obtain an E∞-monoidal morphism:

ΛI → B2
XI(A), λI ↦ e∗(iλ

I

)∗G I. (3.19)

Lemma 3.2.4. The E∞-monoidal morphism (3.19) is canonically identified with:

νI
ϑ ∶ ΛI → B2

XI(A), (λi)i∈I ↦
ò

i∈I

νϑ(λi),

where the E∞-monoidal morphism νϑ is defined as in §1.6.18.

Proof. For each i ∈ I, let γi ∶ Γxi ≅ XI → XI × X denote the graph of the ith projection
xi ∶ XI → X. The union of the graphs is denoted by γ ∶ ΓxI → XI ×X. (We are following the
notations of §2.1, viewing xI = (xi)i∈I as an XI-point of X.) We also have the projections
p1 ∶ XI ×X→ XI, p2 ∶ XI ×X→ X onto the XI, respectively the last factor.

Recall that sheaves of grouplike E∞-monoids are equivalent to sheaves of connective
spectra, where the functor B corresponds to suspension [1].

The pullback p∗2(µ) defines a morphism of sheaves of connective spectra p∗2(µ) ∶ T[1] →
A(1)[4] over XI, and induces a commutative diagram of such:

ΛI ⊕i∈I(γi)!T[1] ⊕i∈I(γi)!A(1)[4]

(p1 ⋅ γ)∗γ!T[1] (p1 ⋅ γ)∗γ!A(1)[4]

A[2]

p∗2(µ)

∑ ∑

p∗2(µ) (3.20)

Here, the first horizontal morphism sends (λi)i∈I to the section (O(λiΓxi))i∈I, and the last
vertical morphism is the one from (2.10).

The upper circuit of (3.20) is the morphism (3.19). The lower circuit of (3.20) is the
external sum of the morphisms Λ → A[2] defined by (3.19) for the singleton {i}. The
construction thus reduces to the case I = {1}, where it is given by (3.7).

To see that (3.7) is compatible with the E∞-monoidal structures, we note that (3.19) for
I = {1} may be re-expressed as the composition of E∞-monoidal morphisms:

Λ
≃Ð→ Γe(BXGm,BXT) µÐ→ Γe(BXGm,B4A(1)) (3.9)ÐÐ→ Γ(X,B2A).

On the other hand, Lemma 3.1.9 identifies (3.9) as the sum of the identity endomorphism
on Γ(X,B2A) and the section of Ψ∗(ωX) over X.

These two components give rise to the E∞-monoidal morphism ν ∶ Λ → B2
X(A), respec-

tively the Z-linear morphism ωQ
X ∶ Λ→ B2

X(A) of §1.6.18. �

Proof of Proposition 3.2.2. Let us construct the tensor equivalence (3.18).

Consider the product map m ∶ ∏i∈I Gr
{i}
T → GrI

T of ind-schemes over XI. (Any ordering

I ≅ {1,⋯, k} realizes ∏i∈I Gr
{i}
T as the ind-scheme G̃r

{1},⋯,{k}

T of §2.1.5 and m the composition
of all modifications.)
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Note that the reduced sub-indscheme of ∏i∈I Gr
{i}
T represents the étale sheaf ΛI. Using

Lemma 3.2.4, we find functors of tensor categories:

RepI
Ť,νI

ϑ

≅ ⊕
λI∈ΛI

LisνI
ϑ
(λI)(XI)

≅ PervG I(∏
i∈I

Gr
{i}
T )/XI

m!Ð→ PervG I(GrI
T)/XI ≅ SatI

T,G I , (3.21)

where SatI
T,G I is equipped with the tensor structure induced from the E∞-monoidal mor-

phism G I ∶ GrI
T → B2

XI(A). This tensor structure naturally extends the convolution monoidal

structure ○X on SatI
T,G I .

Equiped with this tensor structure, SatI
T,G I still coincides with (SatI

T,G I ,⋆X, e!(E)) defined

by the fusion product, as it lifts the latter to an E∞-monoid in the 2-category of symmetric
monoidal categories, cf. Remark 2.3.13.

It remains to show that the functor m! in (3.21) is an equivalence. By universal local
acyclicity, both categories embed fully faithfully in their analogues over the pairwise disjoint
locus Xp ⊂ XI (see §2.3.10), where they are both equivalent to Satp

T,G I . This implies that m!

is fully faithful. To see that it is essentially surjective, we observe that an object F ∈ Satp
T,G I

belongs to SatI
T,G I if and only if its restriction to each XλI ×XI Xp extends to a lisse E-sheaf

on XλI

, as the essential image of (2.19) is closed under direct summands. �

3.2.5. We relax the condition b = 0, i.e. µ stands for any étale metaplectic cover of T.
We shall construct the geometric Satake equivalence (2.23) for split tori.

Construction of (2.23) for G = T. Let T♯ → T be the isogeny of split tori corresponding to
Λ♯ ⊂ Λ as in §3.1.1.

The metaplectic dual pair (H, ν) is precisely the pair H = Ť♯, ν ∶ Λ♯ → B2
X(A) associated

to T♯ and the restriction of µ as in §3.2.1.
The equivalence (2.23) is thus the composition of the inverse of (3.2) with (3.18):

SatI
T,G I ≅ SatI

T♯,G I ≅ RepI
HI,νI

ϑ
.

Theorem 2.4.4 for tori is proved. �

3.3. The abelian category SatG,G .

3.3.1. Let us now turn to the context where G → X is split reductive with chosen Borel
subgroup B ⊂ G. Choose furthermore a splitting of B↠ T and view T as a maximal torus
of G.

The goal of this subsection is to determine SatI
G,G I as an abelian category for I = {1}. To

lighten the notations, we omit the superscript I in this subsection.

3.3.2. Write Λ+ ⊂ Λ for the submonoid consisting of dominant cocharacters. Each λ ∈ Λ+

determines a Schubert cell GrλG as the L+G-orbit of Xλ, embedded in GrλG along (3.3) and
the closed immersion GrT ⊂ GrG.

The closure of GrλG is identified with Gr≤λG ∶= ⋃λ1≤λGrλ1

G . Denote by jλ ∶ GrλG ⊂ Gr≤λG the
open immersion.

Write Pλ ⊂ G for the standard parabolic subgroup corresponding to the simple roots
annihilated by λ. It has Levi quotient Mλ. The quotient map L+G → G induces a map on
their homogeneous spaces GrλG → G/Pλ, see [Zhu17, §2.1]. Its quotient by L+G on the source
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and G on the target defines a map L+G/GrλG → BX(Pλ), hence a map pMλ fitting into the
following commutative diagram:

Xλ Xλ

HecG L+G/GrλG X

BX(Mλ) X

e

≅
≅

iλ

p
Mλ

p

≅

(3.22)

3.3.3. Since Mλ is reductive, the groupoid of rigidified A-gerbes over BX(Mλ) is identified
with the discrete abelian group Hom(π1(Mλ),A(−1)). This follows, for example, from
[Zha22, Proposition 5.1.11].

The natural map T → Mλ induces a surjection Λ → π1(Mλ) whose kernel is spanned by
simple coroots whose associated roots are annihilated by λ. Via this map, rigidified A-gerbes
over BX(Mλ) form an abelian subgroup of those over BX(T).

Recall the rigidified A-gerbe Ψb(−,λ) defined in §3.1.4. The identity (1.23) implies that

Ψb(−,λ) defines a rigidified A-gerbe over BX(Mλ).

3.3.4. The following Lemma is a generalization (and corollary) of Lemma 3.1.6. It is an
analogue of [FL10, Lemma 2.4] in étale cohomology.

Lemma 3.3.5. For each λ ∈ Λ+, there is a canonical isomorphism of A-gerbes, in reference
to the morphisms in (3.22):

(iλ)∗G ≅ p∗νϑ(λ) ⊗ (pMλ)∗(Ψb(−,λ)). (3.23)

(For λ = 0, this is the identity automorphism of the trivial A-gerbe.)

Proof. Since the kernel of L+G→ G is pro-unipotent, pulling back by pMλ defines an equiv-
alence on the groupoid of (rigidified) A-gerbes.

By Lemma 3.1.6, we already have an isomorphism:

e∗(iλ)∗G ≅ νϑ(λ).

It remains to show that (iλ)∗G ⊗ p∗νϑ(λ)⊗−1 equals Ψb(−,λ) as rigidified A-gerbes over
BX(Mλ). This statement can be proved after pulling back along BX(T) → BX(Mλ), where
it again reduces to Lemma 3.1.6. �

3.3.6. Let λ ∈ Λ♯,+ ∶= Λ♯ ∩ Λ+. The isomorphism (3.23) shows that pulling back along the
projection p carries the A-gerbe νϑ(λ) to the restriction of G .

In particular, any νϑ(λ)-twisted E-local system E over X pulls back to a G -twisted L+G-

equivariant E-local system p∗(E ) over GrλG. Up to cohomological shift and Tate twist, we
may form its intermediate extension along jλ as an object of SatG,G :

ICE ∶= (jλ)!∗p
∗E (⟨ρ̌, λ⟩)[⟨2ρ̌, λ⟩] ∈ SatG,G .

Here, ⟨ρ̌, λ⟩ ∈ 1
2
Z and the Tate twist is formed with the aid of E( 1

2
).

Proposition 3.3.7. The functor below is an equivalence of E-linear abelian categories:

⊕
λ∈Λ♯,+

Lisνϑ(λ)(X) → SatG,G , (E λ) ↦ ⊕
λ∈Λ♯,+

ICEλ . (3.24)
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Proof. For each λ ∈ Λ♯,+, the morphism p in (3.22) is smooth with connected fibers. It
follows that (3.24) restricts to a fully faithful functor on each summand.

By the definition of intermediate extensions, the images of distinct summands under (3.24)
are orthogonal. Thus (3.24) is fully faithful. It remains to show that it is also essentially
surjective, i.e. any F ∈ SatG,G is a direct sum of objects of the form ICEλ over λ ∈ Λ♯,+.

For each λ ∈ Λ+, we let Fλ ∈ Lisνϑ(λ)(X,E) denote the restriction of F to Xλ. If λ ∉ Λ♯,+,

it follows from Lemma 1.3.5 and Lemma 3.3.5 that Fλ = 0, so the restriction of F to GrλG
vanishes by L+G-equivariance. If λ ∈ Λ♯,+, the restriction of F to GrλG is given by p∗(Fλ).
Thus F is an iterated extension of the objects ICFλ over λ ∈ Λ♯,+.

It remains to show that for λ1 ≠ λ2, the images of Lisνϑ(λ1)(X) and Lisνϑ(λ2)(X) in SatG,G

have no nonsplit extensions. Since their images are orthogonal, it suffices to prove that there
are no nonsplit extensions of their fibers at a geometric point of X. This is proved by Reich
([Rei12, Proposition IV.6.13]).4 �

Remark 3.3.8. For G = T, the decomposition (3.24) coincides with (3.21) appearing in the
proof of Proposition 3.2.2.

Contrary to the case of tori, (3.24) is incompatible with the monoidal structure on SatG,G ,
i.e. the monoidal product of two homogeneous objects is in general inhomogeneous.

3.4. Constant terms: construction.

3.4.1. Suppose that P ⊂ G is a standard parabolic subgroup with unipotent radical NP ⊂ P
and Levi quotient P↠M.

The restriction of µ to B(P) canonically descends to an étale metaplectic cover of M.

