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Abstract. Kottwitz suggested to study all extended pure inner forms together in the

local Langlands correspondence for linear reductive groups. We extend this philosophy

to a large class of covers, including those defined by Brylinski and Deligne, and explain
its relation with Weissman’s observation that L-packets for covers are sometimes empty.
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Introduction

The goal of this article is to define a notion of “extended pure inner forms” of a covering
group and argue that it is relevant for the local Langlands program for covers.

Let us begin by describing the puzzle that motivated our consideration.

0.1. The “missing” L-packets. In the usual local Langlands program, one takes as input
a local field F and a reductive group F-scheme G. To these data, one attaches the set
Π(G(F)) of isomorphism classes of irreducible smooth G(F)-representations and the set
Φ(LG) of L-parameters, and posits the existence of a natural map

LLC ∶ Π(G(F)) → Φ(LG). (0.1)

The local Langlands program for covers requires a cohomological input µ, in addition to
F and G. Traditionally, µ is defined in terms of algebraic K-theory (cf. [BD01, Wei18]). For
now, let us ignore the precise meaning of µ and accept that it gives rise to a topological
central extension

1→ A→ G̃→ G(F) → 1

for a finite subgroup A of C×, as well as an “L-group” H̃. Imitating the linear situation, one
posits the existence of a natural map

LLC ∶ Π(G̃) → Φ(H̃), (0.2)

where Π(G̃) is the set of isomorphism classes of irreducible genuine smooth G̃-representations

and Φ(H̃) is the set of L-parameters defined in terms of H̃. (The adjective “genuine” means
that A acts through its inclusion in C×.) We refer the reader to [GGW18, Wei18, GG18]
where foundations of this program are laid out.

The map (0.2) has been constructed by Weissman when G is a split torus. He observed
an intriguing phenomenon: It may not be surjective. This stands in contrast with (0.1),
which is expected to be surjective when G is quasi-split.

The goal of our article is to relate this phenomenon to Kottwitz’s philosophy of treating
all extended pure inner forms of G together in the formulation of (0.1) (cf. [Kot85, Kot97,

Kal14]). Namely, for each basic G-isocrystal β, we shall construct a cover G̃β of the extended
pure inner form Gβ(F) associated to β. We expect (0.2) to fit into a family of maps

LLCβ ∶ Π(G̃β) → Φ(H̃), (0.3)

parametrized by β. Weissman’s observation above, in fact, leads to an obstruction Ωβ(σ)
for the nonemptiness of LLC−1

β (σ). Our main result determines the set of β for which Ωβ(σ)
vanishes. The key point is that this set of β is always nonempty, though it may not contain
the trivial element. When G is a torus, we prove that LLC−1

β (σ) is indeed nonempty and
finite whenever Ωβ(σ) vanishes.

Informally, our results indicate that the “missing” L-packets observed by Weissman may
appear on an “extended pure inner form” G̃β of the cover G̃.

0.2. Results. Let us give a more precise account of the content of this article.
In the remainder of this introduction, we fix a local field F, a reductive group F-scheme

G, and a finite subgroup A of C× whose order is invertible in F.
Our first task is to define the cover G̃β for an arbitrary G-isocrystal β, given the cohomo-

logical input µ. It turns out that the K-theoretic formalism of Brylinski–Deligne (cf. [BD01])
is too restrictive for this purpose. Instead, we take µ to be an étale metaplectic cover, i.e. a
morphism of pointed (higher) étale stacks (cf. [Del96, GL18, Zha22])

BG→ B4A(1).
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The reason is as follows: An étale metaplectic cover µ of G induces an étale metaplectic
cover µβ of each Gβ , hence a cover G̃β of Gβ(F). However, even if µ comes from algebraic
K-theory, µβ may not (cf. Remark 4.5.4). In other words, étale metaplectic covers are
necessary even if one is only interested in Brylinski–Deligne covers.

Next, we turn our attention to Langlands duality. The L-group of an étale metaplectic
cover is defined in [Zha22]. Let us sketch (a minor variant of) this construction, as it is
important for the formulation of our main results.

This construction consists of three steps.
In the first step, we replace the pair (G, µ) by another one (G♯, µG♯). Here, G♯ is a reduc-

tive group F-scheme, endowed with an étale metaplectic cover µG♯ which is “as commutative
as possible”.

To explain the last phrase, we recall that every reductive group F-scheme G maps to the
stack quotient Gab ∶= G/Gsc, where Gsc is the simply connected form of G. In fact, Gab is a
commutative group stack and the gentlest kind of étale metaplectic covers are pulled back
from “Z-linear” morphisms1

BGab → B4A(1)
Such morphisms are parametrized by maps of complexes π1G→ A[2]. Kaletha (cf. [Kal22])
has studied the covers defined by them, at least for quasi-split G, and reduced the Langlands
correspondence for them to that for linear reductive groups.2

The next, and slightly less gentle, kind of étale metaplectic covers is pulled back from
symmetric monoidal morphisms3 from BGab to B4A(1). The étale metaplectic cover µG♯

is of this kind. The passage from (G, µ) to (G♯, µG♯) is analogous to the “sharp cover”
construction of Weissman (cf. [Wei18]).

The second step has to do with the subtle, but important difference between symmetric
monoidal and Z-linear morphisms from BG♯

ab to B4A(1). Namely, there is a canonical
decomposition

µG♯ ≅ µ(1)G♯ + µ(2)G♯ (0.4)

where µ
(1)
G♯ is 2-torsion and µ

(2)
G♯ comes from a Z-linear morphism. The decomposition (0.4)

appeared first in Gaitsgory and Lysenko’s work (cf. [GL18]), who used it to explain a sign
occurring in the twisted geometric Satake equivalence.

The third step is the passage to the Galois side: We take H to be the Langlands dual
group of G♯ and define a sum of ZH(C)-gerbes over the étale site of Spec F

Z̃H ∶= Z̃
(1)
H + Z̃

(2)
H , (0.5)

where ZH is the center of H. The summands in (0.5) are constructed from the respective

summands in (0.4). The L-group H̃ is obtained formally from Z̃H, by rewriting an étale gerbe
as a Galois cocycle. In the K-theoretic context, Weissman defined the L-group as a Baer
sum similar to the above (cf. [Wei18]). However, the decomposition (0.4) has no K-theoretic
counterpart, so our formalism renders the situation more symmetric.

Slightly extending Kaletha’s work, one can relate the Langlands duality for the “sharp
cover” (G♯, µG♯) to that for linear reductive groups (cf. §2.5). The passage from (G, µ) to
(G♯, µG♯) is more mysterious and is responsible for the “missing” L-packets.

However, before we can go any further, we must first construct the Langlands duality for
sharp covers of tori. The following result is proved in §2.

1In homotopical terms, this means morphisms of sheaves of HZ-module spectra.
2However, Kaletha’s construction of the covers is different from ours. His uses the Langlands duality for

tori, and ours does not. The equivalence of these two constructions is a consequence of our results in §2.
3This means morphisms of sheaves of (grouplike) E∞-monoids, or equivalently of spectra.
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Theorem A. Let T be an F-torus equipped with a symmetric monoidal morphism µ ∶ BT→
B4A(1), defining a cover T̃ and an L-group H̃. There is a canonical bijection

Π(T̃) ≃Ð→ Φ(H̃),

where Π(T̃) is the set of genuine smooth characters of T̃ and Φ(H̃) is the set of L-parameters

defined in terms of H̃.

The special case of Theorem A where µ comes from algebraic K-theory and T is split is
established by Weissman (cf. [Wei18, Part 3]). This serves as justification for his definition
of the L-group and is not at all a trivial consequence of class field theory.

Our proof of Theorem A is independent of op.cit.. It establishes that, in a precise sense,
the decompositions (0.4) and (0.5) match under Langlands duality. The main novelty in our
proof is the treatment of a subtle 2-torsion phenomenon, which explains how Gaitsgory and
Lysenko’s “sign gerbe” (cf. [GL18, §4.8]) and Weissman’s meta-Galois group (cf. [Wei18,
§4]) are interchanged under Langlands duality (cf. Corollary 2.2.14).

We shall use Theorem A to formulate the compatibility of the conjectural local Langlands
correspondence for (G, µ) with “central core characters”. According to Weissman’s vision,
this is a substitute for the compatibility with central characters for the usual local Langlands
correspondence.

Let us be more precise. There is a natural map from the center Z♯ of G♯ to the center
Z of G. (There is, however, no natural maps between G♯ and G.) This map is compatible
with their étale metaplectic covers, so it induces a map on the covers of their F-points

Z̃♯ → Z̃. (0.6)

Given an irreducible genuine smooth representation V of G̃, the Z̃♯-action on V through
(0.6) is given by a genuine smooth character: This is the central core character of V.
Compatibility of the local Langlands correspondence for (G, µ) with central core characters
asserts that the following diagram commutes:

Π(G̃) Φ(H̃)

Π(Z̃♯) Φ(H̃ab)

LLC

≃

(0.7)

Here, the left vertical arrow extracts the central core character, the right vertical arrow is
the “abelianization” of an L-parameter σ, and the lower horizontal equivalence is defined by
Theorem A, or rather, its mild generalization to disconnected groups.

Assuming the commutativity of (0.7), we can now explain the failure of surjectivity of

LLC. Let K be the kernel of (0.6). Given an L-parameter σ ∈ Φ(H̃), whose abelianization

corresponds to a genuine smooth character χσ ∶ Z̃♯ →C×, if the restriction

Ω(σ) ∶= χσ ∣K (0.8)

is nonzero, then the fiber of LLC at σ is empty. This is because the central core character
of any V ∈ Π(G̃) must annihilate K.

We call (0.8) Weissman’s obstruction, as he first discovered it for tori (cf. [Wei09, Wei16]).

The main goal of this article is to generalize it to G̃β for every G-isocrystal β and to
characterize those β for which this obstruction vanishes.

The first task is easy, given our definition of G̃β . Indeed, there is a natural map Z̃♯ → G̃β

for every G-isocrystal β with central image. This allows us to formulate the compatibility of
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the conjectural local Langlands correspondence (0.3) with central core characters, in analogy

with (0.7). For each L-parameter σ ∈ Φ(H̃), we may then define a character

Ωβ(σ) ∶ K→C×.

If Ωβ(σ) ≠ 1, then the fiber of LLCβ at σ is empty.
Let us now state our main theorem. It will be established in §4.

Theorem B. Let G be a reductive group F-scheme endowed with an étale metaplectic cover
µ. Let G♯ and K be defined as above.

(1) There is a canonical exact sequence of abelian groups

(π1G♯)GalF → (π1G)GalF

γÐ→ Hom(K,C×) → 1.

(2) For each G-isocrystal β and L-parameter σ, the character Ωβ(σ) vanishes if and
only if the Kottwitz invariant of β maps to Ω(σ)−1 under γ.

In particular, for any L-parameter σ, there always exists a basic G-isocrystal β for which
Ωβ(σ) vanishes and the set of isomorphism classes of such β is a torsor under the image
of (π1G♯)GalF . When G is a torus, we prove that the vanishing of Ωβ(σ) is necessary and

sufficient for LLC−1
β (σ) to be nonempty (cf. Proposition 4.4.4).

Let us say one word about the proof of Theorem B.
The key ingredient is the “canonical quadratic structure” of an étale metaplectic cover µ

with respect to the BZ-action on BG (cf. Proposition 3.1.3). This appears to be a funda-
mental piece of structure of étale characteristic classes, valid over an arbitrary base scheme.
Informally, it expresses

µ(E ⊗Z ) − µ(E ) − µ(ZG),
for any G-torsor E and Z-torsor Z (with induced G-torsor ZG), in terms of an explicit
bilinear expression in Z and the Gab-torsor induced from E . One classical manifestation of
this phenomenon is the formula of Chern classes

c2(E ⊗L ) − c2(E ) − c2(L ⊕n) = (n − 1) ⋅ c1(detE ) ∪ c1(L )
for any rank-n vector bundle E and any line bundle L .

0.3. Conventions. This paper uses homotopical algebra as developed by Lurie (cf. [Lur09,
Lur17]). While certain aspects of the theory of covers can be handled using traditional
methods of homological algebra4, manipulations of higher symmetric monoidal structures in
this article are infeasible without Lurie’s theory.

Following Lurie’s convention, we refer to ∞-groupoids as spaces. We invoke the equiva-
lence between connective spectra and grouplike E∞-monoids (cf. [Lur17, Remark 5.2.6.26])
and view them as spaces with additional structure. We abbreviate “connective HZ-module
spectra” as Z-linear spaces. In particular, there are forgetful functors from Z-linear spaces
to grouplike E∞-monoids, and from grouplike E∞-monoids to pointed spaces.5 These are
essentially the only higher algebraic structures we will need.

Given a scheme S, we use B to denote the deloop functor for fppf sheaves over S. In
particular, for a group S-scheme G, BG is the usual classifying stack of G. If G is smooth
and affine, then its deloops in the fppf and étale topologies coincide.