3.4.2. For a nonempty finite set I, the construction of §2.2 for M produces an A-gerbe G I
M

over HecI
M. We have an isomorphism of A-gerbes:

p∗(G I) ≅ q∗(G I
M) (3.25)

along the canonical morphisms p ∶ HecI
P → HecI

G and q ∶ HecI
P → HecI

M.
Define the (näıve) constant term functor to be the following functor of E-linear stable

∞-categories, using the isomorphism (3.25):

CTI
P ∶ ShvG I(HecI

G) → ShvG I
M
(HecI

M), F ↦ q!p
∗(F ). (3.26)

3.4.3. Since the connected components of HecI
M are enumerated by π1(M), the sum of

positive roots occurring in NP defines a character 2ρ̌P ∶ π1(M) → Z, which we view as a

locally constant function on HecI
M. (In particular, 2ρ̌B = 2ρ̌.)

We shall adjust (3.26) by a cohomological shift by 2ρ̌P and Tate twist by ρ̌P (with the
aid of E( 1

2
)). The result will be a tensor functor on the Satake categories with modified

commutativity constraints, as defined in §2.4.

Proposition 3.4.4. The functor (3.26) induces an exact tensor functor:

CTI
P(ρ̌P)[2ρ̌P] ∶ +SatI

G,G I → +SatI
M,G I

M
. (3.27)

4In a previous version, I erroneously asserted that this statement follows from the argument of [MV07]

which reduces it to Lusztig’s parity vanishing. However, the proof of the parity vanishing does not apply in

the twisted context because the gerbes are nontrivial when pulled back to the Demazure resolutions. Reich’s
argument uses instead the fact that the convolution product of simple perverse sheaves is semisimple. I

thank Dennis Gaitsgory for pointing out this error.
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Proof. The proof is identical to its non-metaplectic counterpart and follows from Braden’s
hyperbolic localization theorem. We briefly indicate the argument.

Claim: CTI
P(ρ̌P)[2ρ̌P] carries the abelian subcategory SatI

G,G I to SatI
M,G I

M

.

Indeed, after establishing the claim, the tensor structure on CTI
P(ρ̌P)[2ρ̌P] arises from its

commutation with the external fusion products (see §2.3.10). Note that due to the degree
shift [2ρ̌P], the Koszul sign rule implies that CTI

P(ρ̌P)[2ρ̌P] is compatible with exchanging
factors after modifying the commutativity constraints.

To prove the claim, we may split the Levi quotients of B and P and view M as a subgroup
of G contaning the maximal torus T. Let P− ⊂ G be the parabolic subgroup opposite to
P. The local Hecke stack HecI

P− is equipped with projections p−, q− to HecI
G, respectively

HecI
M. There is a functor:

CTI,!
P− ∶ ShvG I(HecI

G) → ShvG I
M
(HecI

M), F ↦ (q−)∗(p−)!(F ). (3.28)

Braden’s theorem (as stated in [DG14]) identifies the functor (3.26) with (3.28). Its forma-
tion commutes with base change along S→ XI for any k-scheme S.

To show that CTI
P preserves universal local acyclicity relative to XI, we base change to the

spectrum of a rank-1 valuation ring and observe that the characterization [HS23, Theorem

4.4(iv)] holds for CTI,!
P− .

To show that CTI
P(ρ̌P)[2ρ̌P] is t-exact with respect to the perverse t-structure relative to

XI, we base change to any geometric point of XI and reduce to the case I = {1}. The argument

of [MV07, §3] then shows that CT
{1}
P (ρ̌P)[2ρ̌P] is right t-exact and CT

{1},!
P− (ρ̌P)[2ρ̌P] is left

t-exact. �

Remark 3.4.5. The tensor functor (3.27) is compatible with compositions. More pre-
cisely, for a parabolic subgroup P1 ⊂ M with Levi quotient P1 ↠ M1, the composition of
CTI

P1
(ρ̌P1)[2ρ̌P1] with CTI

P(ρ̌P)[2ρ̌P] is canonically isomorphic to CTI
P0

(ρ̌P0)[2ρ̌P0], where
P0 denotes the parabolic subgroup P0 ∶= P ×M P1 ⊂ G.

Remark 3.4.6. The Levi quotient of any Borel subgroup B ⊂ G is identified with the
universal Cartan T, and the tensor functor CTI

B(ρ̌)[2ρ̌] (3.27) is independent of the choice
of B ⊂ G. More precisely, given two Borel subgroups B1,B2 ⊂ G, there is a canonical
isomorphism of tensor functors:

CTI
B1

(ρ̌)[2ρ̌] ≅ CTI
B2

(ρ̌)[2ρ̌], (3.29)

subject to the natural compatibility for three Borel subgroups.
Let us first construct (3.29) subject to the choice of a section g ∈ G such that the inner

automorphism intg of G carries B1 to B2.

Indeed, the moduli description of HecI
G shows that intg induces the identity automorphism

on HecI
G. Thus pulling back along intg yields a commutative diagram:

+SatI
G,G I

+SatI
G,G I

SatI
T1,G I

T1

SatI
T2,G I

T2

CTI
B2

(ρ̌)[2ρ̌]

id

CTI
B1

(ρ̌)[2ρ̌]

(intg)
∗

(3.30)

Here, T1 (resp. T2) denotes the maximal quotient torus of B1 (resp. B2), so the isomorphism
intg ∶ T1 ≅ T2 is encoded in the definition of T. The commutative diagram (3.30) yields an
isomorphism Fg of the two functors in (3.29).
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It remains to prove that for B = B1 = B2 and g ∈ B, the isomorphism Fg equals the identity

automorphism of CTI
B(ρ̌)[2ρ̌], where the endofunctor (intg)∗ of SatI

T,G I
T

is trivialized as intg

induces the identity on T.
For this statement, we construct the automorphisms Fg as a family over g ∈ B, i.e. they

define an automorphism of the functor EB ⊠CTI
B(ρ̌)[2ρ̌] valued in E-sheaves over B×HecI

T.

This automorphism equals the identity, because it restricts to the identity over e×HecI
T and

B is smooth and connected.

3.5. Constant terms: vanishing.

3.5.1. In this subsection, we specialize to the case I = {1} and study the behavior of the
constant term functor (3.26) associated to the Borel subgroup B ⊂ G.

We denote the Weyl group of G by W. It canonically acts on Λ. As in §3.3, we temporarily
drop the superscript {1}.

3.5.2. Note that for any λ ∈ Λ♯ and w ∈ W, the difference λ −w(λ) belongs to Λ♯,r.
Recall that the E∞-monoidal morphism ν♯ ∶ Λ♯ → B2

X(A) is canonically trivialized over

Λ♯,r (see §1.6.5). Since Q vanishes over Λ♯,r, the Z-linear morphism ωQ
X ∶ Λ♯ → B2

X(A) of
§1.6.17 is likewise trivialized over Λ♯,r.

Therefore, νϑ is equipped with a canonical W-invariance structure.

3.5.3. According to Proposition 3.3.7, the functor CTB(ρ̌)[2ρ̌] is the direct sum of functors
indexed by pairs of elements λ ∈ Λ♯,+, λ1 ∈ Λ♯:

CTλ,λ1

B (ρ̌)[2ρ̌] ∶ Lisνϑ(λ)(X) ⊂ +SatG,G

CTB(ρ̌)[2ρ̌]ÐÐÐÐÐÐ→ SatT,GT
↠ Lisνϑ(λ1)(X). (3.31)

The next Proposition describes the behavior of (3.31). Its proof will occupy the remainder
of this subsection.

Proposition 3.5.4. Let λ ∈ Λ♯,+ and λ1 ∈ Λ♯. The following statements hold:

(1) if λ1 ∈ Wλ, then CTλ,λ1

B (ρ̌)[2ρ̌] is equivalent to the identity functor (in reference to
the canonical W-invariance structure on νϑ);

(2) if λ1 ∉ λ +Λ♯,r, then CTλ,λ1

B (ρ̌)[2ρ̌] = 0.

3.5.5. In the remainder of this subsection, we fix a splitting of B ↠ T and regard T as a
maximal torus in G.

For each λ ∈ Λ, we write Sλ for the base change of GrB → GrT to Xλ. Using the locally
closed immersion GrB → GrG, we may view Sλ as a locally closed sub-indscheme of GrG. In
particular, we may form the subschemes Gr≤λG ∩ Sλ1 , GrλG ∩ Sλ1 ⊂ GrG.

For λ ∈ Λ♯,+ and λ1 ∈ Λ♯, the pair (GrλG ∩ Sλ1 ,G ) of a scheme equipped with an A-gerbe
maps to the pairs (X, νϑ(λ)) and (X, νϑ(λ1)), as induced from the two inclusions in the
following diagram:

GrλG GrλG ∩ Sλ1 Sλ1

Xλ X Xλ1

pλ

⊂
p

⊃
pλ1

≅≅

(3.32)

and the isomorphism of Lemma 3.3.5.
The identifications of G over GrλG ∩ Sλ1 with both p∗νϑ(λ) and p∗νϑ(λ1) compose into

an isomorphism:
p∗νϑ(λ) ≅ p∗νϑ(λ1). (3.33)
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If λ1 ∈ Wλ, the identification (3.33) coincides with the one induced from the W-invariance
structure of νϑ.

Proof of Proposition 3.5.4(1). This part is identical to the non-metaplectic context. Indeed,

when λ1 ∈ W ⋅ λ, the inclusion GrλG ∩ Sλ1 ⊂ Gr≤λG ∩ Sλ1 is an isomorphism and both schemes
are identified with the L+N-orbit of Xλ (see the proof of [MV07, Theorem 3.2]).

The projection p in (3.32) is thus an affine space bundle of fiber rank ⟨ρ̌, λ1 + λ⟩. Hence

the functor p!p
∗ is canonically equivalent to the value of (−ρ̌)[−2ρ̌] at λ + λ1. As CTλ,λ1

B is
identified with p!p

∗, the desired conclusion follows. �

3.5.6. To prove Proposition 3.5.4(2), we need an additional piece of datum associated to
the isomorphism (3.33).

To define it, we briefly return to a more abstract setting: S is any base scheme and A is
a finite abelian group, H → S is a group scheme, and Y is an S-scheme equipped with an
H-action.

Suppose that G1, G2 are A-gerbes over Y equipped with H-equivariance structures. Let
f ∶ G1 ≅ G2 be an isomorphism of plain A-gerbes over Y. Consider the diagram formed by
the action, respectively projection maps from H ×Y to Y:

pr∗(G1) pr∗(G2)

act∗(G1) act∗(G2)

pr∗(f)

act∗(f)

(3.34)

The diagram (3.34) needs not commute. The quotient of its upper circuit by its lower
circuit defines an A-torsor over H×Y rigidified along e×Y, which we call the obstruction of
f to be H-equivariant.5

3.5.7. We shall apply the above construction to the isomorphism (3.33) of A-gerbes over

GrλG ∩ Sλ1 , equipped with the Tad-action. Here, Tad is the maximal torus of the adjoint
group Gad induced from T, acting by automorphisms of G. (We write Λad for the sheaf of
cocharacters of T.) The A-gerbes p∗νϑ(λ) and p∗νϑ(λ1) are Tad-equivariant, as they are
pulled back from X.

Using the isomorphism (3.5) between rigidified A-torsors over Tad and characters Λad →
A(−1), we may describe the obstruction of (3.33) to be Tad-equivariant as a locally constant
section:

τλ,λ1 ∈ Hom(Λad,A(−1)) over GrλG ∩ Sλ1 . (3.35)

3.5.8. Note that the equality (1.23) shows that the restriction of b to Λ⊗Λsc, where Λsc ⊂ Λ
is the span of coroots, extends to a bilinear form:

b̃ ∶ Λad ⊗Λsc → A(−1), (λ ∈ Λad, α ∈ Φ) ↦ Q(α)⟨λ, α̌⟩. (3.36)

Lemma 3.5.9. Suppose that λ ∈ Λ♯,+, λ1 ∈ Λ♯ are such that GrλG ∩ Sλ1 ≠ ∅. (This implies
λ − λ1 ∈ Λsc.) Then the obstruction (3.35) of the isomorphism (3.33) to be Tad-equivariant

is equal to the constant character b̃(−, λ1 − λ).

Proof. The calculation can be performed over k̄-points of X. From now on, we fix a k̄-point x̄
of X with local uniformizer $. The notations GrλG and Sλ1 now stand for their base changes

5This terminology should not be taken seriously, as it says nothing about the cocycle condition. The only
case of interest for us is when H is a torus, where the obstructions are discrete and the cocycle conditions

are automatic.
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to x̄. The closed immersion Xλ → GrλG corresponds to the k̄-point x̄λ of GrλG. It lifts to a
k̄-point $λ of L(G).

Let B− ⊂ G denote the Borel subgroup opposite to B. It has associated L(N−)-orbit S−,λ

of x̄λ for each λ ∈ Λ.
Recall that each irreducible component of GrλG ∩Sλ1 intersects nontrivially with the “Za-

stava space” S−,w0(λ) ∩ Sλ1 , where w0 ∈ W stands for the longest element. Indeed, the fact
that GrλG ∩ S−,w0(λ) is dense in GrλG shows that any irreducible component of GrλG ∩ Sλ1 is

contained in S−,w0(λ) ∩ Sλ1 . If it belonged to the complement of S−,w0(λ) ∩ Sλ1 , it would
be of dimension strictly less than ⟨λ + λ1, ρ̌⟩ by the dimension calculation of Zastava spaces

([BFGM02, 5.10]), but GrλG ∩ Sλ1 is pure of dimension ⟨λ + λ1, ρ̌⟩ ([MV07, Theorem 3.2]).
Let us consider the analogue of (3.32) for the Zastava space:

S−,λ S−,λ ∩ Sλ1 Sλ1

x̄λ x̄ x̄λ1

pλ

⊂
p

⊃
pλ1

≅≅

(3.37)

and the induced isomorphism of A-gerbes over S−,λ ∩ Sλ1 :

p∗νϑ(λ) ≅ p∗νϑ(λ1). (3.38)

It suffices to prove: the obstruction of (3.38) to be Tad-equivariant is equal to b̃(−, λ1−λ).
Indeed, the desired statement over GrλG∩Sλ1 will then follow from the equality b̃(−, λ1−λ) =
b̃(−, λ1 −w0(λ)), as w0(λ) − λ ∈ Λ♯,r is annihilated by Q.

To calculate the obstruction of (3.38) to be Tad-equivariant, we may assume λ1 = 0.
Indeed, because G is induced from an E1-monoidal morphism L(G) → B2(A), pulling back
(3.38) along the isomorphism defined by multiplication by $λ1 :

$λ1 ∶ S−,λ−λ1 ∩ S0 ≅ S−,λ ∩ Sλ1

yields the product of the isomorphism p∗νϑ(λ−λ1) ≅ p∗νϑ(0) with the identity automorphism
of p∗νϑ(λ1).

The assumption λ1 = 0 forces λ ∈ Λsc, so S−,λ ∩ S0 is contained in the neutral component
of GrG.

Let Gsc → G denote the simply connected form of G, with induced maximal torus Tsc ⊂
Gsc. Write S−,λsc , S0

sc for the corresponding orbits in GrGsc and psc ∶ S−,λsc ∩ S0
sc → x̄ for the

projection. The pullback of (3.38) to S−,λsc ∩ S0
sc is the composition of isomorphisms:

(psc)∗νϑ(λ) ≅ Gsc ≅ (psc)∗νϑ(0), (3.39)

where Gsc denotes (the restriction of) the A-gerbe over GrGsc defined by the pullback µsc of
µ along B(Gsc) → B(G). The two isomorphisms in (3.39) are induced from the inclusion of
S−,λsc ∩ S0

sc in S−,λsc , respectively S0
sc.

Since the k̄-points of GrGsc map bijectively to those of the neutral component of GrG, it
suffices to calculate the obstruction of (3.39) to be Tad-equivariant. (Note that Tad acts by
automorphisms of Gsc, as the latter is functorially attached to G.)

We shall now appeal to the canonical Tad-equivariance structure of Gsc. Indeed, the rigid-
ified morphism µsc ∶ B(Gsc) → B4A(1) is Tad-equivariant, and the “(Tad, Tsc)-commutator”
of the induced E1-monoidal morphism Tsc → B3A(1) is the bi-rigidified morphism:

Tad ×Tsc → B2A(1),

defined by the pairing b̃ (see [Zha22, §5.5]).
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As in the proof of Lemma 3.1.6 (task (2)), the A-gerbe Gsc ⊗ (psc)∗νϑ(λ)⊗−1 over S−,λsc

descends to the rigidified A-gerbe Ψb̃(−,λ) over Bx̄λ(Tad). Similarly, the A-gerbe Gsc ⊗
(psc)∗νϑ(0)⊗−1 over S0

sc descends to the (trivial) rigidified A-gerbe Ψb̃(−,0) over Bx̄0(Tad).
The obstruction of (3.39) to be Tad-equivariant is thus the difference of obstructions:

−b̃(−,0) + b̃(−, λ) = b̃(−, λ).

This establishes the desired equality. �

Remark 3.5.10. The proof of Lemma 3.5.9 also establishes its variant where GrλG ∩ Sλ1 is
replaced by the Zastava space S−,λ ∩ Sλ1 .

Proof of Proposition 3.5.4(2). The λ-summand of SatG,G consists of intermediate extensions

of G -twisted E-local systems along GrλG ⊂ Gr≤λG , so their restrictions to any boundary stratum

Grλ2

G lie in perverse cohomological degrees ≤ −⟨2ρ̌, λ2⟩−1. The t-exactness of CTλ,λ1(ρ̌)[2ρ̌]
implies that only the open stratum GrλG ∩ Sλ1 contributes. In other words, it is isomorphic
to the degree-0 piece of the functor:

p!p
∗(⟨ρ̌, λ + λ1⟩)[⟨2ρ̌, λ + λ1⟩] ∶ Lisνϑ(λ)(X) → Shvνϑ(λ1)(X), (3.40)

defined by the isomorphism (3.33) of A-gerbes.
We shall prove that (3.40) vanishes. This statement can be verified over k̄-points, so we

fix a k̄-point x̄ of X and trivialize the A-gerbes νϑ(λ)x̄ and νϑ(λ1)x̄ over x̄.

The isomorphism (3.33) thus defines an A-torsor τ over GrλG ∩ Sλ1 , and the image of E
under (3.40) is isomorphic, up to cohomological shift and Tate twist, to the complex:

Γc(GrλG ∩ Sλ1 ,L ), (3.41)

where L is the rank-1 E-local system induced from τ along A ⊂ E×.
If λ1 − λ ∉ Λsc, then GrλG ∩ Sλ1 = ∅ and (3.41) clearly vanishes.
Suppose that λ1−λ ∈ Λsc. We write λ1−λ = ∑α dαα for α ∈ ∆ and dα ∈ Z. The hypothesis

λ1 − λ ∉ Λ♯,r means that dα is indivisible by ord(Q(α)) for some α ∈ ∆.
By Lemma 3.5.9, the A-torsor τ is Tad-equivariant against the multiplicative A-torsor

Ψb̃(−,λ1−λ). Using Lemma 1.3.5, we see that (3.41) vanishes as long as H0(Tad,Ψ
b̃(−,λ1−λ)) =

0. The latter vanishing follows from the hypothesis λ1−λ ∉ Λ♯,r, as the pullback of Ψb̃(−,λ1−λ)

along the fundamental coweight δα ∶ Gm → Tad dual to α̌ ∈ ∆̌ yields ΨdαQ(α). �

3.6. Constant terms: fiber functor.

3.6.1. We return to the context of §3.4.1. The goal of this subsection is to use the constant
term functor associated to B to construct a “fiber functor” for SatI

G,G I .

Our first task is to record a corollary of Proposition 3.5.4(1), which concerns those prop-
erties reflected by the constant term functor.

Lemma 3.6.2. For any nonempty finite set I, the functor CTI
P(ρ̌P)[2ρ̌P] (3.27) satisfies

the following properties:

(1) it is conservative;

(2) an object of ShvG I(HecI
G) is universally locally acyclic relative to XI if and only if

its image is.

Proof. Since the functors (3.27) are compatible with compositions (Remark 3.4.5), we may
assume P = B.
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Statement (1) is reduced to its analogue over k̄-points of XI, thus to the case I = {1} after
possibly replacing G by a product of copies of G. Then it follows from the decomposition
(3.24) and the special case of Proposition 3.5.4(1) for λ1 = λ ∈ Λ♯,+.

Statement (2) follows from the criterion [HS23, Theorem 4.4(iv)] of universal local acyclic-

ity and the conservativity of CTI
B(ρ̌)[2ρ̌]. �

3.6.3. Our second task is to construct a decomposition of E-linear abelian categories:

+SatI
G,G I ≅ ⊕

λI∈(ẐH)I

+SatI,λI

G,G I , (3.42)

which is compatible with the tensor structure on +SatI
G,G I , i.e.

(1) the unit e!(E) belongs to +SatI,0
G,G I ;

(2) the monoidal product of F1 ∈ +Sat
I,λI

1

G,G I and F2 ∈ +Sat
I,λI

2

G,G I belongs to +Sat
I,λI

1+λ
I
2

G,G I .

Furthermore, the decomposition (3.42) is of étale local nature over XI.

Construction of (3.42). Let π ∶ Λ♯↠ ẐH denote the projection map. (Recall that ẐH is the
quotient of Λ♯ by Λ♯,r.) We proceed in increasing generality.

Case: I = {1}. For each λ ∈ ẐH, we define the direct summand:

+Sat
{1},λ

G,G {1} ∶= ⊕
λ+∈Λ♯,+
π(λ+)=λ

Lisνϑ(λ+)(X) ⊂ +Sat
{1}

G,G {1} , (3.43)

according to the decomposition (3.24).

It is clear that e!(E) belongs to +Sat
{1},0

G,G {1} .

To prove the compatibility with monoidal product, we note that by Proposition 3.5.4, the

summand (3.43) consists precisely of objects in +Sat
{1}

G,G {1} whose images under CT
{1}
B (ρ̌)[2ρ̌]

are supported on the strata Xλ1 , for λ1 ∈ Λ♯ with π(λ1) = λ. However, for the torus T, the
decomposition (3.24) is compatible with the monoidal product. Thus the same holds for the

decomposition of +Sat
{1}

G,G {1} defined by the summands (3.43).

Case: disjoint locus. For a nonempty finite set I, we consider the identity map p = idI.
The open subscheme Xp ⊂ XI is the pairwise disjoint locus.

For each λI ∈ (ẐH)I, we set:
+Satp,λ

I

G,G I ⊂ +Satp
G,G I (3.44)

to be the full subcategory consisting of objects whose images under CTI
B(ρ̌)[2ρ̌] are sup-

ported on the strata XλI
1 , for λI

1 ∈ (Λ♯)I with π(λI
1) = λI.

The fact that the full subcategories (3.44) induce a direct sum decomposition of +Satp
G,G I

compatible with its tensor structure follows from the case for I = {1}.
Case: general. Let I, p, λI be as above. We set:

+SatI,λI

G,G I ⊂ +SatI
G,G I (3.45)

to be the full subcategory consisting of objects whose restrictions along Xp ⊂ XI belong to
the full subcategory (3.44).