4For example, by taking a simplicial resolution of BG, one can encode an étale metaplectic cover as an

étale hypercocycle, which is how this notion was originally conceived of by Deligne (cf. [Del96]). The Z-linear
part of µG♯ can also be encoded by a map of complexes over Spec F, hence by a Galois hypercocycle. This

is how Kaletha describes them (cf. [Kal22]).
5For a usual groupoid, i.e. a 1-truncated space, a Z-linear structure is the structure of a strictly commu-

tative Picard groupoid, whereas a grouplike E∞-monoid structure is the structure of a Picard groupoid.
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Given an fppf sheaf of abelian groups A over S and an integer n ≥ 1, we view the n-fold
deloop BnA as an fppf sheaf of Z-linear spaces over S. If A is pulled back from the small
étale site of S (e.g. A ≅ A(1) where A is a finite abelian group of invertible order), then
its deloops in the fppf and étale topologies coincide (cf. [Sta18, 0DDT]). We invoke this
equivalence when applying the formalism of [Zha22].

We shall use “Kummer theory” extensively in the following form. For any integer n ≥ 1,
we have the coboundary Gm → BZ/n(1) of the Kummer exact sequence. This yields a
morphism in the pro-category of fppf sheaves of Z-linear spaces

Ψ ∶ Gm → BẐ(1) ∶= lim
n

BZ/n(1),

where the formal inverse limit is taken over the divisibility poset of positive integers. We
shall also frequently use the deloop BΨ ∶ BGm → B2Ẑ(1) of Ψ.

0.4. Acknowledgements. L.S. would like to thank Jessica Fintzen for introducing him to
the topic of covers. Y.Z. thanks Tianyi Feng, Dennis Gaitsgory, Wee Teck Gan, and Tasho
Kaletha for illuminating conversations about the subject of this article.

1. Covers of Gβ(F)

Let F be a local field with residue field f. We fix an algebraic closure f of f.
In this section, we first recall the notion of G-isocrystals following Kottwitz (cf. [Kot85,

Kot97]). Then we define the cover G̃β for a reductive group F-scheme G together with an
étale metaplectic cover µ and a G-isocrystal β. Next, we recall some combinatorial data
associated to µ in order to define the set of L-parameters and extend Weissman’s conjectural
local Langlands correspondence to G̃β (cf. Conjecture 1.4.16).

1.1. G-isocrystals.

1.1.1. Denote by F̆ the completed maximal unramified extension of F determined by f.
Denote by q the cardinality of f. The qth power Frobenius of f extends by functoriality to
an automorphism of F̆, which we denote by σ.

Denote by X the prestack quotient Spec(F̆)/σZ. The inclusion F ⊂ F̆ induces a morphism
of prestacks

X→ Spec F. (1.1)

In what follows, we treat Spec F as the base scheme, so fiber products taken over Spec F
will be written without Spec F.

1.1.2. For any affine group F-scheme G of finite type, we write IsocG for the groupoid of
G-torsors over X, which we refer to as G-isocrystals.

Equivalently, a G-isocrystal β consists of a G-torsor E over Spec F̆ and an isomorphism

of G-torsors ϕ ∶ σ∗E ≃Ð→ E .
Note that any element g of G(F̆) defines a G-isocrystal (E , ϕ), where E is the trivial

G-torsor over Spec F̆ and ϕ is multiplication by g. Conversely, if a G-isocrystal is endowed
with a trivialization over Spec F̆, then ϕ is given by multiplication by an element of G(F̆).

Remark 1.1.3. If F is of characteristic zero and G is connected, then any G-torsor over
Spec F̆ is trivial (cf. [Ste65, Theorem 1.9]). If F is of characteristic p ≠ 0 and G is reductive6,

then any G-torsor over Spec F̆ is trivial (cf. [BS68, §8.6]).

6Our convention is that “reductive” implies “connected”.
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For our purposes, however, we will sometimes need the case for disconnected G such as
the center of a reductive group F-scheme.

1.1.4. Given a G-isocrystal β, we write Gβ for the group F-sheaf of automorphisms of β.
Namely, for any F-algebra R, an R-point of Gβ is an automorphism of the pullback of β to
the prestack X × Spec R.

By [Kot97, §3.3], the group F-sheaf Gβ is represented by an affine group F-scheme.

1.1.5. For a reductive group scheme G over any base scheme S, we employ the following
notation: Gsc (respectively Gad) stands for the simply connected (respectively adjoint) form
of G. Write T (respectively Tsc, Tad) for the abstract Cartan of G (respectively Gsc, Gad).
Denote by Λ (respectively Λ̌) the fppf sheaf of cocharacters (respectively characters) of T.
We use the same notation Λsc, Λad, etc. for Tsc and Tad.

Denote by ∆ ⊂ Λ (respectively ∆̌ ⊂ Λ̌) the subsheaf of simple coroots (respectively simple
roots). Thus ∆ generates Λsc and ∆̌ generates the subsheaf dual to Λad.

Denote by Z the center of G, so we have a canonical isomorphism

Z ≅ Fib(Λ→ Λad) ⊗Gm,

where Fib stands for the fiber of complexes of fppf sheaves of abelian groups, and the tensor
product is understood in the derived sense.

Denote by π1G the quotient of fppf sheaves Λ/Λsc. We view

Gab ∶= π1G⊗Gm
as an fppf sheaf of Picard groupoids and refer to it as the cocenter of G. (It coincides with
the abelianization of G when π1G is torsion-free.) The identification Z/Zsc ≅ G/Gsc induces
a monoidal morphism

G→ Gab. (1.2)

1.1.6. For a reductive group F-scheme G, we have the Kottwitz invariant

Kott ∶ IsocG → (π1G)GalF , (1.3)

where (π1G)GalF denotes the group of Galois coinvariants of π1G.7

Since (1.3) plays a major role in this text, let us recall its definition.
Denote by IsocGab

the space of Gab-torsors over X, i.e. maps from X to BGab. Since Tsc

is reductive, every Tsc-torsor over Spec F̆ is trivial (cf. Remark 1.1.3). Combining this with
the fact that Z has cohomological dimension 1, we see that H2(X,Tsc) ≅ 0, so the quotient
map yields an equivalence

IsocT/IsocTsc

≃Ð→ IsocGab
. (1.4)

The functorial isomorphism π0(IsocT) ≅ (X∗T)GalF for tori (cf. [Kot85, §2.4]) induces an
isomorphism π0(IsocGab

) ≅ (π1G)GalF via (1.4). We set (1.3) to be the composition

IsocG → IsocGab

→ π0(IsocGab
) ≃Ð→ (π1G)GalF ,

where the first map is defined by functoriality with respect to (1.2).

1.1.7. We keep the assumption that G is reductive.
Recall that a G-isocrystal β is basic if its induced Gad-isocrystal is the pullback of a

Gad-torsor over Spec F (cf. [Kot85, §4.5, §5.1]). Thus, if β is basic, then Gβ is an inner form

7The formation of Galois coinvariants does not require the choice of an algebraic closure of F.
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of G. Inner forms arising in this manner are called extended pure inner forms of G. Denote
by BasicG the full subgroupoid of IsocG consisting of basic G-isocrystals.

According to [Kot85, Proposition 5.6], (1.3) induces a bijection

π0(BasicG) ≃Ð→ (π1G)GalF . (1.5)

1.2. Construction of covers.

1.2.1. Let G be an affine group F-scheme of finite type and A be a finite abelian group
whose order is invertible in F.

For each n ∈ Z, write A(n) for the corresponding Tate twist of A, viewed as an étale sheaf
of finite abelian groups over Spec F.

1.2.2. Denote by Mapse(BG,B4A(1)) the space of rigidified morphisms BG → B4A(1),
i.e. morphisms of pointed F-stacks. It admits a Z-linear structure induced from the abelian
group structure on A(1).

For a topological group K, we refer to a topological central extension

1→ A→ K̃→ K→ 1,

where K̃→ K is a local homeomorphim, as a cover of K. The collection of covers of K form
a Z-linear groupoid under Baer sum, which we denote by Cov(K,A).

Let us equip G(F) with the topology inherited from F. The construction of [Zha22, §2.1]
yields a Z-linear functor

∫
F
∶ Mapse(BG,B4A(1)) → Cov(G(F),A). (1.6)

1.2.3. For any G-isocrystal β, we shall construct a functor

Tβ ∶ Mapse(BG,B4A(1)) →Mapse(BGβ ,B
4A(1)), (1.7)

to be conceived of as “translation by β”.
If Gβ is of finite type, then by composing (1.7) with the functor (1.6) applied to Gβ , we

obtain a functor

∫
F,β

∶ Mapse(BG,B4A(1)) → Cov(Gβ(F),A). (1.8)

Under (1.8), every rigidified morphism BG→ B4A(1) defines a cover G̃β of Gβ(F).
1.2.4. Construction of Tβ. Let us view β as a morphism X → BG. Since Gβ is the group
F-sheaf of its automorphisms, β extends to a morphism of fppf stacks

X ×BGβ → BG. (1.9)

More precisely, there is a natural morphism of group X-sheaves X ×Gβ → X ×BG X, where
the target is the fiber product of β with itself, and (1.9) is obtained as its deloop.

Given a rigidified morphism µ ∶ BG→ B4A(1), the pullback of µ along (1.9) is a morphism

X×BGβ → B4A(1) whose restriction along the neutral section e ∶ X→ X×BGβ is isomorphic
to β∗µ. Thus, sending µ to the difference µ−p∗β∗µ, where p ∶ X×BGβ → X is the projection,
defines a functor

Mapse(BG,B4A(1)) →Mapse(X ×BGβ ,B
4A(1)), (1.10)

where the target is the space of maps X ×BGβ → B4A(1) rigidified along e.
Thanks to Lemma 1.2.5 below, pullback along the projection X×BGβ → BGβ induces an

isomorphism

Mapse(BGβ ,B
4A(1)) ≃Ð→Mapse(X ×BGβ ,B

4A(1)). (1.11)

The desired functor (1.7) is the composition of (1.10) with the inverse of (1.11).
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Lemma 1.2.5. For any F-scheme S, pullback along the projection S × X → S induces an
isomorphism of étale cochains

Γ(S,A(1)) ≃Ð→ Γ(S ×X,A(1)). (1.12)

Proof. Denote by ν ∶ Spec F̌ → Spec F the natural map. The complex ν∗A(1) is endowed
with an automorphism σ∗ defined by pullback along σ ∶ Spec F̌ → Spec F̌. We claim that it
is sufficient to identify the fiber of

σ∗ − id ∶ ν∗A(1) → ν∗A(1) (1.13)

with A(1), along the unit map A(1) → ν∗A(1).
Indeed, the complex Γ(S × X,A(1)) is the (derived) Z-invariants of the complex Γ(S ×

Spec F̆,A(1)), with 1 ∈ Z acting by σ∗. On the other hand, base change (cf. [Sta18, 0F1I])
yields an isomorphism

Γ(S × Spec F̆,A(1)) ≃Ð→ Γ(S, ν∗A(1)).
Hence, Γ(S × X,A(1)) is identified with the image under Γ(S,−) of the fiber of (1.13). If
the latter is identified with A(1) along the unit map, then Γ(S ×X,A(1)) is identified with
Γ(S,A(1)) along the pullback map.

We now identify the fiber of (1.13). Let Funr denote the maximal unramified extension

of F determined by f̄, so F̆ is the completion of Funr. Pulling back along Spec F̆→ Spec Funr

induces an equivalence of étale sites, so we may replace Spec F̆ by Spec Funr.
The map Spec Funr → Spec F is a Ẑ-torsor and the desired isomorphism can be verified

at a geometric point of Spec F. We thus reduce to the following assertion: For any torsion
Ẑ-module M, its Ẑ-invariants coincide with its Z-invariants along the natural map Z → Ẑ.
This follows from the computation of group cohomology of Ẑ (cf. [Ser79, XIII, §1]). �

Remark 1.2.6. The proof of Lemma 1.2.5 applies when A(1) is replaced by any torsion
étale sheaf over Spec F of order invertible in F. It expresses the fact that the morphism (1.1)
induces, universally, an isomorphism on étale cohomology with such coefficients.

1.3. Combinatorics of covers.

1.3.1. Let G be a reductive group scheme over a base scheme S. Let A be a finite abelian
group whose order is invertible on S. We employ the notation of §1.1.5.

Denote by Mapse(BG,B4A(1)) the space of rigidified morphisms BG→ B4A(1). We shall
recall certain combinatorial data associated to it.

1.3.2. Given a quadratic form Q ∶ Λ→ A(−1), we write

b ∶ Λ⊗Λ→ A(−1)
for the associated symmetric form, sending λ1, λ2 ∈ Λ to

b(λ1, λ2) ∶= Q(λ1 + λ2) −Q(λ1) −Q(λ2).
We say that Q is strictly Weyl-invariant if the equality

b(α,λ) = Q(α)⟨α̌, λ⟩ (1.14)

holds for any λ ∈ Λ and any simple coroot α ∈ ∆.
The right-hand-side of (1.14) makes sense for any λ ∈ Λad, if we understand ⟨⋅, ⋅⟩ as the

canonical pairing between the root lattice and Λad. Thus it extends to a bilinear form

b1 ∶ Λsc ⊗Λad → A(−1).
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1.3.3. The pairing b2. The coincidence between b and b1 over Λsc ⊗ Λ implies that their
adjoints make the following diagram commute:

Λ H om(Λ,A(−1))

Λad H om(Λsc,A(−1))

(1.15)

Taking fibers of the vertical maps, we obtain a map

Fib(Λ→ Λad) →H om(π1G,A(−1)). (1.16)

Denote by b2 the bilinear pairing obtained from (1.16) by passing to the adjoint

b2 ∶ π1G⊗ Fib(Λ→ Λad) → A(−1). (1.17)

1.3.4. Denote by Λ♯ ⊂ Λ the kernel of b. Denote by Λ♯
sc ⊂ Λsc, Λ♯

ad ⊂ Λad the kernels of b1.