The fact that (3.45) induces a direct sum decomposition of +SatI
G,G I follows from the

closedness of the full subcategory +SatI
G,G I ⊂ +Satp

G,G I under direct summands. Its compat-

ibility with tensor structure follows from the case for the disjoint locus. �
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Remark 3.6.4. For I = {1}, the decomposition (3.42) coarsens the decomposition (3.24).
However, the latter decomposition is incompatible with the tensor structure unless G = T
(cf. Remark 3.3.8).

3.6.5. Using the decomposition (3.42), being of étale local nature over XI, we may twist the
tensor category +SatI

G,G I by the E∞-monoidal morphism negative to νI
ϑ (i.e. the formation

(1.38) applied to ν⊗−1
ϑ ):

(νI
ϑ)⊗−1 ∶ (ẐH)I → B2

XI(A), (λi)i∈I ↦
ò

i∈I

νϑ(λi)⊗−1.

This process yields a tensor category (+SatI
G,G I)(νI

ϑ
)⊗−1 .

Combining CTI
B(ρ̌)[2ρ̌] with the geometric Satake equivalence for split tori (§3.2.5), we

find a tensor functor:

ωI ∶ (+SatI
G,G I)(νI

ϑ
)⊗−1

CTI
B(ρ̌)[2ρ̌]

ÐÐÐÐÐÐ→ (SatI
T,G I

T
)(νI

ϑ
)⊗−1

≅ (RepI
TI

H
,νI
ϑ
)(νI

ϑ
)⊗−1 ≅ RepI

TI
H
→ Lis(XI), (3.46)

where TH ⊂ H is the maximal torus (with character lattice Λ♯), and the last functor is the
one forgetting the TI

H-action.

Remark 3.6.6. The tensor functor ωI satisfies the following additional properties:

(1) it is conservative (Lemma 3.6.2(1));
(2) it is exact (Proposition 3.4.4);
(3) it is independent of the choice of B (Remark 3.4.6);

3.7. Tannakian reconstruction.

3.7.1. Consider the 2-category whose objects are tensor (i.e. E-linear symmetric monoidal
abelian) categories, whose morphisms are tensor functors, and whose 2-morphisms are nat-
ural transformations compatible with the tensor structures.

A tensor category is called rigid if all of its objects are dualizable. Note that in a rigid
tensor category, the monoidal product with any object is exact.

3.7.2. Let A be a rigid tensor category. The following categories are related by a pair of
adjoint functors:

(1) commutative Hopf algebras in Ind(A);
(2) pairs (C, ω) where C is a rigid tensor category under A and ω ∶ C → A is a

conservative, exact, A-linear tensor functor.

The functor (1) ⇒ (2) associates to a Hopf algebra A ∈ Ind(A) its tensor category of
comodules C ∶= ComodA (A) on objects of A and the forgetful functor ω.

Its left adjoint (2) ⇒ (1) associates to a pair (C, ω) the object Ind(ω) ⋅ ωR(1) ∈ Ind(A),
where 1 ∈ A is the tensor unit. Here, the ind-extension Ind(ω) preserves all colimits, and
thus admits a right adjoint ωR. Since Ind(ω) is a tensor functor, ωR preserves commutative
algebras. The coalgebra structure is induced from the comonad Ind(ω) ⋅ ωR. The existence
of inverse follows from the rigidity of C.

Lemma 3.7.3. The adjunction in §3.7.2 is an equivalence.

Proof. We show that the counit and unit are isomorphisms.
Counit. Let A ∈ A be a bi-algebra. The right adjoint ωR is given by (−)⊗A , where A is

viewed as an A -comodule by its coalgebra structure. The counit map Ind(ω) ⋅ ωR(1) → A
is thus an isomorphism.
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Unit. Let (C, ω) be a pair as in §3.7.2(2). The functor Ind(ω) remains conservative,
so the adjunction (Ind(ω), ωR) satisfies the hypothesis of the Barr–Beck theorem, i.e. it is
comonadic. We see that Ind(C) is equivalent to the category of (Ind(ω) ⋅ωR)-comodules in
Ind(A), compatibly with the forgetful functors.

Since Ind(ω) is Ind(A)-linear, so is the functor ωR. This shows that the comonad Ind(ω)⋅
ωR is identified with tensoring by the coalgebra A ∶= Ind(ω) ⋅ ωR(1).

Finally, we must show that C ⊂ Ind(C) coincides with the full subcategory of objects
whose image under Ind(ω) belongs to A. Since C (resp. A) is abelian, hence idempotent-
complete, it is the full subcategory of compact objects of Ind(C) (resp. Ind(A)). We con-
clude using the observation that Ind(ω) respects and reflects compactness. �

3.7.4. For a nonempty finite set I, the tensor category +SatI
G,G I admits a Lis(XI)-structure

supplied by e!, for e ∶ XI → HecI
G being the unit section.

Moreoever, +SatI
G,G I is rigid. Indeed, by the definition of the fusion product, we can check

the dualizability of an object in +SatI
G,G I over the pairwise disjoint locus of XI. There, the

statement reduces to k̄-points and the case I = {1}, where it follows from the argument of
[Zhu17, Theorem 5.2.9].

The same assertions are inherited by the twisted tensor category (+SatI
G,G I)(νI

ϑ
)⊗−1 , so

Lemma 3.7.3 produces a commutative Hopf algebra A I ∈ Ind(Lis(XI)).

Proposition 3.7.5. There is a canonical isomorphism of Hopf algebras:

A I ≅ OHI ∈ Ind(Lis(XI)). (3.47)

3.7.6. Let H1 denote the locally constant étale sheaf over X of affine group schemes over E
corresponding to A{1}.

The isomorphism (3.47) for G = T is constructed in §3.2.5. The composition of all but

the last functor in the definition of ω{1} (3.46) yields a homomorphism from the maximal
torus TH ⊂ H to H1.

The isomorphism H1 ≅ H supplied by (3.47) will extend the identity map on TH.

Lemma 3.7.7. The following statements hold:

(1) H1 is a sheaf of reductive group schemes;
(2) the map TH → H1 realizes TH as a maximal torus of H1.

Proof. Both statements may be verified over k̄-points of X. We shall now fix a k̄-point x̄
and write H1,x̄ (resp. TH,x̄) for the stalk of H1 (resp. TH) at x̄.

By Proposition 3.3.7, the underlying E-linear abelian category of finite-dimensional rep-
resentations of H1,x̄ decomposes as a sum of copies of the category of finite-dimensional

E-vector spaces, indexed by Λ♯,+. We write E λ ∈ RepH1,x̄ for the object corresponding to

the 1-dimensional E-vector space E and index λ ∈ Λ♯,+.
Observe that H1,x̄ is of finite type. Indeed, Λ♯,+ is finitely generated as a monoid and

E λ1+λ2 appears as a summand of E λ1 ⊗ E λ2 by Proposition 3.5.4(1). Thus RepH1,x̄ has a
finite number of tensor generators, so [DM82, Proposition 2.20] applies.

Next, H1,x̄ is connected because it does not have nontrivial finite tensor subcategories
([DM82, Corollary 2.22]).

Finally, H1,x̄ is reductive because RepH1,x̄ is semisimple ([DM82, Proposition 2.23]) ac-
cording to its aforementioned decomposition. This proves statement (1).

By Proposition 3.5.4(1), any object of RepTH,x̄ is a subobject of an object coming from
RepH1,x̄. The morphism TH,x̄ → H1,x̄ is thus a closed immersion by [DM82, Proposition
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2.21(b)]. The argument of [Zhu17, Lemma 5.3.17], substituting Proposition 3.5.4 for Theo-
rem 5.3.9 in loc.cit., shows that TH,x̄ is a maximal torus. �

3.7.8. Let us fix a k̄-point x̄ of X. We shall upgrade the maximal torus TH,x̄ ⊂ H1,x̄ to a
pinning of the reductive group scheme H1,x̄.

Denote by 2ρH ∈ Λ̌♯ the sum of positive coroots of Hx̄. As in [BR18, §9.2], we choose
a Borel subgroup BH1,x̄ ⊂ H1,x̄ containing TH,x̄ such that 2ρH is a dominant cocharacter
with respect to BH1,x̄. This choice has the property that the dominant characters of TH,x̄

it defines agree with those defined by BH,x̄ ⊂ Hx̄ (see [BR18, Lemma 9.5]).
We record the data which have been constructed:

TH,x̄ BH1,x̄ H1,x̄

TH,x̄ BH,x̄ Hx̄

⊂
≅

⊂

⊂ ⊂

(3.48)

Lemma 3.7.9. The two rows of (3.48) induce the same based root data on the character
lattice of TH,x̄.

Proof. The construction of BH1,x̄ being compatible with the constant term functor (3.27), we
reduce to the case where G is of semisimple rank one. There, we must show that BH1,x̄ ⊂ H1,x̄

has a unique simple root given by ord(Q(α))α ∈ Λ♯, and its associated coroot is given by
ord(Q(α))−1α̌.

To identify the simple roots, it suffices to show that the TH,x̄-weights of the simple object

E λ ∈ RepH1,x̄ for λ ∈ Λ♯,+ (notations as in the proof of Lemma 3.7.7) is given by:

λ − d ⋅ ord(Q(α))α, 0 ≤ d ≤ ord(Q(α))−1⟨α̌, λ⟩. (3.49)

We argue as in [FL10, §4.4]. Proposition 3.5.4(2) implies that the TH,x̄-weights of E λ are
contained in the set (3.49). To show that they exhaust the latter, it suffices to prove that

the A-torsor τλ,λ1 over GrλG,x̄ ∩Sλ1
x̄ defined by (3.33) and arbitrary trivializations of νϑ(λ)x̄,

νϑ(λ1)x̄ is (non-canonically) trivial whenever λ1 belongs to (3.49).
The statement for the extremal cases λ1 = λ, λ1 = sα(λ) follows from Proposition 3.5.4(1).

It remains to treat the intermediate cases:

λ1 = λ − d ⋅ ord(Q(α))α, 1 ≤ d ≤ ord(Q(α))−1⟨α̌, λ⟩ − 1.