Write Λ̌♯ for the dual of Λ♯.
For each simple coroot α ∈ ∆, we shall also write

α♯ ∶= ord(Q(α)) ⋅ α, α̌♯ ∶= ord(Q(α))−1 ⋅ α̌,
where ord(Q(α)) denotes the order of Q(α) ∈ A(−1). The set ∆♯ of α♯ (respectively ∆̌♯ of
α̌♯) forms a subsheaf of Λ♯ (respectively Λ̌♯).

Observe that Λ♯
sc is the span of ∆♯: An element ∑α∈∆ dα ⋅ α of Λsc belongs to Λ♯

sc if and
only if it pairs to zero under b1 against each fundamental coweight ωα, and this occurs if
and only if dα ⋅Q(α) = 0 for each α ∈ ∆. Likewise, Λ♯

ad is dual to the span of ∆̌♯ ⊂ Λ̌♯.
Moreover, the quadruple

(∆♯ ⊂ Λ♯, ∆̌♯ ⊂ Λ̌♯) (1.18)

is a locally constant étale sheaf of based root data over S. In particular, (1.18) is the root
data of a reductive group F-scheme G♯ with sheaf of cocharacters Λ♯. We decorate with (⋅)♯
all the objects associated to G♯ in §1.1.5.

1.3.5. Write M apse(BG,B4A(1)) for the étale sheaf over S whose sections over an S-scheme

S1 are rigidified morphisms BG ×S S1 → B4A(1).
By [Zha22, Proposition 5.1.11], there is a canonical fiber sequence

H omZ(π1G,B2A) →M apse(BG,B4A(1)) →Quad(Λ,A(−1))st, (1.19)

where H omZ denotes the étale sheaf of Z-linear morphisms and Quad(Λ,A(−1))st denotes
the étale sheaf of strictly Weyl-invariant quadratic forms on Λ. The first map in (1.19) is
defined by tensoring with BΨ and pulling back along BG→ BGab.

In particular, to each rigidified morphism µ ∶ BG → B4A(1), we may associate a strictly
Weyl-invariant quadratic form Q and pairings b, b1, b2 as well as the étale sheaf of based
root data (1.18).

Proposition 1.3.6. Let µ be a rigidified morphism BG → B4A(1). The restriction of µ to
BZ♯ canonically lifts to an E∞-monoidal morphism

µZ♯ ∶ BZ♯ → B4A(1), (1.20)

equipped with a trivialization over BZ♯sc.

Proof. In [Zha22, §6.1], we construct from µ a canonical E∞-monoidal morphism µT♯ ∶ BT♯ →
B4A(1) endowed with a trivialization over BT♯

sc. It is enough to identify the restriction of
µT♯ to BZ♯ with the restriction of µ.
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To do this, we recall that µT♯ is constructed, étale locally over Spec F, by choosing a Borel
subgroup B ⊂ G and restricting µ to BB. The latter descends to BT and µT♯ is its pullback
to BT♯. This provides an identification between the restrictions of µT♯ and µ to BZ♯, which
a priori depends on B. The independence is proved as in [Zha22, §5.2.6]. �

1.3.7. Note that Z♯/Z♯sc is canonically identified with G♯
ab, so the E∞-monoidal morphism

(1.20) together with its trivialization over BZ♯sc defines an E∞-monoidal morphism

µG♯
ab
∶ BG♯

ab → B4A(1). (1.21)

The sheaf of E∞-monoidal morphisms from BG♯
ab to B4A(1) fits into a canonical fiber

sequence

H omZ(π1G♯,B2A) →M apsE∞(BG♯
ab,B

4A(1)) →H om(π1G♯,A(−1)2-tors), (1.22)

where A(−1)2-tors denotes the subsheaf of 2-torsion elements of A(−1). Indeed, this follows
from expressing BG♯

ab as the cofiber of BT♯
sc → BT♯ and reducing to the analogous statement

for tori (cf. [Zha22, Proposition 4.6.2]).
In particular, it follows from op.cit. that the image of µG♯

ab
along the second map of (1.22)

is the restriction of Q to Λ♯, which is valued in A(−1)2-tors and annihilates Λ♯
sc.

1.4. The local Langlands correspondence.

1.4.1. We specialize to the case where G is a reductive group F-scheme. Fix a finite abelian
group A whose order is invertible in F, equipped with an injective character

ζ ∶ A→C×.

Note that ζ identifies A with the subgroup µN(C) for N ∶= ∣A∣.
Let µ be a rigidified morphism BG → B4A(1). We shall recall Weissman’s conjectural

local Langlands correspondence for the cover of G(F) defined by µ and explain its extension
to extended pure inner forms of G.

1.4.2. For each β ∈ IsocG, we apply the construction functor (1.8) to µ to obtain a cover

G̃β ∶= ∫
F,β

µ.

Denote by Π(G̃β) the set of isomorphism classes of irreducible ζ-genuine smooth repre-

sentations of G̃β . Being “ζ-genuine” means that A acts through the character ζ.
As above, we omit the subscript β when it is the trivial G-isocrystal.

1.4.3. On the other hand, the rigidified morphism µ defines the reductive group F-scheme
G♯ (cf. §1.3.4) and the E∞-monoidal morphism µG♯

ab
(cf. §1.3.7). The Galois side of the

local Langlands correspondence depends only on (G♯, µG♯
ab
), as opposed to (G, µ).

Denote by H the Langlands dual of G♯, viewed as a locally constant étale sheaf of pinned
split reductive group Z-schemes. In particular, H is equipped with a Killing pair TH ⊂ BH ⊂
H, where TH has sheaf of characters Λ♯.

1.4.4. We shall construct a canonical splitting of the fiber sequence (1.22). The idea of this
construction is originally due to Gaitsgory and Lysenko (cf. [GL18, §4.8]).

If A has odd degree, then A(−1)2-tors vanishes and (1.22) trivially splits.
If A has even degree8, then ζ identifies A(−1)2-tors with Z/2. To split (1.22), we associate

to each character ε ∶ π1G♯ → Z/2 the E∞-monoidal morphism

BG♯
ab

ε⊗BΨÐÐÐ→ B2{±1} sgnÐÐ→ B4{±1}⊗2 → B4A(1), (1.23)

8By the assumption that ∣A∣ is invertible in F, this implies that F has characteristic ≠ 2.
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where sgn is the E∞-monoidal morphism constructed below.

1.4.5. Construction of sgn. We work over the base scheme S ∶= SpecZ[ 1
2
]. The étale sheaf

M apsE∞(B2{±1},B4{±1}⊗2) is the fiber of the map

M apsE∞(BGm,B4{±1}⊗2) →M apsE∞(BGm,B4{±1}⊗2) (1.24)

given by pullback along (⋅)2 ∶ BGm → BGm.
On the other hand, the functor of taking loop spaces and applying M apse(Gm, ⋅) yields

an equivalence (cf. [Zha22, Proposition 4.6.6])

M apsE∞(BGm,B4{±1}⊗2) ≃Ð→M apsE∞(Z,B2{±1}). (1.25)

This induces an identification of the fiber of (1.24)

M apsE∞(B2{±1},B4{±1}⊗2) ≃Ð→M apsE∞(Z/2,B2{±1}). (1.26)

Note that an E∞-monoidal morphism Z/2→ B2{±1} is equivalent to a symmetric monoidal

extension of Z/2 by B{±1}. We define sgn ∶ B2{±1} → B4{±1}⊗2 to be the E∞-monoidal
morphism whose image under (1.26) is the trivial monoidal extension of Z/2 by B{±1}, with
commutativity constraint specified by the pairing

Z/2⊗Z/2→ {±1}, a, b↦ (−1)ab.
1.4.6. Under the splitting of (1.22), we may write µG♯

ab
as a sum

µG♯
ab

≃Ð→ µ
(1)
G♯

ab

+ µ(2)
G♯

ab

, (1.27)

where µ
(1)
G♯

ab

is the composition (1.23) applied to the character ε defined by the restriction of

Q to Λ♯ (cf. §1.3.7) and µ
(2)
G♯

ab

is defined by a Z-linear morphism

π1G♯ → B2A. (1.28)

1.4.7. We shall now convert the data ε ∶ π1G♯ → Z/2 and (1.28) to the Galois side. For this,
it helps to introduce a bit of formalism.

Given a pro-space X = limi∈I Xi and a sheaf of abelian groups A over some Xi, we write

Γ(X,A [n]) ∶= colim
j∈I/i

Γ(Xj ,A [n]),

where the transition maps are given by pullbacks. We refer to objects of the Z-linear space
underlying Γ(X,A [2]) as A -gerbes over X. Thus, the total space of an A -gerbe over X is
a pro-space over X.

Givan pro-group Σ = limi∈I Σi, we may apply the above formalism to the pro-space ∗/Σ ∶=
limi∈I ∗/Σi. Any Σi-module A may be regarded as a sheaf of abelian groups over ∗/Σi, and
we use Zn(Σ,A ) to denote the Z-linear space underlying Γ(∗/Σ,A [n]). In particular, we
have an isomorphism whenever 0 ≤m ≤ n:

πmZn(Σ,A ) ≃Ð→ Hn−m(Σ,A ),
the right-hand-side being the continuous group cohomology of Σ with coefficients in A .

1.4.8. Fix an algebraic closure F̄ of F lifting f̄.
Denote by WF the Weil group of F, which we view as a pro-group WF ∶= lim Σ, where

the formal limit is taken over discrete quotients WF ↠ Σ.
By taking fibers at the geometric point Spec F̄, we may view the étale sheaf H(C) as a

group with a WF-action through a finite quotient Σ. In particular, H(C) may be viewed as
a sheaf of groups over ∗/Σ.
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Analogously, ZH(C) may be viewed as a sheaf of abelian groups over ∗/Σ. The formalism
of §1.4.7 allows us to make sense of ZH(C)-gerbes over ∗/WF.

1.4.9. The meta-Weil group. Consider the central extension

1→ {±1} → F̃×
Hilb → F× → 1 (1.29)

defined by the quadratic Hilbert symbol {⋅, ⋅} as cocycle, i.e. we have F̃×
Hilb ∶= F××{±1} with

the group structure (a,1) ⋅ (b,1) ∶= (ab,{a, b}).
The meta-Weil group is defined to be the pullback of (1.29) along the Artin reciprocity

map WF → F× (cf. [Wei18, §4])

1→ {±1} → W̃F →WF → 1. (1.30)

Taking classifying spaces, (1.30) yields a {±1}-gerbe over ∗/WF.

1.4.10. Denote by Z̃
(1)
H the ZH(C)-gerbe over ∗/WF induced from (1.30) along the dual

ε∨ ∶ {±1} → ZH(C) of the character ε.

Denote by Z̃
(2)
H the ZH(C)-gerbe over ∗/WF defined by composing (1.28) with ζ. Here,

we invoked the passage from étale ZH(C)-gerbes over Spec F to ZH(C)-gerbes over ∗/WF.
Consider the sum of ZH(C)-gerbes

Z̃H ∶= Z̃
(1)
H + Z̃

(2)
H . (1.31)

1.4.11. Inducing (the total space of) Z̃H along the morphism ZH(C) → H(C) of sheaves of

groups over ∗/WF, we obtain a pro-space H̃ over ∗/WF.

By an L-parameter, we shall mean a section of the projection H̃→ ∗/WF.
For any standard parabolic subgroup PH ⊂ H with standard Levi subgroup MH ⊂ PH,

one may induce Z̃H along ZH(C) →MH(C) → PH(C) to obtain pro-spaces M̃H and P̃H over

∗/WF. An L-parameter ∗/WF → H̃ is called semisimple if, whenever it factors through P̃H

for some standard parabolic subgroup PH, it factors through M̃H.
Denote by Φ(H̃) the set of isomorphism classes of semisimple L-parameters. We shall

often refer to elements of Φ(H̃) simply as “L-parameters”.

Remark 1.4.12. Let us remark on why we define L-parameters in terms of H̃ rather than
the more concrete definition in terms of an “L-group”. The discrepancy has to do with the
choice of base points.

Indeed, choosing a base point of Z̃H and taking loop spaces, we obtain an extension of
pro-groups

1→ ZH(C) → Ω(Z̃H) →WF → 1.

Likewise, the induced base point of H̃ gives rise to an extension Ω(H̃) of WF by H(C),
which may be considered as the “L-group”.

An L-parameter ∗/WF → H̃ is (non-canonically) isomorphic to one which preserves the

base point, which is equivalent to a section WF → Ω(H̃). Note that Ω(H̃) is the pullback of

some extension Ω(H̃)f of a discrete quotient of WF by H(C). The composite

WF → Ω(H̃) ↠ Ω(H̃)f
is a morphism of pro-groups, so it factors through a discrete quotient of WF. Thus, we
recover the classical notion of an L-parameter (or more precisely, a Weil parameter).9

9Weissman provides a different recipe for restoring the independence of base points, by explicitly lifting
the “category of L-groups” to a 2-category (cf. [Wei18, §5.1]).
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1.4.13. The following is Weissman’s version of the local Langlands correspondence (cf. [Wei18,
Conjecture 0.1]).

Conjecture 1.4.14 (Weissman). There is a natural finite-to-one map

LLC ∶ Π(G̃) → Φ(H̃). (1.32)

1.4.15. Let us include the covers G̃β in the formulation of Conjecture 1.4.14.

Conjecture 1.4.16. For each β ∈ BasicG, there is a natural finite-to-one map

LLCβ ∶ Π(G̃β) → Φ(H̃). (1.33)

2. Sharp covers

Let F be a local field with a fixed algebraic closure F̄.
The goal of this subsection is to construct the local Langlands correspondence for sharp

tori (cf. (2.7)). This is a consequence of Theorem 2.1.6 whose proof occupies §2.2 and §2.3.
In §2.4, we will use this result to establish the Langlands correspondence for the “sharp

center”. This will be needed for the formulation of compatibility with central core character
(cf. §4). In §2.5, we explain another consequence of Theorem 2.1.6 which will not be needed
later. Its purpose is to justify why the local Langlands correspondence for sharp covers is
not far from the local Langlands correspondence for linear reductive groups.

2.1. Duality for tori.

2.1.1. Given topological abelian groups A1, A2, we write E1(A1,A2) for the groupoid of
commutative extensions of A1 by A2. We endow C× with the discrete topology.

For any F-torus T, we shall construct a Z-linear functor (natural in T)

LT ∶ Z2(WF, Ť(C)) → E1(T(F),C×), (2.1)

where Ť stands for the Langlands dual of T and the left-hand-side is defined in §1.4.7.

2.1.2. Construction of (2.1). Since the group H2(WF, Ť(C)) vanishes (cf. [Kar13, Theorem

3.2.2]), the space Z2(WF, Ť(C)) is connected and thus identified with the classifying space

of Z1(WF, Ť(C)).
The automorphism group of the zero object in E1(T(F),C×) is the group Hom(T(F),C×)

of continuous characters. To define (2.1), it suffices to define a Z-linear functor

Z1(WF, Ť(C)) → Hom(T(F),C×). (2.2)

The functor (2.2) is set to be the projection Z1(WF, Ť(C)) → H1(WF, Ť(C)), followed
by Langlands duality for tori (cf. [Yu09, §7.5])

H1(WF, Ť(C)) ≃Ð→ Hom(T(F),C×). (2.3)

Remark 2.1.3. By construction, π1LT is the Langlands duality (2.3) for T.

Remark 2.1.4. There is some asymmetry in the way we defined LT: The left-hand-side is
a 2-groupoid, while the right-hand-side is a 1-groupoid. This is due to similar asymmetry
in the usual formulation of Langlands duality for tori (2.3). A better formulation would be
an equivalence of groupoids

Z1(WF, Ť(C)) ≃Ð→ Hom(IsocT,∗/C×), (2.4)

where IsocT is understood as a pro-Picard groupoid. The equivalence (2.4) ought to recover
(2.3) on π0 and the Pontryagin duality between Ť(C)GalF and (π1T)GalF on π1.
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We will not adopt this point of view in the present article, since the benefits it brings are
not visible at the level of our results.

2.1.5. We now let A be a finite abelian group of order invertible in F, equipped with an
injective character ζ ∶ A→C×.

Let T be an F-torus endowed with an E∞-monoidal morphism µ ∶ BT→ B4A(1). Applying

the construction functor (1.6) to µ, we obtain a cover T̃ of T(F). It is commutative since µ
is E∞-monoidal. Inducing along ζ, we obtain a commutative extension

1→C× → T̃ζ → T(F) → 1. (2.5)

We shall view T̃ζ as an object of E1(T(F),C×).
We shall now apply the construction of the dual datum (1.31) to (T, µ). In the present

context, we have ZH ≅ H ≅ Ť. Thus (1.31) is a Ť(C)-gerbe ̃̌T over ∗/WF, which we view as

an object of Z2(WF, Ť(C)).

Theorem 2.1.6. There is a canonical isomorphism in E1(T(F),C×) functorial in (T, µ):

LT(̃̌T) ≃Ð→ T̃ζ . (2.6)

2.1.7. The construction of (2.6) requires some effort and will be completed in §2.3.
The idea is as follows: The decomposition (1.27) exhibits µ as the sum of a “sign com-

ponent” µ(1) and a Z-linear component µ(2). The resulting cover of T̃ζ is thus a Baer sum

of two covers. Correspondingly, ̃̌T is also the sum of two Ť(C)-gerbes. We will construct
the isomorphism (2.6) for these two summands separately and obtain the general case by
adding them up, using the Z-linearity of LT.

2.1.8. Theorem 2.1.6 yields the local Langlands correspondence (1.32) for (T, µ).
Indeed, the functor LT carries trivializations of ̃̌T to trivializations of T̃ζ . The latter are

in bijection with the set Π(T̃) of ζ-genuine characters of T̃.

Furthermore, this map intertwines the Z1(WF, Ť(C))-action on trivializations of ̃̌T with

the Hom(T(F),C×)-action on trivializations of T̃ζ , via the map (2.2). Since (2.2) induces
an isomorphism on π0, LT induces an isomorphism

Φ(̃̌T) ≃Ð→ Π(T̃). (2.7)

The local Langlands correspondence for (T, µ) is define to be the inverse of (2.7).

2.2. The sign component.

2.2.1. In this subsection, we assume char F ≠ 2. Our goal is to construct (2.6) when µ = µ(1),
i.e. when it arises from the E∞-monoidal morphism sgn ∶ B2{±1} → B4{±1}⊗2 (cf. §1.4.5) by
pre-composing with ε⊗Ψ and post-composing with the inclusion of {±1} in A.

Let us begin by treating the “universal” case, where ε is the identity on Z/2.

2.2.2. Viewing sgn as a section of the fiber of (1.24) and applying the construction functor
(1.6) for G ∶= Gm, we obtain a cover of F× whose pullback along (⋅)2 ∶ F× → F× is endowed
with a splitting.

These data can be packaged by a diagram of topological groups

F×

1 {±1} F̃×
sgn F× 1

(⋅)2
τ

(2.8)
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where the lower row is a double cover of F×.
Our main result of this subsection is the explicit identification of (2.8). The answer

involves the cover (1.29) defined by the quadratic Hilbert symbol.

Proposition 2.2.3. There is a canonical isomorphism of covers

F̃×
sgn

≃Ð→ F̃×
Hilb (2.9)

such that τ corresponds, under the natural bijection F̃×
Hilb ≅ F× × {±1}, to the map

F× → F× × {±1}, a↦ (a2,{a, a}).

2.2.4. In order to construct the isomorphism (2.9), we first need to describe the rigidified

morphism BGm → B4{±1}⊗2 defining the cover F̃×
Hilb.

Recall that the fiber sequence (1.19) for G ∶= Gm and A ∶= {±1} admits a canonical
splitting (cf. [Zha22, Remark 4.2.8])

M apse(BGm,B4{±1}⊗2) ≃Ð→ B2{±1} ⊕Z/2. (2.10)

The inclusion of Z/2 is defined by sending 1 to cup product BΨ ∪ BΨ, where BΨ ∶ BGm →
B2{±1} is the deloop of the Kummer map.10

Claim: The image of BΨ ∪ BΨ under the construction functor (1.6) for G ∶= Gm is

canonically identified with F̃×
Hilb.

2.2.5. Proof of Claim. Let us make the functor (1.6) more explicit. Given a rigidified mor-

phism µ ∶ BGm → B4{±1}⊗2, we obtain a E1-monoidal morphism Gm → B3{±1}⊗2 by taking
loop spaces. The fiber G†

m of the latter fits into a fiber sequence of E1-monoidal stacks

B2{±1}⊗2 → G†
m → Gm. (2.11)

Evaluating (2.11) at Spec F and using the vanishing of H3(Spec F,{±1}⊗2), we obtain a short
exact sequence of groups

1→ H2(Spec F,{±1}⊗2) → G̃m → F× → 1. (2.12)

The image of µ under (1.6) is given by (2.12) under Tate duality H2(Spec F,{±1}⊗2) ≅ {±1},
endowed with the topology defined by distinguished sections (cf. [Zha22, §2.1.4]).

In the special case µ ∶= BΨ ∪ BΨ, the fiber sequence (2.11) canonically splits as a fiber
sequence of pointed stacks (cf. [Zha22, Proposition 4.4.5]). Its monoidal product can thus

be described by a cocycle Gm ×Gm → B2{±1}⊗2, which one identifies with the external cup
product of Ψ with itself. This implies that the induced short exact sequence (2.12) has a
canonical set-theoretic splitting, with cocycle given by the Galois symbol

F× ⊗ F× → H2(Spec F,{±1}⊗2), a⊗ b↦ [Ψ(a)] ∪ [Ψ(b)], (2.13)

where [Ψ(a)] is the Kummer class of a ∈ F×. However, (2.13) becomes the quadratic Hilbert
symbol after identifying H2(Spec F,{±1}⊗2) with {±1} under Tate duality. �

2.2.6. Note that every rigidified morphism BGm → B4{±1}⊗2 is canonically E∞-monoidal
because its associated symmetric form vanishes (cf. [Zha22, Proposition 4.6.2]), so we may

view BΨ∪BΨ as an E∞-monoidal morphism BGm → B4{±1}⊗2. Let us identify its image in

M apsE∞(Z,B2{±1}) under (1.25), viewed as a symmetric monoidal extension:

B{±1} → Z̃Hilb → Z. (2.14)

10We temporarily depart from our convention where Ψ has coefficients in Ẑ(1).
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By construction, (2.14) is related to (2.11) (for µ ∶= BΨ ∪ BΨ) as follows: We apply the
functor M apse(Gm,−) to (2.11) and form the pullback and pushout along the maps

Z→M apse(Gm,Gm), M apse(Gm,B2{±1}⊗2) ≃Ð→ B{±1},
where the first map sends a ∈ Z to the character x ↦ xa and the second map is defined by
the étale cohomology of Gm, i.e. the inverse to tensoring with Ψ.

2.2.7. Description of Z̃Hilb. Since (2.11) (for µ ∶= BΨ∪BΨ) admits a canonical splitting as
a sequence of pointed stacks, so does (2.14). Let us record this splitting as an isomorphism
of pointed stacks

Z̃Hilb
≃Ð→ Z ×B{±1}. (2.15)

Using (2.15), we may write the monoidal product on Z̃Hilb as a cocycle

Z ×Z→ B{±1}. (2.16)

Let us write Ψ(−1) for the {±1}-torsor of square roots of −1. There is a natural isomorphism

Ψ ∪ Ψ ≅ Ψ ⊗ p∗Ψ(−1) in M apse(Gm,B2{±1}⊗2), where p ∶ Gm → Spec F is the projection
(cf. [Zha22, Theorem 3.1.5]). Thus the cocycle (2.16) sends (a, b) ∈ Z×Z to the ab-multiple
of Ψ(−1). The associator of the monoidal product is given by the bilinearity of (2.16).

It remains to describe the commutativity constraint on Z̃Hilb. By the above description
of the monoidal product, this is specified by an isomorphism ab ⋅Ψ(−1) ≅ ba ⋅Ψ(−1) for each
a, b ∈ Z, i.e. by a bilinear pairing

Z⊗Z→ {±1}. (2.17)

(The bilinearity is a consequence of the hexagon axiom.) By [Zha22, Proposition 4.6.6], the
value of this pairing at 1⊗ 1 is −1. Thus (2.17) is given by a⊗ b↦ (−1)ab.
Remark 2.2.8. It is also possible to arrive at the above description of the monoidal struc-
ture on Z̃Hilb by comparing with Brylinski and Deligne’s classification of central extensions
of Gm by K2 (cf. [BD01, §3]).

Indeed, BΨ ∪BΨ is the image, under étale realization (cf. [Zha22, §2.3.2]), of the central
extension E of Gm by K2 defined using the canonical pairing Gm⊗Gm → K2 as cocycle. The
étale realization is compatible with second Brylinski–Deligne invariants, in the sense that
we have a commutative square of E1-monoidal stacks

Z BGm

Z B2{±1}

≃ Ψ (2.18)

where the top horizontal arrow is the second Brylinski–Deligne invariant of E and the bottom
horizontal arrow is the E1-monoidal morphism corresponding to Z̃Hilb.11 Now, the second
Brylinski–Deligne invariant of E is the central extension of Z by Gm, defined using a, b ↦
(−1)ab as cocycle. This implies the above description of Z̃Hilb as a monoidal stack.

2.2.9. Monoidal splitting of Z̃Hilb. Let us construct a splitting of (2.14) as a fiber sequence
of monoidal stacks. Under the identification (2.15), this splitting is given by

Z→ Z̃Hilb, a↦ (a,(a
2
) ⋅Ψ(−1)). (2.19)

11We make an important cautionary remark. Since the cocycle a, b ↦ (−1)ab is commutative, the top

horizontal arrow in (2.18) is symmetric monoidal. The bottom horizontal arrow is also E∞-monoidal because
BΨ∪BΨ is. However, (2.18) is not a commutative diagram of E∞-monoidal stacks: The top circuit is Z-linear

while the bottom circuit is not.
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Because the cocycle of Z̃Hilb is given by a, b↦ ab ⋅Ψ(−1), the fact that this is a monoidal
splitting follows from the equality of integers

(a + b
2

) − (a
2
) − (b

2
) = ab.