Write a ∶= ⟨ρ̌, λ⟩ and a1 ∶= ⟨ρ̌, λ1⟩ where ρ̌ ∶= α̌/2, so a > 0 and ∣a1∣ < a. Identifying N with
Ga, the L(N)x̄-action on x̄λ1 induces an isomorphism:

Aa+a1 ≅$−a+a1L+(Ga)x̄/$2a1L+(Ga)x̄ ≅ Gr≤λG,x̄ ∩ Sλ1
x̄ , (3.50)

Under (3.50), the open subscheme GrλG,x̄∩Sλ1
x̄ corresponds to the locus with invertible leading

coefficient in $−a+a1L+(Ga)x̄, hence to Gm ×Aa+a1−1 ⊂ Aa+a1 . The projection of GrλG,x̄ ∩Sλ1
x̄

onto Gm intertwines the Tad-action with Gm-multiplication.
The A-torsor τλ,λ1 canonically descends to Gm, where it is (non-canonically) trivial be-

cause τλ,λ1 is Tad-equivariant by Lemma 3.5.9.
The identification of simple roots of BH1,x̄ ⊂ H1,x̄ being complete, the identification of sim-

ple coroots follows, because ord(Q(α))−1α̌ is the unique cocharacter pairing non-negatively
with all dominant characters of TH,x̄ and yields 2 when paired with ord(Q(α))α. �

3.7.10. Let us now upgrade the top row of (3.48) to a pinning on H1,x̄.



METAPLECTIC SPECTRAL DECOMPOSITION 49

Construction. The decomposition (3.42) gives rise to two tensor functors:

Rep0
H1,x̄ ⊂ RepH1,x̄ → ⊕

λ∈ẐH

ModE, (3.51)

where Rep0
H1,x̄ denotes the summand corresponding to 0 ∈ ẐH, and the second functor is the

decomposition of ω{1} according to ẐH-weights.
Both functors in (3.51) commute with fiber functors to ModE. Thus they define mor-

phisms of affine groups schemes over E:

1→ ZH,x̄ → H1,x̄ → H0
1,x̄ → 1. (3.52)

The criterion [EHS07, Theorem A.1(iii)] shows that (3.52) is a short exact sequence. The
identification of root data (Lemma 3.7.9) shows that H0

1,x̄ is the adjoint group of H1,x̄. It is
equipped with an induced maximal torus and a Borel subgroup:

T0
H1,x̄ ⊂ B0

H1,x̄ ⊂ H0
1,x̄. (3.53)

Suppose first that G is of semisimple rank one. Then the same holds for H1,x̄, and H0
1,x̄

has the root data of PGL2. Any two isomorphisms H0
1,x̄ ≅ PGL2 matching (3.53) with the

standard triple Gm ⊂ B ⊂ PGL2 differ by the inner automorphism of PGL2 defined by a
unique element a ∈ Gm. The adjoint action of PGL2 on the vector space E⊕3 differs from
its twist by any nontrivial element a ∈ Gm.

Consider the simple object E ord(Q(α))α ∈ Rep0
H1,x̄. Its image under ω{1} is canonically

equivalent to E⊕3, using the Tate twist introduced in our constant term functor. Thus there
is a unique isomorphism between the triple (3.53) and the standard triple Gm ⊂ B ⊂ PGL2

under which E ord(Q(α))α corresponds to the adjoint action of PGL2 on E⊕3.
Under this isomorphism, the pinning of PGL2 transfers to H0

1,x̄. Since H1,x̄ → H0
1,x̄ is an

isomorphism on root subgroups, H1,x̄ inherits a pinning.
For a general reductive group scheme G, the pinning on H1,x̄ is constructed from the

constant term functors and the semisimple rank one case. �

3.7.11. Combining Lemma 3.7.9 and the construction in §3.7.10 of a pinning on H1,x̄, we
obtain a canonical isomorphism of pinned reductive group schemes over E:

H1,x̄ ≅ Hx̄, (3.54)

for every k̄-point x̄ of X.
Finally, we shall lift (3.54) to the desired isomorphism (3.47).

Proof of Proposition 3.7.5. We construct the isomorphism (3.47) in increasing generality.
Case: I = {1}. Claim: H1 is constant as an étale sheaf over X. Once this claim is

established, the desired isomorphism H1 ≅ H is supplied by (3.54) at any k̄-point x̄.
To prove that H1 is constant, we may assume that X is connected with a fixed k̄-point x̄.

Then H1 is recovered from its fiber H1,x̄ equipped with the π1(X, x̄)-action. It remains to
show that this π1(X, x̄)-action is trivial.

Since the tensor functor RepH1,x̄ → RepTH,x̄ arises as the fiber at x̄ of a tensor functor

whose target Rep
{1}
TH

is constant, the π1(X, x̄)-action on the maximal torus TH,x̄ ⊂ H1,x̄ is

trivial. This shows that π1(X, x̄) acts trivially on the based root data of H1,x̄.
It remains to show that the π1(X, x̄)-action preserves the pinning on H1,x̄ constructed in

§3.7.10. We may do so under the additional assumption that G is of semisimple rank one,
and it suffices to show that π1(X, x̄) acts trivially on the adjoint group H0

1,x̄.

By functoriality of the intermediate extension, the simple object E ord(Q(α))α ∈ Rep0
H1,x̄

is π1(X, x̄)-equivariant compatibly with the fiber functor. Thus the corresponding action of
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H0
1,x̄ on E⊕3 is π1(X, x̄)-equivariant. However, the induced homomorphism H0

1,x̄ → GL(E⊕3)
is injective, as it coincides with the adjoint representation of PGL2. It follows that π1(X, x̄)
acts trivially on H0

1,x̄.

Case: general. Let I be any nonempty finite set. The external fusion product of SatI
G,G I

induces a morphism of Hopf algebras:
ò

i∈I

A {i} → A I ∈ Ind(Lis(XI)). (3.55)

It suffices to prove that (3.55) is an isomorphism.
This assertion can be proved over the pairwise disjoint locus in XI and furthermore over

any k̄-point x̄. There, it follows the compatibility between the isomorphism (3.54) and finite
product of reductive groups. �

3.7.12. We now prove the geometric Satake equivalence (Theorem 2.4.4) for (G, µ).
Construction of (2.23). Suppose first that G is split.

For any nonempty finite set I, the tensor category (+SatI
G,G I)(νI

ϑ
)⊗−1 is identified with

RepI
HI by Proposition 3.7.5.

This identification being of étale local nature over XI, we obtain the desired equivalence
of tensor categories (2.23) after twisting both sides by νI

ϑ.
The nonsplit case follows via étale descent. �

Remark 3.7.13. As an addendum to the proof of Theorem 2.4.4, we note that (2.23) is
compatible with constant term functors, i.e. the square below commutes:

+SatI
G,G I RepI

HI,νI
ϑ

SatI
T,G I

T

RepI
TI

H
,νI
ϑ

(2.23)

CTI
B(ρ̌)[2ρ̌] res

TI
H

(2.23)

where the right vertical arrow is the restriction along the maximal torus TI
H ⊂ HI. (Recall

that CTI
B(ρ̌)[2ρ̌] is independent of the choice of B according to Remark 3.4.6.)

The compatibility statements in §2.4.5 follow directly from the construction of the equiv-
alence.

4. Global function fields

This section contains our results particular to smooth curves over a finite field.
In §4.1, we propagate the A-gerbe G I defined in §2.2 to various moduli spaces associated

to a global curve. The crucial observation is that G I is canonically trivialized over the
moduli stack of Shtukas, allowing us to obtain the space of genuine automorphic forms from
its cohomology. This geometric origin of genuine automorphic forms is already indicated by
V. Lafforgue in [Laf18, §14] in a narrower context.

In §4.2, we prove a lemma concerning Artin reciprocity. It implies that in the function
field context, Weissman’s meta-Galois group ([Wei18, §4]) is the central extension associated
to the {±1}-gerbe of theta characteristics. This is a slightly surprising fact, but it follows
from very natural considerations.

Finally, we explain in §4.3-4.4 how to extend the arguments of V. Lafforgue [Laf18] (using
improvements by Xue [Xue20a], [Xue20b]) to obtain the spectral decomposition of genuine
cusp forms defined on covering groups.
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4.0.1. Let k be a finite field of cardinality q. For any k-scheme S, we write FrS for the qth
power Frobenius endomorphism of S.

Let X be a smooth, proper, and geometrically connected curve over k. Denote by F its
field of fractions and AF (resp. OF) its ring of (resp. integral) adèles.

The coefficient field E is as in §2.0.1. We assume that q has a square root in E which will
be fixed: this corresponds to the choice of E( 1

2
) used in the geometric Satake equivalence

(see §2.4).

Let D ⊂ X be a k-finite closed subscheme and write X̊ ∶= X −D for its open complement.
Let G → X be a smooth affine group scheme with connected geometric fibers, equipped

with an étale metaplectic cover µ defined over X̊.

4.1. The global A-gerbe.

4.1.1. Let BunG,D denote the stack whose S-points, for any affine k-scheme S, consist of
pairs (P, φ) where P is a G-torsor over S ×X and φ is a rigidification of P along S ×D.

For each nonempty finite set I, let HecI
G,D denote the stack whose S-points consist of an

S-point xI of X̊I, pairs (P0, φ0), (P1, φ1) of G-torsors over S ×X rigidified along D, and an
isomorphism of them off the union of graphs ΓxI ⊂ S ×X.

We refer to such an isomorphisms as a “modification” at xI and denote it by:

(P0, φ0) x
I

∼ (P1, φ1).

4.1.2. If I is equipped with an ordered partition into nonempty finite sets I ≅ I1 ⊔⋯⊔ Ik, we

write H̃ecI1,⋯,Ik
G,D for the stack whose S-points consist of an S-point xI of X̊I and modifications:

(P0, φ0) x
I1∼ (P1, φ1) x

I2∼ ⋯ xIk∼ (Pk, φk), (4.1)

where each xIa denotes the corresponding S-point of X̊Ia (for 1 ≤ a ≤ k).

Restricting the data (4.1) to the formal disk DxI defines a morphism from H̃ecI1,⋯,Ik
G,D to

the local iterated Hecke stack H̃ecI1,⋯,Ik
G of §2.1. For each 0 ≤ a ≤ k, remembering (Pa, φa)

defines a morphism pa ∶ H̃ecI1,⋯,Ik
G,D → BunG,D.

Finally, an S-point of the moduli stack of iterated Shtukas ShtI1,⋯,Ik
G,D consists of an S-point

(4.1) of H̃ecI1,⋯,Ik
G,D together with an isomorphism:

(Pk, φk) ≅ τ(P0, φ0) ∶= (FrS × idX)∗(P0, φ0). (4.2)

Some of the relevant morphisms are recorded in the diagram below, where the square is
Cartesian by definition:

ShtI1,⋯,Ik
G,D BunG,D

H̃ecI1,⋯,Ik
G,D BunG,D ×BunG,D

H̃ecI1,⋯,Ik
G

X̊I

p0

(id,FrBunG,D
)

(p0,pk)

res
(4.3)

4.1.3. We shall functorially assign an étale A-gerbe GD over BunG,D to µ.
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Construction. The projection map p ∶ BunG,D × X → BunG,D, being proper and smooth of
relative dimension one, defines a morphism of complexes p∗(A(1)[4]) → A[2]. Its global
section over BunG,D yields the “transgression” map:

[X] ∶ Γ(BunG,D ×X,A(1)[4]) → Γ(BunG,D,A[2]).
Let us view the universal G-torsor as a morphism of X-stacks P ∶ BunG,D ×X → BX(G)

whose base change PD along D ⊂ X is rigidified.
Consider the commutative diagram below:

Γe(BDG,A[2]) Γe(BXG,A(1)[4]) Γe(BX̊G,A(1)[4])

Γ(BunG,D ×D,A[2]) Γ(BunG,D ×X,A(1)[4])

Γ(BunG,D,A[2])

(PD)
∗

P∗

[X]

(4.4)

where Γe denotes the complex of rigidified sections, and the top row is the triangle induced
from the Cousin triangles associated to D→ X and BD(G) → BX(G).

The rigidification of PD induces a trivialization of the restriction of [X] ⋅ P∗ in (4.4) to
Γe(BD(G),A[2]). Hence [X] ⋅P∗ factors through a morphism:

Γe(BX̊G,A(1)[4]) → Γ(BunG,D,A[2]). (4.5)

The desired functor µ ↦ Gµ is obtained from (4.5) upon taking connective truncations
and passing to the underlying ∞-groupoids. �

Remark 4.1.4. If D = ∅, then the rigidification of µ along e ∶ X̊→ BX̊(G) is not needed for
the construction of GD.

Remark 4.1.5. Suppose that G is split reductive.
Inspecting the top row in (4.4) and using the computation of étale cohomology of B(G) in

degrees ≤ 3 (see [Zha22, §5.1]), we see that µ may not extend across D, and when µ extends
across some point x ∈ D, the choice of possible extensions is not unique.