Denote by Z̃sgn the trivial monoidal extension of Z by B{±1} with commutativity con-

straint specified by Z⊗Z → {±1}, a, b ↦ (−1)ab. The monoidal splitting (2.19) exhibits an
isomorphism of symmetric monoidal extensions of Z by B{±1}:

Z̃sgn
≃Ð→ Z̃Hilb. (2.20)

2.2.10. Finally, the construction of (2.20) renders it incompatible with the natural splittings
of the two sides over 2 ∶ Z→ Z. Let us be more precise.

The extension Z̃sgn is monoidally equivalent to Z × B{±1} by construction, so it admits
a splitting over 2 ∶ Z → Z sending a ∈ Z to (2a,1). In other words, this is the splitting
induced from sgn (as a symmetric monoidal extension of Z/2 by B{±1}), by pulling back
along Z→ Z/2.

The composition of this splitting with (2.20) is the map

Z→ Z̃Hilb, a↦ (2a, a ⋅Ψ(−1)), (2.21)

because of the identity

(2a

2
) = a mod 2.

2.2.11. We are now ready to construct the isomorphism (2.9).

Proof of Proposition 2.2.3. We shall construct an isomorphism of E∞-monoidal morphism
BGm → B4{±1}⊗2 which produces (2.9) under the construction functor (1.6). Using the
equivalence (1.25), it suffices to construct an isomorphism of E∞-monoidal morphisms Z →
B{±1} classifying the “sign”, respectively “Hilbert” covers. The desired isomorphism is
supplied by (2.20).

It remains to identify the section τ . By §2.2.10, this section is defined by the section of
symmetric monoidal stacks

Z

B{±1} Z̃Hilb Z

2
(2.21)

Recall the extension G†
m associated to BΨ ∪ BΨ (cf. (2.11)) endowed with its natural

splitting G†
m ≅ Gm ×B2{±1}⊗2 as a pointed stack. We want to identify the section

Gm → G†
m (2.22)

which produces (2.21) under the construction of §2.2.6. (Recall that the construction of
loc.cit. is a reformulation of the equivalence (1.25).) The section (2.22) will, upon evaluating
at Spec F and applying Tate duality, give rise to the section τ :

τ ∶ F× → Γ(Spec F,G†
m)

≃Ð→ F× × Γ(Spec F,B2{±1}⊗2) → F× ×H2(Spec F,{±1}⊗2) ≅ F× × {±1}.

By construction, the projection of (2.22) onto B2{±1}⊗2 is Ψ⊗ p∗Ψ(−1), where p ∶ Gm →
Spec F is the projection. By [Zha22, Theorem 3.1.5], the latter is isomorphic to the self
cup-product of Ψ. Hence, the second component of τ sends a ∈ F× to the image of [Ψ(a)] ∪
[Ψ(a)] ∈ H2(Spec F,{±1}⊗2) under Tate duality, which is {a, a}. �
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Remark 2.2.12. Proposition 2.2.3 shows that (2.8) is generally not induced from a cover
of the cokernel of (⋅)2 ∶ F× → F×, the obstruction being given by {−1,−1} ∈ F×. This element
is nontrivial if and only if F is an odd degree extension of Q2.

2.2.13. Let us now apply Proposition 2.2.3 to the Langlands duality for tori.
Denote by E1(F×

/2,C
×) the fiber of the endomorphism of E1(F×,C×) defined by pre-

composition with (⋅)2 ∶ F× → F×. The commutative diagram (2.8) together with the tauto-
logical inclusion {±1} ⊂C×, defines an object

F̃×
sgn,/2 ∈ E

1(F×
/2,C

×).
Applying the functor (2.1) for T ∶= Gm and using its naturality with respect to (⋅)2 ∶

Gm → Gm, we obtain a functor

LB{±1} ∶ Z2(WF,{±1}) → E1(F×
/2,C

×).

Let us view the meta-Weil group W̃F (cf. §1.30) as an object of Z2(WF,{±1}).
Corollary 2.2.14. There is a canonical isomorphism in E1(F×

/2,C
×):

LB{±1}(W̃F)
≃Ð→ F̃×

sgn,/2. (2.23)

Proof. For an abelian group M, denote by Z2
e(WF,M) the fiber of the map e∗ ∶ Z2(WF,M) →

Z2(∗,M) given by pullback along the neutral point e ∶ ∗ → ∗/WF. Thus Z2
e(WF,M) is

canonically equivalent to the groupoid of central extensions of WF by M.
The restriction of LGm to Z2

e(WF,C
×) admits the following explicit description: Pulling

back a commutative extension of F× by C× along the Artin reciprocity map WF → F× yields
an equivalence of groupoids

E1(F×,C×) ≃Ð→ Z2
e(WF,C

×), (2.24)

whose inverse coincides with the restriction of LGm .

In what follows, we view F̃×
sgn as an object of E1(F×,C×). It suffices to identify its image

under (2.24) with the extension of WF by C× induced from W̃F, and match the 2-torsion

structures defined by τ and W̃F. The identification follows from the isomorphism (2.9). The
matching of 2-torsion structures follows from an explicit calculation, as we now perform.

Multiplication by 2 on F̃×
sgn factors through an isomorphism

C× ⊔C× F̃×
sgn

≃Ð→ F̃×
sgn ×F× F× (2.25)

where the push-out is along (⋅)2 ∶ C× → C× and the pullback is along (⋅)2 ∶ F× → F×. Using

the isomorphism (2.9), we may represent an element of F̃×
sgn by a pair (a, z) with a ∈ F× and

z ∈C×. Its image under (2.25) is

((a2,{a, a}z2), a)
which equals the product of z2 with the (τ(a), a). Hence, splitting of the pushout induced
from τ sends (a, z) to z2. The kernel of this map is the extension (1.29), as desired. �

2.2.15. Given any F-torus T equipped with a character ε ∶ Λ → Z/2, where Λ is the sheaf
of cocharacters of T, we have a commutative diagram

Z2(WF,{±1}) E1(F×
/2,C

×)

Z2(WF, Ť(C)) E1(T(F),C×)

LB{±1}

ε∨ ε

LT

(2.26)
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Denote by µ the E∞-monoidal morphism BT → B4{±1}⊗2 obtained by composing sgn

with ε⊗BΨ (cf. (1.23)) and by T̃ the induced commutative extension of T(F) by C×.

Denote by ̃̌T the Ť(C)-gerbe over the pro-space ∗/WF induced from W̃F along the dual
character ε∨ ∶ {±1} → Ť(C).
Corollary 2.2.16. There is a canonical isomorphism in E1(T(F),C×) functorial in (T, ε):

LT(̃̌T) ≃Ð→ T̃. (2.27)

Proof. The isomorphism (2.27) is defined as the image of (2.23) under the right vertical
functor of (2.26), using the commutativity of the latter. �

2.3. The Z-linear component.

2.3.1. Let A be a finite abelian group of order invertible in F equipped with an injective
character ζ ∶ A→C×. Let T be an F-torus and µ be a Z-linear morphism BT→ B4A(1).

The first goal of this subsection is to construct the isomorphism (2.6) for (T, µ), i.e. we

shall produce an isomorphism in E1(T(F),C×) functorial in (T, µ):

LT(̃̌T) ≃Ð→ T̃ζ . (2.28)

Afterwards, we will combine (2.27) and (2.28) to prove Theorem 2.1.6.

2.3.2. Denote by Λ the étale sheaf of cocharacters of T. Recall that tensor product with
BΨ defines an equivalence

HomZ(Λ,B2A) ≃Ð→ HomZ(BT,B4A(1)). (2.29)

Thus, µ corresponds under (2.29) to a Z-linear morphism Λ → B2A. Inducing the latter

along ζ ∶ A→C× and passing to adjoints, we obtain the Ť(C)-gerbe ̃̌T.

2.3.3. Split tori. Let us first construct (2.28) in the special case where T is split. We view
Λ as an abelian group. The functor LT renders the following diagram commute:

Z2(WF, Ť(C)) Hom(Λ,Z2(WF,C
×))

E1(T(F),C×) Hom(Λ,E1(F×,C×))

≃

LT Hom(Λ,LGm)

≃

Here, the horizontal isomorphisms are induced from Ť(C) ≅ Λ̌⊗C× and T(F) ≅ Λ⊗ F×.

Since µ is the tensor product of BΨ with a Z-linear morphism Λ→ B2A, the construction
of (2.28) reduces to the case T = Gm, where µ corresponds to a section of B2A. It remains
to identify the composition

Γ(Spec F,B2A) ≃Ð→ Z2(WF,A) ζÐ→ Z2(WF,C
×)

LGmÐÐ→ E1(F×,C×) (2.30)

with the composition

Γ(Spec F,B2A) ⊗BΨÐÐ→ HomZ(BGm,B4A(1)) ∫FÐ→ E1(F×,A) ζÐ→ E1(F×,C×). (2.31)

Lemma 2.3.4. The maps (2.30) and (2.31) are canonically isomorphic.

Proof. Both maps are natural in the finite subgroup A of C×. Thus they factor through the
colimit of Γ(Spec F,B2A1), taken over subgroups A1 of C× containing A. Since the colimit
of H2(Spec F,A1) vanishes, we have an isomorphism

colim
A1

∗/Γ(Spec F,BA1)
≃Ð→ colim

A1

Γ(Spec F,B2A1).
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Thus, it suffices to identify (2.30) and (2.31) over the neutral component of Γ(Spec F,B2A)
for every finite subgroup A of C×, functorially in A.

By taking loop spaces, this reduces to the commutativity of the diagram

Γ(Spec F,BA) Z1(WF,A)

HomZ(Gm,B2A(1)) Hom(F×,A)

≃

⊗Ψ Artin (2.32)

where the right vertical map is Artin reciprocity and the lower horizontal map is the evalua-
tion at Spec F followed by Tate duality H2(Spec F,A(1)) ≅ A. The commutativity of (2.32)
amounts to expressing Artin reciprocity as adjoint to the pairing

H1(Spec F,A) ⊗ F× id⊗ΨÐÐÐ→ H1(Spec F,A) ⊗H1(Spec F, Ẑ(1))
∪Ð→ H2(Spec F,A(1)) ≃Ð→ A,

which is essentially its definition. �

2.3.5. Induced tori. Suppose that T is the Weil restriction of a split F1-torus T1 for a finite
Galois extension F ⊂ F1. The definition of LT renders the following diagram commute

Z2(WF, Ť(C)) E1(T(F),C×)

Z2(WF1 , Ť1(C)) E1(T1(F1),C×)

LT

≃ ≃
LT1

(2.33)

Here, the right vertical isomorphism is induced from the identification T(F) ≅ T1(F1) and
the left vertical isomorphism is induced from the identification between Ť(C) and the push-
forward of Ť1(C) along ∗/WF1 → ∗/WF.

Denote by ν ∶ Spec F1 → Spec F the natural map. The étale sheaf Λ coincides with ν∗Λ1,
where Λ1 is the (constant) sheaf of cocharacters of Λ1. The adjunction between ν∗ and ν!

as functors on étale sheaves yields an isomorphism

HomZ(Λ,A[2]) ≃Ð→ HomZ(ν∗Λ1,A[2])
≃Ð→ HomZ(Λ1, ν

!A[2]) ≃Ð→ HomZ(Λ1,A[2]), (2.34)

where the last isomorphism comes from the identification ν!A ≅ A.
Under the equivalences (2.32) and (2.29), the Z-linear morphism µ ∶ BT → B4A(1) cor-

responds to a Z-linear morphism µ1 ∶ BT1 → B4A(1) over Spec F1. Furthermore, (2.34) is
compatible with the vertical isomorphisms of (2.33), so the desired isomorphism (2.28) for
T follows from the one for T1 (cf. §2.3.3).

2.3.6. General tori. We turn to the case where T is any F-torus. Choose a finite Galois
extension F ⊂ F1 such that T1 ∶= T ×Spec F Spec F1 splits. Denote by T′ the Weil restriction
of T1 to Spec F, so we have an injection T→ T′ of F-tori.

Note that µ extends to a Z-linear morphism µ′ ∶ BT′ → B4A(1): By (2.29), it suffices to

prove that any Z-linear morphism Λ→ B2A extends to a Z-linear morphism Λ′ → B2A. The
obstruction lies in the cohomology group

H3(Spec F, (Λ′/Λ)∨ ⊗A)
which vanishes because Λ′/Λ is torsion-free and Spec F has cohomological dimension 2.



22 LUOZI SHI AND YIFEI ZHAO

The desired isomorphism (2.28) for T thus follows from the one for T′ by functorial-
ity along the map of F-tori T → T′. We omit the verification that this isomorphism is
independent of the choice of F1 and the extension µ′.

Remark 2.3.7. The cover T̃ associated to a Z-linear morphism µ ∶ BT→ B4A(1) has been
constructed by Kaletha (cf. [Kal22, §2.2]). However, his construction is effectively the left-
hand-side of (2.28).12 Therefore, one may also interpret (2.28) as the comparison between

our construction of T̃, which does not invoke Langlands duality, with Kaletha’s.

2.3.8. Let us now gather all ingredients to prove Theorem 2.1.6.

Proof of Theorem 2.1.6. Consider the decomposition (1.27) for µ:

µ
≃Ð→ µ(1) + µ(2),

where µ(1) is defined by a character ε ∶ Λ → Z/2 and µ(2) is Z-linear. (By convention, µ(1)

is trivial unless ∣A∣ is even.)

Denote by T̃
(1)
ζ and T̃

(2)
ζ the extensions of T(F) by C× induced from µ(1), and by ̃̌T(1)

and ̃̌T(2) the associated Ť(C)-gerbes over ∗/WF. The isomorphism (2.27) applied to (T, ε)
and the isomorphism (2.28) applied to (T, µ(2)) yield isomorphisms

LT(̃̌T(1)) ≃Ð→ T̃
(1)
ζ ,

LT(̃̌T(2)) ≃Ð→ T̃
(2)
ζ .

We sum them using the Z-linearity of LT:

LT(̃̌T) ≃Ð→ LT(̃̌T(1) + ̃̌T(2))
≃Ð→ T̃

(1)
ζ + T̃

(2)
ζ

≃Ð→ T̃ζ .

This is the desired isomorphism (2.6). �

2.4. Duality for the center.

2.4.1. Let A be a finite abelian group of order invertible in F, equipped with an injective
character ζ ∶ A → C×. Let G be a reductive group F-scheme and µ ∶ BGab → B4A(1)
be an E∞-monoidal morphism. (The results of this subsection will be applied to the pair

(G♯, µG♯
ab
) defined by a general rigidified morphism BG → B4A(1), cf. §1.4.3.) We also use

µ to denote its pullback to BG, viewed as a pointed morphism.
Denote by G̃ the image of µ under the construction functor (1.6). Its pullback along

Z(F) → G(F) is a commutative extension

1→ A→ Z̃→ Z(F) → 1. (2.35)

Denote by Z̃ζ extension of Z(F) by C× induced from (2.35) along ζ.

In this subsection, we shall construct L-parameters for the set Π(Z̃) of ζ-genuine smooth

characters of Z̃ using Theorem 2.1.6.

2.4.2. Let us first fix notation for data on the Galois side. The dual group H of (G, µ) is

the Langlands dual of G and we have an object Z̃H of Z2(WF,ZH(C)).

12For this reason, the construction of G̃ for a Z-linear morphism µ ∶ BGab → B4A(1) given in op.cit. re-
quires G to be quasi-split.
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We also slightly extend the formalism of §1.4.7: Given a pro-group Σ = limi∈I Σi and a
complex of sheaves of abelian groups A over ∗/Σi, we write Zn(Σ,A ) for the Z-linear space
underlying

Γ(∗/Σ,A [n]) ∶= colim
j∈I/i

Γ(∗/Σj ,A [n]).

In other words, Zn(Σ,A ) is the space of hypercocycles of degree n. We will still refer to

objects of Z2(Σ,A ) as A -gerbes over ∗/Σ.

Denote by H̃ab the object of Z2(WF,Hab(C)) induced from Z̃H by functoriality along the

map of complexes ZH(C) → Hab(C). Denote by Φ(H̃ab) the set of isomorphism classes of

trivializations of H̃ab.

Remark 2.4.3. Note that the total space of the Hab(C)-gerbe H̃ab is a pro-space over ∗/WF

and Φ(H̃ab) is the set of isomorphism classes of its sections. In particular, functoriality with

respect to H̃→ H̃ab defines a map

Φ(H̃) → Φ(H̃ab). (2.36)

2.4.4. Denote by TH,sc the Langlands dual torus of Tad. (It coincides with the maximal
torus of Hsc induced from TH.) The functor (2.1) for T and Tad fits into a commutative
diagram

Z2(WF,TH,sc(C)) Z2(WF,TH(C))

E1(Tad(F),C×) E1(T(F),C×)

LTad LT
(2.37)

Since H3(WF,TH,sc(C)) vanishes, the cofiber of the top row of (2.37) is identified with

Z2(WF,Hab(C)). Therefore, (2.37) induces a functor

LZ ∶ Z2(WF,Hab(C)) → E1(Z(F),C×). (2.38)

Since H̃ab comes from an object of Z2(WF,TH(C)), the isomorphism (2.6) induces an

isomorphism in E1(Z(F),C×):
LZ(H̃ab)

≃Ð→ Z̃ζ . (2.39)

2.4.5. We shall use (2.38) and (2.39) to construct the local Langlands correspondence for

Z̃, in analogy with §2.1.8:

LLC ∶ Π(Z̃) ≃Ð→ Φ(H̃ab). (2.40)

Indeed, the functor LZ carries trivializations of H̃ab to trivializations of Z̃ζ , which are in

bijection with ζ-genuine characters of Z̃. This map intertwines the Z1(WF,Hab(C))-action

on trivializations of H̃ab with the Hom(Z(F),C×)-action on trivializations of Z̃ζ , via the
LZ-action on loop spaces. We shall argue that the latter induces a bijection on π0: Indeed,
it occurs as the last vertical arrow in the commutative diagram

H1(WF,TH,sc(C)) H1(WF,TH(C)) H1(WF,Hab(C)) 1

Hom(Tad(F),C×) Hom(T(F),C×) Hom(Z(F),C×) 1

π1LTad π1LT π1LZ

Here, the top row is exact because H2(WF,TH,sc(C)) vanishes (cf. [Kar13, Theorem 3.2.2])
and the bottom row is exact because C× is divisible. Since π1LTad

and π1LT are isomorphisms
(cf. Remark 2.1.3), so is π1LZ.
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It follows that the action of LZ on trivializations of H̃ab defines a bijection

Φ(H̃ab)
≃Ð→ Π(Z̃). (2.41)

We define (2.40) to be the inverse to (2.41).

2.5. Duality for the cocenter.

2.5.1. We keep the notation of §2.4.1 and §2.4.2. The goal of this subsection is to address
the following question: When does G̃ admit a ζ-genuine character?

We shall only answer this question when G is quasi-split. For the remainder of this
subsection, we fix a Borel subgroup B and a section of the projection B→ T, realizing T as
a subgroup of G.

The results of this subsection will not be used in the sequel. We include them because
they support the philosophy that the local Langlands correspondence for covers defined by
E∞-monoidal morphisms µ ∶ BGab → B4A(1) is “not too far” from the local Langlands
correspondence for linear algebraic groups. The case where µ is Z-linear is due to Kaletha
(cf. [Kal22, §2]) and no new idea is needed to treat the E∞-monoidal case.

2.5.2. Under the split fiber sequence (1.22) (cf. §1.4.4), the E∞-monoidal morphism µ defines

a character π1G→ Z/2 (trivial unless ∣A∣ is even) and Z-linear morphism π1G→ B2A.
Denote by πt1G the torsion subgroup of π1G. We restrict the two maps above to πt1G and

apply one unit of Tate twist. This gives us two Z-linear maps

ε ∶ πt1G(1) → µ2,

f ∶ πt1G(1) → B2A(1).

For any section G of B2A(1) over Spec F, we denote by [G ] ∈ A the image of its isomor-
phism class under Tate duality H2(Spec F,A(1)) ≅ A. Write {⋅, ⋅} for the quadratic Hilbert
symbol—we view it as valued in the subgroup {±1} ⊂ A if ∣A∣ is even and trivial if ∣A∣ is
odd. Then we may form the character

πt1G(1)(F) → A, θ ↦ {ε(θ), ε(θ)} ⋅ [f(θ)]. (2.42)

The following result is an analogue of [Kal22, Proposition 2.4.7].

Proposition 2.5.3. The following statements are equivalent.

(1) the class of Z̃H in H2(WF,ZH(C)) vanishes;
(2) the homomorphism (2.42) vanishes;

(3) G̃ admits a ζ-genuine character.

2.5.4. Let us begin with an elementary observation: Quasi-splitness of G implies that Tsc is
the Weil restriction of a split torus, so H1(Spec F,Tsc) vanishes. The groupoid of F-points
of the cocenter Gab can thus be identified as

Gab(F) ≃Ð→ T(F)/Tsc(F) ≃Ð→ G(F)/Gsc(F), (2.43)

where the quotients are taken in the sense of groupoids.
In particular, the π1 of Gab(F) is identified with πt1G(1)(F), while its π0 is identified

with the cokernel of Tsc(F) → T(F), as well as the cokernel of Gsc(F) → G(F).

2.5.5. Let us write E1(Gab(F),A) for the fiber of

E1(T(F),A) → E1(Tsc(F),A),
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so an object G̃ab of E1(Gab(F),A) can be thought of as a commutative extension T̃ of T(F)
equipped with a splitting over Tsc(F). (The case where Gab is replaced by B{±1} has already
appeared in §2.2.13.)

The E∞-monoidal morphism µ defines an object G̃ab of E1(Gab(F),A). Restricting its

splitting Tsc(F) → T̃ to πt1G(1)(F), we obtain a character

πt1G(1)(F) → A, (2.44)

which vanishes if and only if G̃ab is the pullback of a commutative extension of π0(Gab(F))
by A. Let us calculate (2.44).

Lemma 2.5.6. The character (2.44) equals (2.42).

Proof. We perform the decomposition (1.27): µ ≅ µ(1) + µ(2), where µ(1) is defined by ε

and µ(2) is Z-linear. The character (2.44) attached to µ(1) is given by θ ↦ {ε(θ), ε(θ)}
(cf. Proposition 2.2.3). It remains to identify the character (2.44) attached to µ(2) with
θ ↦ [f(θ)]. Therefore, we may assume that µ is Z-linear in what follows.

In this case, µ is the tensor product of BΨ ∶ BGm → B2Ẑ(1) with the Z-linear morphism

π1G→ B2A which defines f . Applying the loop space functor to µ and evaluating at Spec F,
we obtain a map of spaces

Gab(F) → Γ(Spec F,B3A(1)). (2.45)

The character (2.44) is obtained from (2.45) by taking π1 and identifying H2(Spec F,A(1))
with A under Tate duality. This yields the character θ ↦ [f(θ)]. �

2.5.7. Let us consider the induced cover G̃ab,ζ ∈ E1(Gab(F),C×) of G̃ab (cf. §2.5.5). Define
the functor LGab

by the diagram of fiber sequences

Z2(WF,ZH(C)) Z2(WF,TH(C)) Z2(WF,TH,ad(C))

E1(Gab(F),C×) E1(T(F),C×) E1(Tsc(F),C×)

LGab LT LTsc

The isomorphism (2.6) for T and Tsc yields an isomorphism

LGab
(Z̃H) ≃Ð→ G̃ab,ζ . (2.46)

2.5.8. We now prove Proposition 2.5.3.

Proof of Proposition 2.5.3. (1) ⇔ (2). According to Lemma 2.5.6, the commutative exten-

sion G̃ab,ζ splits if and only if the character (2.42) vanishes. On the other hand, the functor
LGab

induces an isomorphism on the set of isomorphism classes

H2(WF,ZH(C)) ≃Ð→ Hom(πt1G(1)(F),C×),

so the equivalence of (1) and (2) follows from (2.46).

(2) ⇒ (3). A splitting of G̃ab,ζ induces a ζ-genuine character of G̃.

(3)⇒ (2). Since the cover G̃ is induced from G̃ab, we have a canonical section Gsc(F) → G̃,
whose restriction to πt1G(1)(F) ≅ Ker(Gsc(F) → G(F)) is the character (2.42) (cf. Lemma

2.5.6). If G̃ admits a ζ-genuine character, its restriction to Gsc(F) must vanish because
Gsc(F) is perfect by Platonov’s theorem (cf. [PR94, §7.2]). It follows that the character
(2.42) must also vanish. �



26 LUOZI SHI AND YIFEI ZHAO

Remark 2.5.9. By Proposition 2.5.3, the obstruction to the existence of a ζ-genuine char-
acter of G̃ only has to do with the torsion subgroup πt1G of π1G.

By taking a z-extension G′ → G, one can thus find a ζ-genuine character of the induced
cover G̃′ of G′(F) and effectively reduces the local Langlands correspondence for G̃ to that
for G′(F). This is explained in [Kal22, Theorem 2.6.2], so we shall not repeat it.

3. Structures on µ

In this section, we work over an arbitrary base scheme S and let G be a reductive group
S-scheme. We adopt the notation of §1.1.5 for objects associated to G. Let A be a finite
abelian group whose order is invertible over S.

Fix a rigidified morphism µ ∶ BG → B4A(1). Write Q for its associated quadratic form
and b, b1, b2 for the induced pairings (cf. §1.3.5).

The goal of this section is construct the “canonical quadratic structure” on µ with respect
to the BZ-action on BG (cf. Proposition 3.1.3). This provides the key technical ingredient
in our calculation of Weissman’s obstruction in §4.