In particular, the étale metaplectic cover µ generally contains more data than its restric-
tion to the generic point η ∈ X.

4.1.6. Denote by KD the kernel of the projection G(OF) → G(OD). The gluing maps yield
an inclusion of groupoids:

G(F)/G(AF)/KD ⊂ BunG,D(k), (4.6)

whose essential image consists of pairs (P, φ) where P is generically trivial. (This uses the
vanishing of H1(Ox,G) for a closed point x ∈ X, which follows from Lang’s isogeny.)

The additional pieces of BunG,D(k) are labeled by the Shafarevich set :

X1(F,G) ∶= Ker(H1(F,G) → ∏
x∈X

H1(Fx,G)).

Namely, restriction of a G-torsor to the generic point defines a surjective map of pointed
groupoids BunG,D(k) →X1(F,G) and (4.6) concides with its kernel.

4.1.7. Recall that µ defines a central extension G̃F of G(AF) by A, equipped with canonical
splittings over G(F) and KD (see §1.5.4 and §2.2.9).

On the other hand, Tr(Fr ∣ GD)(k) is a set-theoretic A-torsor B̃unG,D over BunG,D(k).
Its restriction along (4.6) is identified with the set-theoretic A-torsor G(F)/G̃F/KD.
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To explain this identification, we note that for each closed point x ∈ X with residue field
k1 ⊃ k, the gluing map G(Fx) → BunG,D(k) arises as the k-points of a map:

res(L(G)x) → BunG,D, (4.7)

where res(L(G)x) is the Weil restriction of L(G)x along k1 ⊃ k. Indeed, an S-point of
res(L(G)x) is equivalent to a section of G over the punctured formal disk around S×x ⊂ S×X
(because the map (S ×X)k1 → S ×X is étale.) This section may be used to glue the trivial
bundles on (S × X) − (S × x) and the formal disk around S × x using the Beauville-Laszlo
Theorem, defining (4.7).

Comparing the constructions of §2.2.2 and §4.1.3, we see that GD pulls back to Nm(Gx)
along (4.7), using the notations of Remark 2.2.10. The same remark implies that B̃unG,D(k)
pulls back to G̃x along the gluing map G(Fx) → BunG,D(k). If x ∈ X̊, this identification is
compatible with the sections over G(Ox), and if x ∈ D, it is compatible with the sections
over the first congruence subgroup Kx ∶= ker(G(Ox) → G(k1)).

To see that B̃unG,D(k) pulls back to G(F)/G̃F/KD along (4.6), we perform the same
construction for a finite collection of closed points {xi} (i ∈ I), compare the sections of

∏i∈I G̃xi over the subgroup G(X − ⋃i∈I xi) ⊂ ∏i∈I G(Fxi), and pass to the colimit as in the

definition of G̃F [Zha22, §2.2].

4.1.8. Let I be a nonempty finite set equipped with an ordered partition into nonempty
finite subsets I ≅ I1 ⊔⋯ ⊔ Ik.

Recall that µ defines an étale A-gerbe G I over HecI
G. We may form its pullback G I1,⋯,Ik ∶=

m∗(G I) along the composition map m ∶ H̃ecI1,⋯,Ik
G → HecI

G (see §2.1.5). Its further pullback

along the restriction map in (4.3) defines an A-gerbe G I1,⋯,Ik
D over H̃ecI1,⋯,Ik

G,D .

Let us construct an isomorphism of A-gerbes over H̃ecI1,⋯,Ik
G,D :

p∗0(GD) ⊗ p∗k(GD)⊗−1 ≅ G I1,⋯,Ik
D . (4.8)

Construction. In view of the isomorphism (2.14), it suffices to construct (4.8) in the special
case k = 1, as the general case will be a product of the isomorphisms associated to each Ia
(for 1 ≤ a ≤ k).

Consider now an S-point of HecI
G,D given by the modification datum (P0, φ0) x

I

∼ (P1, φ1).
Let i ∶ ΓxI ⊂ S × X and î ∶ ΓxI ⊂ DxI denote the closed immersions. The construction of

§2.2.2 involves a morphism of complexes:

Γ(ΓxI , i!A(1)[4]) → Γ(S,A[2]). (4.9)

The restriction of p∗0(GD)⊗p∗1(GD)⊗−1 to S is defined by the image of the section P∗
0(µ)−

P∗
1(µ) under (4.9), where each P0, P1 is viewed as a morphism S ×X → B(G). It defines a

section of i!A(1)[4] using the isomorphism P0 ≅ P1 off ΓxI .

Under the identification i!A(1)[4] ≅ î!A(1)[4], this section is also defined by the restric-

tions of P0, P1 to DxI and their identification over D̊xI . The image of this section under
(4.9) is precisely the restriction of G I

D to S. �

4.1.9. Let I ≅ I1 ⊔⋯ ⊔ Ik be as above.
We shall trivialize the restriction of the A-gerbe G I1,⋯,Ik to ShtI1,⋯,Ik

G,D .

Construction. Indeed, the isomorphism (4.8) exhibits this restriction as the pullback of GD⊗
Fr∗BunG,D

(GD)⊗−1 along the morphism p0 ∶ ShtI1,⋯,Ik
G,D → BunG,D, but there is an isomorphism

Fr∗BunG,D
(GD) ≅ GD supplied by (1.15). �
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4.1.10. In particular, direct image with compact support along the projection ShtI1,⋯,Ik
G,D →

X̊I defines a functor of ∞-categories:

ShvG I1,⋯,Ik (H̃ecI1,⋯,Ik
G ) → Ind(Shv(X̊I)), F ↦ Γc(ShtI1,⋯,Ik

G,D ,F ). (4.10)

Here, the functor of compactly supported cohomology of a constructible E-sheaf is well-

defined because ShtI1,⋯,Ik
G,D is a union of quasi-compact open substacks which are ind-algebraic

stacks of ind-finite type [Laf18, Lemme 12.19].

4.1.11. For a nonempty finite set I, consider the unit e!(E) of the Satake category defined
using the trivialization of G I along the unit section of HecI

G (see §2.3).

Recall also the E-vector space Func(B̃unG,D,A ⊂ E×) of genuine functions of compact

support on B̃unG,D.

We shall construct a canonical isomorphism of ind-constructible sheaves over X̊I:

Γc(ShtI
G,D, e!(E)) ≅ Func(B̃unG,D,A ⊂ E×) ⊗E. (4.11)

Construction. The base change of ShtI
G,D along the unit section X̊I → HecI

G is identified
with the following fiber product:

(BunG,D)Fr × X̊I BunG,D

BunG,D × X̊I BunG,D ×BunG,D

(id,FrBunG,D
)

∆

We shall obtain (4.11) by playing with two distinct trivializations of the restriction of G I to

(BunG,D)Fr × X̊I, coming from §4.1.9 respectively the unit section of HecI
G.

To wit, the image of e!(E) under (4.10) is calculated as follows: we start with the constant

sheaf E over BunG,D×X̊I, view it as twisted by the trivial A-gerbe ∆∗(GD⊠G ⊗−1
D ), pull it back

to (BunG,D)Fr × X̊I and view it as twisted by the equivalent A-gerbe (id,FrBunG,D
)∗(GD ⊠

G ⊗−1
D ) but trivialized by (1.15), and finally take its !-direct image towards X̊I.

The fact that this procedure yields Func(B̃unG,D,A ⊂ E×) ⊗E is observed in §1.4.10. �

4.2. A lemma for Gm.

4.2.1. We assume D ≠ ∅ in this subsection.
Let ∞D denote the formal completion of X along D. Write η = Spec(F) for the generic

point of X and choose an algebraic closure F ⊂ F̄, with η̄ ∶= Spec(F̄).
An S-point of the stack BunG,∞D consists of a G-torsor over S × X equipped with a

trivialization over the formal disk around S × D ⊂ S × X, or equivalently a G-torsor over
S × X̊ equipped with a trivialization over the punctured formal disk around S × D ⊂ S × X.
In particular, it is well-defined even when G is only a smooth affine group scheme over X̊.

4.2.2. The Artin reciprocity map is an isomorphism of topological abelian groups:

Art ∶ π1(X̊, η̄)ab ≅ BunGm,∞D(k)profin, (4.12)

where the target denotes the profinite completion of BunGm,∞D(k). It is normalized so that

the geometric Frobenius element ϕx ∈ Gal(k̄x/kx), for each closed point x ∈ X̊ with residue
field kx, maps to O(x). (Note that BunGm,∞D is a scheme when D ≠ ∅.)

On the other hand, we have the Abel–Jacobi morphism:

AJ ∶ X̊→ BunGm,∞D, x↦ O(x),
where O(x) is equipped with its canonical trivialization over ∞D, as x ∉ D.
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4.2.3. Recall the notion of the trace of Frobenius of an A-gerbe from §1.4.
The following lemma shows that the Abel–Jacobi morphism geometrizes Artin reciprocity

on the level of “character A-gerbes”.

Lemma 4.2.4. The following diagram is canonically commutative:

MapsZ(BunGm,∞D,B
2(A)) Maps(X̊,B2(A))

MapsZ(BunGm,∞D(k),B(A)) CExt(π1(X̊, η̄),A)

AJ∗

Tr(Fr∣−)(k) (1.7)

Art∗

(4.13)

(Since A is finite, every multiplicative A-torsor over BunGm,∞D(k) descends along its profi-
nite completion, so Art∗ is well-defined.)

Proof. We divide the proof into two claims.
Claim 1: (4.13) is commutative over the neutral component.
To prove this assertion, it suffices to consider the loop spaces of (4.13) and show that the

resulting diagram is commutative.
Namely, given a Z-linear morphism BunGm,∞D → B(A), or equivalently a commutative

multiplicative A-torsor t over BunGm,∞D, we need to compare the character π1(X̊, η̄) → A
associated to AJ∗(t) with the pullback of Tr(Fr ∣ t)(k) along (4.12).

Their equality is a familiar fact in geometric class field theory and follows immediately
from the Chebotarev density theorem.

Claim 2: any Z-linear morphism BunGm,∞D → B2(A) is (non-canonically) trivial over a
finite extension of k.

Indeed, the commutativity of (4.13) can be verified étale locally over Spec(k), so it will
follow from combining the two claims.

To prove Claim 2, it suffices to establish the vanishing:

Ext2(BunGm,∞D,A) = 0, (4.14)

where Ext denotes the internal Ext-group for étale sheaves over Spec(k).
Replacing k by a finite extension if necessary, the reduced subscheme of D becomes a finite

nonempty collection of k-points xI of X. We choose an element i0 ∈ I and fit BunGm,∞D into
a system of three short exact sequences:

∏i∈I Ker(L+(Gm)xi → Gm)

BunGm,∞D Pic0

∏i≠i0 Gm BunGm,xI Pic

Z

Here, Pic ≅ BunGm,xi0 is the Picard scheme of X and Pic0 is its neutral component.

It thus suffices to prove that Ext2(M,A) = 0, for M a pro-unipotent group scheme, Gm,
an abelian variety, and Z.

The pro-unipotent case and the case M = Z are clear. For M = Gm or an abelian variety,
we may assume that A = µn, where n is invertible in k. Morphisms M→ µn[2] of complexes
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are equivalent to morphisms M[n] → Gm[1], where M[n] ⊂ M is the subgroup scheme of n-

torsion elements. However, Ext1(M[n],Gm) = 0 because M[n] is finite (locally) free ([GRR72,
VIII, Proposition 3.3.1]). �

4.2.5. Recall that for a sheaf of abelian groups M over Spec(k), the groupoid of E∞-monoidal
morphisms M→ B2(A) fits into the split fiber sequence (1.28).