3.1. The canonical quadratic structure.

3.1.1. Consider the self-tensor product BΨ⊗2 ∶ BGm ⊗ BGm → B4Ẑ(2) of the delooped
Kummer map BΨ. Tensoring it with the pairing b2 yields a bilinear pairing

b2 ⊗BΨ⊗2 ∶ BGab ⊗BZ→ B4A(1). (3.1)

We shall use the same notation b2 ⊗ BΨ⊗2 to denote the pullback of (3.1) to BG × BZ.
It is bi-rigidified in the sense that it is equipped with trivializations over e ×BZ and BG × e
which are compatible over e × e.
3.1.2. Consider the morphisms p1, p2, a in the diagram

BG ×BZ BG

BG BZ

a

p1 p2 (3.2)

which are, respectively, projections onto the first and the second factors and the action map.
Denote by µZ the restriction of µ to BZ.

Proposition 3.1.3. In reference to (3.2), there is a canonical isomorphism of bi-rigidified

morphisms BG ×BZ→ B4A(1):

a∗µ − (p1)∗µ − (p2)∗µZ
≃Ð→ b2 ⊗BΨ⊗2. (3.3)

3.1.4. The proof of Proposition 3.1.3 will appear in §3.2.5. Let us make some preliminary
remarks about its statement.

First, (3.3) is supposed to be an isomorphism in a 1-groupoid. Namely, the space of

bi-rigidified morphisms BG ×BZ→ B4A(1) is 1-truncated.

To see this, we note that the space of bi-rigidified morphisms BG × BZ → B4A(1) is

equivalent to that of pointed morphisms BZ→M apse(BG,B4A(1)). Because the third term

in (1.19) is discrete, such morphisms factor through H omZ(π1G,B2A), so they correspond
to monoidal morphisms

Z→H omZ(π1G,BA),
which form a 1-groupoid. (Moreover, this shows that any bi-rigidified morphism BGsc×BZ→
B4A(1) is canonically trivial.)



EXTENDED PURE INNER FORMS OF COVERS 27

3.1.5. Next, we shall state a cocycle condition satisfied by (3.3). Given a G-torsor E and a

Z-torsor Z over an S-scheme, (3.3) supplies a functorial isomorphism of sections of B4A(1)

µ(E ⊗Z ) − µ(E ) − µ(Z ) ≃Ð→ (b2 ⊗BΨ⊗2)(E ,Z ). (3.4)

Furthermore, the isomorphism (3.4) is compatible with the natural trivializations of the
two sides, when either E or Z is the trivial torsor.

Now, given E along with two Z-torsors Z1, Z2 over an S-scheme, there are two isomor-
phisms between µ(E ⊗Z1 ⊗Z2) and

µ(E ) + µ(Z1) + µ(Z2)
+ (b2 ⊗BΨ⊗2)(E ,Z1) + (b2 ⊗BΨ⊗2)(E ,Z2) + (b2 ⊗BΨ⊗2)(Z1,Z2),

given by iteratively applying (3.4) in different orders. The cocycle condition states that
these two isomorphisms are canonically identified. (We omit drawing this rather large com-
mutative diagram.)

Note that this is indeed a condition and not additional structure, because the space of
pointed morphisms BZ ×BZ→M apse(BG,B4A(1)) is 1-truncated (cf. §3.1.4).

3.2. Construction of (3.3).

3.2.1. We shall first construct (3.3) in the case where G is split and equipped with a Killing
pair T ⊂ B ⊂ G.

Recall that any bi-rigidified morphism BG × BZ → B4A(1) is canonically trivialized as
such over BGsc ×BZ (cf. §3.1.4).

By restrictions along BT → BG and BTsc → BGsc, the bi-rigidified morphism a∗µ −
(p1)∗µ − (p2)∗µZG

defines a bi-rigidified morphism

BT ×BZ→ B4A(1), (3.5)

equipped with a trivialization τ as such over BTsc ×BZ.

3.2.2. The bi-rigidified morphism (3.5) extends to the bi-rigidified morphism

m∗µ − (p1)∗µ − (p2)∗µ ∶ BT ×BT→ B4A(1), (3.6)

where m, p1, p2 are the multiplication and projection morphisms from BT ×BT to BT.
By [Zha22, Proposition 4.7.3], the bi-rigidified morphism (3.6) is identified with b⊗BΨ⊗2,

where b is the symmetric form attached to Q. By restricting to BT × BZ, we obtain an
isomorphism of bi-rigidified morphisms

a∗µ − (p1)∗µ − (p2)∗µZ
≃Ð→ b⊗BΨ⊗2 (3.7)

from BT ×BZ to B4A(1).
3.2.3. Since the restriction of b to Λsc ⊗ Λ extends to Λsc ⊗ Λad as the bilinear pairing b1,
the restriction of b ⊗ BΨ⊗2 to BTsc × BT likewise extends to BTsc × BTad as a bi-rigidified
morphism. This endows b⊗BΨ⊗2 with a trivialization τ1 over BTsc ×BZ.

We shall prove that the trivializations τ , τ1 are intertwined by the isomorphism (3.7).

More precisely, consider the diagram of bi-rigidified morphisms BTsc ×BZ→ B4A(1):

a∗µ − (p1)∗µ − (p2)∗µZ∣BTsc×BZ

0

b⊗BΨ⊗2∣BTsc×BZ

τ

(3.7)

τ1

(3.8)
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Lemma 3.2.4. The diagram (3.8) commutes.

Proof. We first observe that this assertion involves no additional structure. Indeed, bi-
rigidified morphisms BTsc ×BZ→ B4A(1) are classified by pointed morphisms

BZ→H omZ(Λsc,B
2A), (3.9)

which form a 1-groupoid (cf. §3.1.4).
Next, we reduce the commutativity of (3.8) to its pullback along BTsc×Tad → BTsc×BZ.

Indeed, bi-rigidified morphisms BTsc ×Tad → B4A(1) also form a 1-groupoid, isomorphic to

Mapse(Tad,H om(Λsc,B
2A)). We need to show that the pullback functor

Mapse(BZ,H om(Λsc,B
2A)) →Mapse(Tad,H om(Λsc,B

2A)) (3.10)

is faithful. Since (3.10) is a functor of Picard groupoids, it suffices to prove that its induced
map on π1 is injective. The latter occurs as the bottom horizontal arrow of the following
commutative square

HomZ(BZ,H omZ(Λsc,BA)) HomZ(Tad,H omZ(Λsc,BA))

Mapse(BZ,H omZ(Λsc,BA)) Mapse(Tad,H omZ(Λsc,BA))

≃ ≃ (3.11)

Here, the vertical functors are the forgetful ones: The left one is an isomorphism for degree
reasons, and the right one is an isomorphism by the étale cohomology of Tad. The kernel of
the top horizontal arrow of (3.11) is identified with

HomZ(BT,H omZ(Λsc,BA)) ≃Ð→ HomZ(T,H omZ(Λsc,A))
which vanishes because H omZ(Λsc,A) is discrete. We may now prove the commutativity
of (3.8) after replacing BTsc ×BZ by BTsc ×Tad.

Along the composite BTsc × Tad → BTsc × BZ → BT × BT, the restrictions of m and p1

coincide and the restriction of p2 is trivial. This endows a∗µ − (p1)∗µ − (p2)∗µZ with a
trivialization over BTsc ×Tad. Since (3.7) is compatible with the trivializations over BT× e,
it intertwines this trivialization with the one of b⊗BΨ⊗2∣BTsc×Tad

induced from b(⋅,0) = 0.
Using these two trivializations, the restriction of (3.8) to BTsc ×Tad reads as follows:

0

0

0

τ

id

τ1

(3.12)

Here, τ is induced from the Gad-equivariance structure of the restriction of µ to BGsc and
τ1 is the map BTsc ×Tad → B3A(1) given by applying the loop space functor to the second
factor in b1⊗BΨ⊗2. The commutativity of (3.12) is precisely [Zha22, Proposition 5.5.4]. �

3.2.5. We are now ready to construct the isomorphism (3.3).

Proof of Proposition 3.1.3. Consider the monoidal morphism

Z→H omZ(π1G,BA) (3.13)

classifying the bi-rigidified morphism a∗µ−(p1)∗µ−(p2)∗µZ (cf. §3.1.4). We need to construct
an isomorphism between (3.13) and the adjoint of the pairing

b2 ⊗Ψ ∶ π1G⊗ Z→ BA (3.14)
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defined by tensoring with Ψ ∶ Gm → BẐ(1) along the second factor of b2.
Suppose first that G is split and equipped with a Killing pair T ⊂ B ⊂ G. In this case,

we have identified (3.5) with b⊗BΨ⊗2∣BT×BZ via the isomorphism (3.7) and proved that the
trivialization τ corresponds to the trivialization of b ⊗ BΨ⊗2∣BTsc×BZ defined by b1 ⊗ BΨ⊗2

(cf. Lemma 3.2.4). This yields a morphism of fiber sequences

Z H omZ(π1G,BA)

T H omZ(Λ,BA)

Tad H omZ(Λsc,BA)

(3.13)

b⊗Ψ

b1⊗Ψ

(3.15)

which gives an isomorphism between (3.13) and the adjoint of (3.14).
We shall argue that this isomorphism is independent of the choice of the Killing pair

T ⊂ B ⊂ G. For this, it suffices to show that the commutativity witness of the top square in
(3.15) is independent of the choice of the Killing pair. Given another Killing pair T′ ⊂ B′ ⊂ G,
we need to show that the canonical identification BT ≅ BT′ intertwines the isomorphism
(3.7) defined for BT, respectively BT′. This follows because (3.7) is the restriction of an

isomorphism between rigidified morphisms BT×BT→ B4A(1), and the latter form a discrete
space classified by bilinear pairings Λ⊗Λ→ A(−1).

Since the isomorphism between (3.13) and the adjoint of (3.14) is constructed for any
split G without additional choices, the case for any reductive G follows by étale descent. �

3.3. BZ♯-equivariance.

3.3.1. Recall the reductive group S-scheme G♯ and its center Z♯ (cf. §1.3.4). There is
a natural map of group S-schemes of multiplicative type Z♯ → Z. The BZ-action on BG
restricts to a BZ♯-action, which we record in the diagram

BG ×BZ♯ BG

BG BZ♯

a♯

p1 p2 (3.16)

Denote by µZ♯ the restriction of µ to BZ♯. Recall that µZ♯ has a canonical E∞-monoidal
structure (cf. Proposition 1.3.6).

Corollary 3.3.2. In reference to (3.16), there is a canonical isomorphism of bi-rigidified

morphisms BG ×BZ♯ → B4A(1):

(a♯)∗µ − (p1)∗µ − (p2)∗µZ♯
≃Ð→ 0. (3.17)

Proof. The bilinear pairing b2 (cf. (1.17)) restricts to the trivial pairing

π1G⊗ Fib(Λ♯ → Λ♯
ad) → A(−1),

because the horizontal arrows of (1.15) vanish over Λ♯, respectively Λ♯
ad. This induces a

trivialization of the restriction of b2 ⊗BΨ⊗2 to BGab ⊗BZ♯.
The isomorphism (3.17) is the restriction of (3.3) to BG ×BZ♯, composed with the trivi-

alization of the right-hand-side defined above. �



30 LUOZI SHI AND YIFEI ZHAO

3.3.3. The isomorphism (3.17) induces an isomorphism of rigidified (not bi-rigidified) mor-

phisms BG ×BZ♯ → B4A(1):

(a♯)∗µ ≃Ð→ (p1)∗µ + (p2)∗µZ♯ , (3.18)

which may be regarded as the part of a BZ♯-equivariance structure on µ “against µZ♯”. The
restrictions of (3.18) to BG × e and e × BZ♯ are induced from the equality of maps a♯ = p1,
a♯ = p2 over these loci.

The isomorphism (3.18) is equipped with cocycle data. To be more transparent, let us
formulate it in functorial terms: Given a G-torsor E and Z♯-torsors Z1, Z2 over an S-scheme,
the diagram of sections of B4A(1) commute

µ(E ⊗Z1 ⊗Z2) µ(E ) + µZ♯(Z1 ⊗Z2)

µ(E ⊗Z1) + µZ♯(Z2) µ(E ) + µZ♯(Z1) + µZ♯(Z2)

≃

≃ ≃

≃

(3.19)

Here, the right vertical arrow appeals to the monoidal structure on µZ♯ and the remaining
arrows are instances of (3.18).

The commutativity of (3.19) follows from the cocycle condition on the canonical quadratic
structure (cf. §3.1.5). Similarly to the latter, it is a condition and not additional structure.
Likewise, higher coherence (for triples of Z♯-torsors, etc.) is trivially satisfied.

4. Weissman’s obstruction

Let F be a local field with a fixed algebraic closure F̄. Let G be a reductive group F-
scheme. Let A be a finite abelian group with order invertible in F, equipped with an injective
character ζ ∶ A→C×. Let µ be an A-valued étale metaplectic cover of G.

In this section, we define Weissman’s obstruction Ωβ(σ), starting with the case Ω(σ) for
the trivial G-isocrystal, and explain why it obstructs the existence of fibers of the conjectural
map LLCβ (cf. Conjecture 1.4.16) at σ. Being conjectural, we need to assume something
about LLCβ to make this precise: This is the compatibility with central core characters
(cf. Lemma 4.3.11) which requires Theorem 2.1.6 to state. Then we express Ωβ(σ) in terms
of Ω(σ) and the Kottwitz invariant of β (cf. Theorem 4.3.9, Corollary 4.3.12).