For M = BunGm,∞D, the splitting supplies us with a retract:

MapsE∞(BunGm,∞D,B
2(A)) →MapsZ(BunGm,∞D,B

2(A)). (4.15)

Observe that the functors denoted by AJ∗ and Tr(Fr ∣ −)(k) in (4.13) are naturally defined
on MapsE∞(BunGm,∞D,B

2(A)), but they both factor through the retract (4.15). Indeed,
they both depend only on the underlying E1-monoidal structure.

Combining this observation, the compatibility in §4.1.7, and Lemma 4.2.4, we find two
commutative squares:

MapsE∞(BX̊Gm,B
4
X̊

A(1)) MapsE∞(BunGm,∞D,B
2(A)) Maps(X̊,B2(A))

MapsZ(F×/A×
F/K∞D,B(A)) MapsZ(BunGm,∞D(k),B(A)) CExt(π1(X̊, η̄),A)

µ↦GD

µ↦G̃F

AJ∗

Tr(Fr∣−)(k) (1.7)

≅ Art∗

(4.16)

4.2.6. For the moment, let us assume that char(k) ≠ 2 and A = {±1} ⊂ E×. We shall use
diagram (4.16) to relate Weissman’s meta-Galois group (see [Wei18, §4]) with the {±1}-gerbe
of theta characteristics.

Consider the étale metaplectic cover µ ∶ BX(Gm) → B4
X({±1}⊗2) defined by the cocycle:

Λ⊗Λ→ Z/2, (1,1) ↦ 1, (4.17)

where Λ ≅ Z is the cocharacter lattice of Gm (see [Zha22, §4.4]).
Its induced topological cover of A×

F is the central extension defined by the cocycle:

A×
F ⊗A×

F → {±1}, (a, b) ↦ ∏
x∈X

Hilbx(a, b),

where Hilbx ∶ Fx⊗Fx → {±1} denotes the quadratic Hilbert symbol at x ∈ X, equipped with
canonical splittings over F× and O×

F.
By construction, the image of µ under the lower circuit of (4.16) is the meta-Galois group

of X̊:

1→ {±1} → π̃1(X̊, η̄) → π1(X̊, η̄) → 1. (4.18)

Corollary 4.2.7. If char(k) ≠ 2, then (4.18) is canonically identified with the central ex-

tension associated to the {±1}-gerbe ω
1/2

X̊
under (1.7).

Proof. Let us trace the image of µ under the upper circuit of (4.16).
Indeed, µ induces the A-gerbe GD over BunGm,∞D and it suffices to make the identification

AJ∗(GD) ≅ ω1/2

X̊
. This isomorphism is supplied by Lemma 3.1.6 for λ = 1 ∈ Z. �

Remark 4.2.8. It follows from Corollary 4.2.7 that the meta-Galois group (4.18) for func-
tion fields (global, local, and local integral) is non-canonically split, and is functorial with
respect to finite separable extensions.

These facts are established by Weissman by different means, see [Wei18, §4.2, 4.4].
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The stipulation that, for F of equal characteristic 2, the meta-Galois group is the split
extension [Wei18, §4.1] appears to align with the classical fact that a canonical theta char-
acteristic exists over X when char(k) = 2.

4.2.9. Let T be a split torus and T♯ → T be the isogeny defined in §3.1.1.
Since the restriction of µ to BX̊(T♯) acquires an E∞-monoidal structure [Zha22, §4.6],

the restriction of GD to BunT♯,D has the structure of an E∞-monoidal morphism BunT♯,D →
B2(A). In particular, its trace of Frobenius defines a Z-linear morphism:

Tr(Fr ∣ GD) ∶ BunT♯,∞D(k) → B(E×). (4.19)

The Artin reciprocity map (4.12) induces an equivalence of groupoids between Z-linear

morphisms BunT♯,∞D(k) → B(E×) and Z-linear morphisms Weil(X̊, η̄)ab → B(H(E)), where
H is identified with the E-torus dual to T♯. The latter groupoid admits a functor to central
extensions of Weil(X̊, η̄) by H(E).

Using an argument similar to the proof of Corollary 4.2.7, we identify the image of (4.19)
under this functor with (the Weil form of) the L-group LHX̊,ϑ.

Thus we obtain a canonical bijection:

{genuine characters

B̃unT♯,∞D → E× } ≅ { sections of
LHX̊,ϑ →Weil(X̊, η̄)} , (4.20)

as both sides correspond to null-homotopies of (4.19).
Taking colimit of the bijection (4.20) over increasing D, we obtain a bijection between

genuine characters T♯(F)/T̃♯ → E× and sections of LHη,ϑ → Weil(η, η̄). We thus recover a
part of the Langlands correspondence for covering groups of split tori ([Wei18, Part 3]).

4.3. Cusp forms.

4.3.1. Suppose that the restriction of G to X̊ is reductive and its restriction to Spec(Ox)
for each closed point x ∈ D is parahoric.

4.3.2. Let Z denote the radical of GX̊, viewed as an affine group scheme (in fact, a torus)

over X̊. The symmetric form b associated to µ restricts to a bilinear form ΛZ ⊗Λ→ A(−1),
and we set Λ♯

Z ⊂ ΛZ to be its kernel. It corresponds to an isogeny of tori Z♯ → Z. The group
scheme Z♯ plays the role of the “center” in the metaplectic context.

The stack BunZ♯,∞D is defined as in §4.2.1.

Remark 4.3.3. The E-torus dual to Z♯ is canonically identified with the maximal abelian
quotient Hab of H.

Indeed, a character of Hab is by definition a section of Λ♯ which pairs to zero with
ord(Q(α))−1α̌ for each α ∈ ∆. This is precisely a section of Λ♯

Z ≅ Λ♯ ∩ΛZ.

4.3.4. Recall that the restriction µZ♯ of µ to B(Z♯) acquires a canonical E∞-monoidal struc-
ture ([Zha22, §4.6]).

Furthermore, µ is B(Z♯)-equivariant against µZ♯ with respect to the action of B(Z♯) on
B(G) ([Zha22, §5.4]).

These observations imply that B̃unZ♯,∞D has a commutative multiplicative structure and

acts naturally on B̃unG,D.

4.3.5. Let us now choose a subgroup Ξ ⊂ B̃unZ♯,D which maps isomorphically onto its image
in BunZ♯,D(k) and such that Ξ/BunZ♯,D(k) is finite. (One may think of Ξ as the kernel of a

genuine character on B̃unZ♯,D with finite image.)
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Then Ξ is the k-points of a discrete subscheme to be denoted with the same letter:

Ξ ⊂ Tr(Fr ∣ GZ♯,D),

which maps isomorphically onto its image in (BunZ♯,D)Fr.

4.3.6. Consider the E-vector space of compactly supported functions f ∶ Ξ/B̃unG,D → E

such that f(x ⋅ a) = f(x) ⋅ a for each x ∈ Ξ/B̃unG,D and a ∈ A:

Func(Ξ/B̃unG,D,A ⊂ E×). (4.21)

We shall call such functions genuine automorphic forms.
They define genuine automorphic forms in the sense of §1.5.5 as follows: using the compat-

ibility of §4.1.7, we may restrict along (4.6) to obtain compactly supported genuine functions

over G(F)Ξ/G̃F/KD.

4.3.7. Suppose that Pη is a parabolic subgroup of the restriction Gη of G to the generic
point η ⊂ X. Then Pη extends uniquely to a parabolic subgroup P of GX̊. Let P↠M denote
its Levi quotient.

The restriction of µ to BX̊(P) canonically descends to a rigidified section of B4A(1) over
BX̊(M). In particular, the canonical maps G← P→M induce maps of stacks:

B̃unP,∞D

B̃unG,∞D B̃unM,∞D

(4.22)

The E-vectors space of genuine cusp forms:

Funcusp(Ξ/B̃unG,D,A ⊂ E×) (4.23)

is defined to be the subspace of (4.21) consisting of elements which vanish under the integral
transform along (4.22) for all proper parabolic subgroups Pη ⊂ Gη. (The definition of the
integral transform requires fixing a Haar measure on the appropriate unipotent groups, but
its vanishing is independent of this choice.)

Remark 4.3.8. Over the subspace of (4.21) of functions supported on G(F)Ξ/G̃(AF)/KD,
the cuspidality condition coincides with the one from [BJ79, §3.3].

To check their agreement, one needs the vanishing of X1(F,NP) for the unipotent radical
NP ⊂ P, which follows from [ABD+66, Exposé XXVI, Corollaire 2.2].

4.3.9. Recall the definition of Hecke operators in §2.4.8: for each closed point x ∈ X̊ and
V ∈ Repalg(LHx,ϑ), we have associated an element:

hV,x ∈ Func(G(Ox)/G̃x/G(Ox),A ⊂ E×).
It acts on the vector space (4.23) via convolution (f, hV,x) ↦ f ⋆hV,x along the multipli-

cation map G̃F × G̃x → G̃F.

4.3.10. We are now ready to state the Langlands parametrization of genuine cusp forms on
B̃unG,D/Ξ.

The coefficient field E is taken to be Q`. We recall that that data (G, µ) over X̊ define
an L-group as a short exact sequence (see (1.34)):

1→ Hη̄(Q`) → LHX̊,ϑ → π1(X̊, η̄) → 1.
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Theorem 4.3.11. Assume D ≠ ∅. There is a canonical decomposition:

Funcusp(Ξ/B̃unG,D,A ⊂ Q×
` ) ≅⊕

[σ]

HD,[σ], (4.24)

where [σ] ranges over Hη̄(Q`)-conjugacy classes of sections of LHX̊,ϑ → π1(X̊, η̄).

For each x ∈ X̊ and V ∈ Repalg(LHx,ϑ), the summand HD,[σ] is an eigenspace for hV,x

with eigenvalue Tr([σx] ⋅ ϕx ∣ V), where ϕx ∈ π1(x, x̄) denotes the geometric Frobenius and

[σx] denotes the Hη̄(Q`)-conjugacy class of sections of LHx,ϑ → π1(x, x̄) induced from [σ].

4.4. Excursion.

4.4.1. In this subsection, we prove Theorem 4.3.11. The notations are as in §4.3.
In the course of the proof, we will work with a sufficiently large subfield E ⊂ Q` finite over

Q` and make our choice q1/2 ∈ E×.

4.4.2. For a nonempty finite set I equipped with an ordered partition I ≅ I1 ⊔ ⋯ ⊔ Ik, we
specialize the commutative diagram (4.3) to G = Z♯ and restrict along the unit section of
the Hecke stacks.

We record this commutative diagram of stacks, along with the A-gerbes defined by µZ♯

on some of them:

(BunZ♯,D)Fr × X̊I BunZ♯,D

BunZ♯,D × X̊I BunZ♯,D ×BunZ♯,D GZ♯,D ⊠ G ⊗−1
Z♯,D

e∗(G I
Z♯) BX̊I(LI

+(Z♯))

X̊I

p0

(id,FrBun
Z♯,D)

(p0,pk)

res (4.25)

The left column consists of strictly commutative Picard stacks over X̊I, and the right
column consists of those over k. Morphisms in (4.25) are compatible with these structures,
and the A-gerbes admit E∞-monoidal structures.

The action of Z♯ on G induces an action of each term in (4.25) on the corresponding term
in (4.3), the morphisms among them being equivariant.

4.4.3. Recall that e∗(G I
Z♯) is canonically trivialized as an A-gerbe over BX̊I(LI

+(Z♯)) equipped
with an E∞-monoidal structure.

Lemma 4.4.4. The forgetful functor out of BX̊I(LI
+(Z♯))-equivariant objects in S̃atI1,⋯,Ik

G,G I is

an equivalence of categories:

(S̃atI1,⋯,Ik
G,G I )BX̊I(L

I
+(Z

♯)) ≅ S̃atI1,⋯,Ik
G,G I . (4.26)

Proof. The forgetful functor is fully faithful, as BX̊I(LI
+(Z♯)) may be written as an inverse

limit of connected smooth algebraic stacks.

To show that it is essentially surjective, it suffices to prove that for each F ∈ S̃atI1,⋯,Ik
G,G I ,

there is an isomorphism relating its pullback under the action and projection maps:

act∗(F ) ≅ pr∗(F ), over BX̊I(LI
+(Z♯)) ×X̊I H̃ecI1,⋯,Ik

G , (4.27)
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extending the natural one over e × H̃ecI1,⋯,Ik
G , the extension being necessarily unique.

By universal local acyclicity, it is enough to show that such an extension exists over the
pairwise disjoint locus of X̊I ([HS23, Theorem 6.8]), and furthermore over any k̄-point of the
latter. The pointwise statement is a consequence of Proposition 3.3.7. �

4.4.5. Using Lemma 4.4.4, we see that the pullback of any object F ∈ S̃atI1,⋯,Ik
G,G I to ShtI1,⋯,Ik

G,D

along the vertical map in (4.3) acquires a (BunZ♯,D)Fr-equivariance structure.

In particular, taking direct image with compact support along the projection Ξ/ShtI1,⋯,Ik
G,D →

X̊I defines a functor:

S̃atI1,⋯,Ik
G,G I → Ind(Shv(X̊I)), F ↦ Γc(Ξ/ShtI1,⋯,Ik

G,D ,F ). (4.28)

(Note that Ξ/ShtI1,⋯,Ik
G,D is an ind-algebraic stack of ind-finite type.)

The isomorphism (4.11) identifies the image of e!(E) under (4.28) (for k = 1) with the

constant sheaf over X̊I with values in Func(Ξ/B̃unG,D,A ⊂ E×).

4.4.6. Finally, we summarize the arguments of V. Lafforgue [Laf18] and Xue [Xue20b],
which establish the spectral decomposition (4.24), taking as sole input the Satake functors
S I1,⋯,Ik (2.32) and the cohomology of Shtukas (4.28).

The notion of Shtukas and the method to construct representations of copies of π1(X̊, η̄)
using partial Frobenii originated in Drinfeld’s work on GL2 [Dri87b] [Dri88] [Dri87a].

This summary is only included to give detailed references to the results of [Laf18] and
[Xue20b]. It contains no originality whatsoever.

Proof of Theorem 4.3.11. For a nonempty finite set I, composing the Satake functor S I

with (4.28) (for k = 1) and taking the middle cohomology group H0 yields a functor:

Repalg((LHX̊,ϑ)
I) → Ind(Shv(X̊I)), W ↦HI,W ∶= H0

c(Ξ/ShtI
G,D,S

I(W)). (4.29)

Note that there are forgetful functors:

Ind(Rep(π1(X̊, η̄)I)) → Ind(Lis(X̊I)) ⊂ Ind(Shv(X̊I)),
where Rep(π1(X̊, η̄)I) denotes the category of finite-dimensional continuous E-linear repre-

sentations of π1(X̊, η̄)I.

Claim: HI,W canonically lifts to Ind(Rep(π1(X̊, η̄)I)).
The claim is proved using the action of partial Frobenii on HI,W. To wit, for an ordered

partition I ≅ I1 ⊔⋯ ⊔ Ik into nonempty finite subsets, we have a commutative diagram:

Ξ/ShtI1,I2,⋯,Ik
G,D Ξ/ShtI2,⋯,Ik,I1

G,D

BX̊I(LI
+(Z♯))/(∏1≤a≤k HecIa

G ) BX̊I(LI
+(Z♯))/(∏1≤a≤k HecIa

G )

X̊I X̊I

FrI1

res res

FrI1

FrI1

(4.30)

where the top horizontal morphism sends the data (4.1), (4.2) to:

(P1, φ1) x
I2∼ ⋯ xIk∼ τ(P0, φ0)

τxI1∼ τ(P1, φ1),
and the middle and lower horizontal morphisms are the partial Frobenii, acting as the Frobe-
nius on the factor corresponding to I1 and the identity on the remaining factors.
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We view S I1,⋯,Ik as valued in the category of untwisted perverse sheaves over Ξ/ShtI1,⋯,Ik
G,D ,

by pulling back along the restriction maps to the local Hecke stack and using the trivialization

of the A-gerbe G I1,⋯,Ik over ShtI1,⋯,Ik
G,D constructed in §4.1.9. Perversity of the pullback follows

from the smoothness and dimension count in [Laf18, §2].

The trivialization of G I1,⋯,Ik over ShtI1,⋯,Ik
G,D is FrI1-equivariant in the sense that it com-

mutes with the canonical isomorphism Fr∗I1(G
I1,⋯,Ik) ≅ G I1,⋯,Ik . By the construction of

S I1,⋯,Ik and the commutative diagram (4.30), we obtain a natural isomorphism:

(FrI1)∗S I2,⋯,I1(W) ≅ S I1,⋯,Ik(W). (4.31)

Since the outer square of (4.30) is Cartesian up to universal homeomorphisms, (4.31) induces
an isomorphism:

FI1 ∶ (FrI1)∗HI,W ≅ HI,W. (4.32)

By re-ordering the partition of I, we obtain similar isomorphisms FI2 ,⋯,FIk . One sees as
in [Laf18, §3-4] that the isomorphisms FI1 ,⋯,FIk pairwise commute and their composition
equals the canonical identification of HI,W with its Frobenius pullback.

Using (4.32), we construct the following endomorphism as in [Laf18, §12.3.3]:

SV,x ∈ End(HI,W), for x ∈ X̊ and V ∈ Repalg(LHx,ϑ).
Note that V (unlike W) is a representation of the local L-group, so the associated “creation”
and “annihilation” operators, corresponding to the unit and counit of V, are only defined
over the subscheme X̊I × x{1,2} ⊂ X̊I⊔{1,2}. (Informally, SV,x is the trace of the Frobenius
endomorphism on “a copy of V inserted at x”.)

The fact that SV,x restricts to the action of the Hecke operator hV,x over (X̊ − x)I is
proved as in [Laf18, §6].

Furthermore, the E-sheaf HI⊔{0},W⊠V is well defined over X̊I × x, and (4.32) induces an

endomorphism (F{0})deg(x) of it. The argument of [Laf18, §7] gives the following identity

(to be thought of as a Cayley–Hamilton theorem for (F{0})deg(x)):

dim(V)

∑
i=0

(−1)iS∧dim(V)−i(V),x ⋅ ((F{0})deg(x))i = 0. (4.33)

The isomorphisms (4.32), together with (4.33), imply the claim by [Xue20b, Proposition
1.3.4, Theorem 4.2.3].

Next, we define the subsheaf of cuspidal cohomology HI,W,cusp ⊂ HI,W either by [Laf18,
§12.3.4] or by a generalization of [Xue20b, §7] (which is stated for split reductive groups).

It belongs to Rep(π1(X̊, η̄)I). Thus (4.29) induces a system of functors:

Repalg((LHX̊,ϑ)
I) → Rep(π1(X̊, η̄)I), W ↦HI,W,cusp, (4.34)

indexed by nonempty finite sets I, which are compatible with surjections of such. As noted
in §4.4.5, the object HI,1,cusp associated to the trivial representation 1 is isomorphic to the
(finite-dimensional) E-vector space:

Funcusp(Ξ/B̃unG,D,A ⊂ E×), (4.35)

equipped with the trivial π1(X̊, η̄)I-action.
Using the construction of [Laf18, §9-10], the system of functors (4.34) equips the E-vector

space (4.35) with the action of a commutative E-algebra B (of “excursion operators”), and
[Laf18, §11] associates to each E-point of Spec(B) an H(E1)-conjugacy class of sections of
LHX̊,ϑ → π1(X̊, η̄) for some finite extension E ⊂ E1 in Q`.
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Finally, the desired decomposition (4.24) is the decomposition of (4.35) according to its

support in Spec(B ⊗E Q`). The action of the Hecke operator hV,x on the summand HD,[σ]

is calculated as in [Laf18, §11]. �

Remark 4.4.7. It follows from the construction that each conjugacy class [σ] appearing in
(4.24) is associated to a section σ ∶ Γ→ LHΓ,ϑ of the finite form of the L-group (see Remark

1.6.16) and a finite extension Q` ⊂ E in Q`:

1→ Hη̄(E) → LHΓ,ϑ → Γ→ 1.

Furthermore, the Zariski closure of σ(Γ) ⊂ LHΓ,ϑ is a (possibly disconnected) reductive
group, when LHΓ,ϑ is equipped with the algebraic structure induced from Hη̄.

4.4.8. The spectral decomposition (4.24) is compatible with inclusions of nonempty k-finite
closed subschemes D ⊂ D1 of X, i.e. the following diagram is commutative:

HD,[σ] Funcusp(Ξ/B̃unG,D,A ⊂ Q×
` )

HD1,[σ] Funcusp(Ξ/B̃unG,D1 ,A ⊂ Q×
` )

⊂

⊂

(4.36)

where the left vertical arrow is induced from π1(X̊1, η̄) → π1(X̊, η̄), for X̊1 ∶= X−D1, and the

right vertical arrow is the restriction along B̃unG,D1 → B̃unG,D.
The generic version of the spectral decomposition (0.3) asserted in Theorem A is a formal

consequence of (4.24) and the compatibility (4.36).
Namely, the existence of parahoric models [BT84], combined with [Zha22, Lemma 2.2.5],

shows that the 2-groupoid of pairs (G, µ), where G → Spec(F) is a reductive group and µ
is an étale metaplectic cover of G, is the filtered colimit over nonempty k-finite subschemes
D ⊂ X of the 2-groupoid of pairs (G1, µ1), where G1 → X is a smooth affine group scheme,
reductive over X − D and parahoric along D, and µ1 is an étale metaplectic cover of the
restriction G1,X−D.

We thus obtain (0.3) as the filtered colimit of (4.24), applied to each (G1, µ1) as above,
over nonempty k-finite subschemes D ⊂ X.

Remark 4.4.9. In contrast to the non-metaplectic context, the generic version (0.3) does
not allow us to state its compatibility with Satake isomorphism in a canonical manner.

Namely, for µ to be “unramified” at a closed point x ∈ X involves the datum of an extension
across x which is generally not unique (Remark 4.1.5). Distinct choices of extensions give

rise to distinct sections of G̃x → G(Fx) over G(Ox), and correspondingly distinct splittings
of the L-group LHF,ϑ → Gal(F̄/F) over the inertia subgroup Ix ⊂ Gal(F̄x/Fx).
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Paris, 2018, L-groups and the Langlands program for covering groups, pp. 187–275. MR 3802419
[GL18] Dennis Gaitsgory and Sergey Lysenko, Parameters and duality for the metaplectic geometric Lang-

lands theory, Selecta Math. (N.S.) 24 (2018), no. 1, 227–301, References are to the corrected version,

available at: https://lysenko.perso.math.cnrs.fr. MR 3769731
[GRR72] Alexander Grothendieck, Michel Raynaud, and Dock Sang Rim, Groupes de monodromie en
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Birkhäuser/Springer, New York, 2012, pp. 299–327. MR 2963537
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