The last two subsections, §4.4 and §4.5, can be considered supplements to the article. In
§4.4, we prove that for tori, the vanishing of Ωβ(σ) is necessary and sufficient for LLC−1

β (σ).
In §4.5, we prove a “dual version” of one of the ingredients in Theorem 4.3.9: It identifies
the cover G̃β when Gβ is isomorphic to G, i.e. when β comes from a Z-isocrystal.

4.1. The case for G̃.

4.1.1. We shall associated to G and µ a finite abelian group K and a map

Ω ∶ Φ(H̃) → Hom(K,C×). (4.1)

For any σ ∈ Φ(H̃), we shall refer to Ω(σ) as Weissman’s obstruction of σ. It has the prop-
erty that Ω(σ) ≠ 1 implies that the fiber of the conjectural local Langlands correspondence
(1.32) at σ is empty, assuming “compatibility with central core characters”.

The obstruction Ω was first observed by Weissman when G is a torus (cf. [Wei09, §4],
[GG18, §8.3]).
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4.1.2. Definition of K. We let Q be the quadratic form associated to µ (cf. §1.3.5) and
consider the induced étale sheaves Λ♯, Λ♯

sc, Λ♯
ad (cf. §1.3.4). Tensoring with Gm, we obtain

F-tori T♯, T♯
sc, T♯

ad fitting into a commutative diagram of isogenies

T♯
sc T♯ T♯

ad

Tsc T Tad

(4.2)

Denote by Z♯ the kernel of T♯ → T♯
ad, so we have a natural map Z♯ → Z. Define

K ∶= Ker(Z♯(F) → Z(F)).

4.1.3. Denote by G̃ the image of µ under (1.6). Write Z̃ for its pullback along Z(F) → G(F)
and Z̃♯ for its further pullback to Z♯(F).

The subgroup Ker(Z̃♯ → Z̃) of Z̃♯ is identified with K via the projection onto Z♯(F). Thus,
we obtain a map

i ∶ K→ Z̃♯. (4.3)

Lemma 4.1.4. The group Z̃♯ is commutative and its image in G̃ is central.

Proof. The commutativity of Z̃♯ follows from the fact that µZ♯ is E∞-monoidal (cf. Propo-

sition 1.3.6). It remains to prove that the image of Z̃♯ in G̃ is central.
Denote by a♯ ∶ G(F) × Z♯(F) → G(F) the multiplication map. Applying the construction

functor (1.6), with G × Z♯ playing the role of G, to the isomorphism (3.18), we obtain an
isomorphism of covers of G(F) × Z♯(F):

(a♯)∗G̃
≃Ð→ (p1)∗G̃ + (p2)∗Z̃♯, (4.4)

whose restrictions to G(F) × e and e × Z♯(F) are induced from the equality of maps a♯ = p1,
respectively a♯ = p2 over these subgroups.

Equivalently, one may express (4.4) as a morphism of short exact sequences

1 A ×A G̃ × Z̃♯ G(F) × Z♯(F) 1

1 A G̃ G(F) 1

∑ ã♯ a♯

where ã♯ restricts to the identity on G̃ × e and the natural map on e × Z̃♯. By expressing an
element (g̃, z̃) ∈ G̃ × Z̃♯ as (g̃,1) ⋅ (1, z̃), respectively (1, z̃) ⋅ (g̃,1), and using the fact that ã♯

is a group homomorphism, we see that g̃ commutes with the image of z̃. �

4.1.5. By Lemma 4.1.4 and Schur’s lemma, Z̃♯ acts by a character χ on any irreducible
ζ-genuine smooth representation V. The association of χ to [V] defines a map

Π(G̃) → Π(Z̃♯), (4.5)

where the target stands for the set of ζ-genuine smooth characters Z̃♯ →C×.
We refer to the image of [V] ∈ Π(G̃) under (4.5) as the central core character of [V].

Remark 4.1.6. Our notion of the “central core character” is different from Weissman’s
(cf. [Wei18, §6.3]). Namely, the notion of op.cit. concerns only the maximal torus of Z♯

whereas ours concerns the entire Z♯.
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4.1.7. Definition of Ω. The map (4.1) is defined to be the composition of (2.36) with the
inverse of (2.40) and the restriction along (4.3):

Ω ∶ Φ(H̃) → Φ(H̃ab)
≃Ð→ Π(Z̃♯) i∗Ð→ Hom(K,C×).

Lemma 4.1.8 (Weissman). Suppose that there is a map LLC ∶ Π(G̃) → Φ(H̃) satisfying the
following compatibility with central core characters: It renders the diagram

Π(G̃) Φ(H̃)

Π(Z̃♯) Φ(H̃ab)

LLC

(4.5) (2.36)

(2.40)

(4.6)

commutative. Then for any σ ∈ Φ(H̃) with Ω(σ) ≠ 1, the set LLC−1(σ) is empty.

Proof. Fix σ ∈ Φ(H̃) and let V be an irreducible ζ-genuine smooth representation of G̃
belonging to fiber of LLC at σ.

Suppose that Z̃♯ acts on V via some character χ. By the commutativity of (4.6), the

subgroup K of Z̃♯ acts by the character Ω(σ). However, since the image of K in G̃ is trivial,
this implies that Ω(σ) = 1. �

Remark 4.1.9. Every character χ ∶ K→C× occurs as Ω(σ) for some σ ∈ Φ(H̃).
Indeed, one may first extend (ζ, χ) along the inclusion A ×K ⊂ T̃♯ to obtain a ζ-genuine

character of T̃♯. Under the local Langlands correspondence for (T♯, µT♯) (cf. §2.1.8), the

latter defines an L-parameter σT ∈ Φ(T̃H) with respect to the canonical maximal torus TH

of H. The image σ ∈ Φ(H̃) of σT satisfies Ω(σ) = χ, by construction of (2.40).

4.2. The Pontryagin dual of K.

4.2.1. Recall the finite abelian group K associated to G and µ (cf. §4.1.2). In this subsection,
we shall construct a surjective map

γ ∶ (π1G)GalF → Hom(K,C×). (4.7)

Let us note a consequence of Pontryagin duality.

Lemma 4.2.2. Let Λ1,Λ2 be étale sheaves of finite free Z-modules over Spec F equipped
with a pairing c ∶ Λ1 ⊗ Λ2 → A. Denote by Λ♯

1 ⊂ Λ1, Λ♯
2 ⊂ Λ2 the kernels of c. Then the

adjoint of c factors through an isomorphism of étale sheaves

Λ1/Λ♯
1

≃Ð→H om(Λ2/Λ♯
2,A). (4.8)

Proof. It suffices to check that (4.8) is an isomorphism over a separable closure of F, so we
may assume that Λ1, Λ2 are finite free Z-modules rather than sheaves of such.

Since Λ2/Λ♯
2 is N-torsion for N ∶= ∣A∣, ζ induces an isomorphism

H om(Λ2/Λ♯
2,A) ≃Ð→ (Λ2/Λ♯

2)∨,
where (⋅)∨ denotes Pontryagin dual, i.e. continuous homomorphisms into the topological
group U1 of unit complex numbers.

We view the composite ζ ⋅ c as a U1-valued pairing and consider its adjoint

Λ1 → (Λ2)∨. (4.9)
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The kernel of (4.9) equals Λ♯
1. We claim that its cokernel is identified with (Λ♯

2)∨. Indeed,
since Pontryagin duality is an exact involution, the dual of (4.9) is Λ2 → (Λ1)∨, which has
kernel Λ♯

2. The isomorphism (4.8) follows. �

4.2.3. We shall apply Lemma 4.2.2 to the pairings b and b1 associated to Q. More precisely,
applying a Tate twist to (1.15) and using Lemma 4.2.2, we find a commutative square

(Λ/Λ♯)(1) H om(Λ/Λ♯,A)

(Λad/Λ♯
ad)(1) H om(Λsc/Λ♯

sc,A)

≃

≃

(4.10)

where the horizontal maps are isomorphisms.

4.2.4. Construction of γ. Taking global sections of (4.10) over Spec F, we obtain the com-
mutative square

Ker(T♯ → T)(F) Hom((Λ/Λ♯)GalF ,A)

Ker(T♯
ad → Tad)(F) Hom((Λsc/Λ♯

sc)GalF ,A)

≃

≃

Taking kernels of the vertical maps, we obtain an isomorphism

K
≃Ð→ Hom((π1G)GalF/(π1G♯)GalF ,A). (4.11)

Since (π1G)GalF/(π1G♯)GalF is N-torsion (for N ∶= ∣A∣), its Pontryagin dual is identified
with K under (4.11). Applying bi-duality yields a short exact sequence

(π1G♯)GalF → (π1G)GalF

γÐ→ Hom(K,C×) → 1. (4.12)

The map (4.7) is defined as the second map displayed in this short exact sequence.

4.3. The case for G̃β.

4.3.1. For each β ∈ IsocG, we have a morphism of group F-schemes

Z→ Gβ , (4.13)

sending an R-point z of Z to the automorphism of the pullback of β to X × Spec R given by
acting by z. The image of (4.13) is central in Gβ .

Let G̃β denote the image µ under the construction functor (1.8). Denote by Z̃β the

pullback of G̃β along the map Z(F) → Gβ(F) induced from (4.13) and by Z̃♯β its further

pullback to Z♯(F). Thus Ker(Z̃♯β → Z̃β) is identified with K along the projection onto Z♯(F).
This yields an injection

iβ ∶ K→ Z̃♯β . (4.14)

This map specializes to (4.3) when β is the trivial G-isocrystal.

4.3.2. Let us now identify Z̃β for any β ∈ IsocG.

Recall the bilinear pairing b2 ⊗ BΨ⊗2 ∶ BGab ⊗ BZ → B4A(1) (cf. §3.1.1). Evaluating at
the Gab-isocrystal defined by β, we find a rigidified morphism

(b2 ⊗BΨ⊗2)(β, ⋅) ∶ X ×BZ→ B4A(1),
whch is canonically the pullback of a rigidified morphism BZ → B4A(1) (cf. Lemma 1.2.5),
to be denoted using the same expression.

The following result is a consequence of the canonical quadratic structure (cf. Proposition
3.1.3). Its statement invokes the construction functor (1.6) for Z.
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Proposition 4.3.3. For any β ∈ IsocG, there is a canonical isomorphism of covers of Z(F):

Z̃β
≃Ð→ Z̃ + ∫

F
(b2 ⊗BΨ⊗2)(β, ⋅). (4.15)

Proof. Consider the action map a ∶ BG × BZ → BG. Its restriction along the G-isocrystal
β ∶ X→ BG yields a morphism

aβ ∶ X ×BZ→ BG. (4.16)

The loop space functor applied to (4.16) recovers (4.13). More precisely, taking fiber product
of X with itself over the two stacks in (4.16), we obtain a morphism from X×Z to the group
X-sheaf of automorphisms of β, which is adjoint to (4.13).

Let us pull back µ along the composition of the projection p ∶ X×BZ→ X and µ ∶ X→ BG.
By construction, we have an identification of covers of Z(F)

Z̃β
≃Ð→ ∫

F
(aβ)∗µ − p∗β∗µ. (4.17)

It remains to identify the right-hand-sides of (4.15) and (4.17). We shall do so by iden-
tifying the “integrands”, i.e. providing an isomorphism

(aβ)∗µ − p∗β∗µ
≃Ð→ µZ + (b2 ⊗BΨ⊗2)(β, ⋅) (4.18)

of rigidified morphisms X × BZ → B4A(1), where µZ denotes the restriction of µ along the
composition X ×BZ→ BZ→ BG.

The isomorphism (4.18) is the restriction of (3.3) along (β, id) ∶ X ×BZ→ BG ×BZ. �

Remark 4.3.4. It follows from Proposition 4.3.3 that the cover Z̃β depends only on the
Gab-isocrystal induced from β.

4.3.5. Note that pairing b2 ⊗BΨ⊗2 is canonically trivialized over BGab ⊗BZ♯ (cf. the proof
of Corollary 3.3.2). In particular, the pullback of (4.15) along Z♯(F) → Z(F) yields an
isomorphism of covers of Z♯(F):

Z̃♯β
≃Ð→ Z̃♯. (4.19)

Let us compose the inverse of (4.19) with the natural map Z̃♯β → G̃β to obtain a map:

Z̃♯ → G̃β , (4.20)

Lemma 4.3.6. The image of (4.20) is central in G̃β.

Proof. Denote by µGβ ∶= Tβ(µ) the translation of µ by β (cf. §1.2.3). Consider the BZ♯-
action on BGβ via the inclusion (4.13).

By the proof of Lemma 4.1.4, it suffices to show that µGβ is BZ♯-equivariant against

µZ♯ ∶ BZ♯ → B4A(1) in the sense of §3.3.3 and that, upon acting on the neutral point of BGβ ,
this equivariance structure reduces to the isomorphism

µGβ ∣BZ♯
≃Ð→ µZ♯ (4.21)

induced from (4.18) and the trivialization of b2 ⊗BΨ⊗2 over BGab ×BZ♯.
By Lemma 1.2.5, it suffices to construct the BZ♯-equivariance structure after base change

along X → Spec F. The base change of µGβ to X × BGβ is the pullback of µ along (1.9)
minus the constant section p∗β∗µ. However, (1.9) is BZ♯-equivariant, so the desired BZ♯-
equivariance structure on µGβ follows from that of µ (cf. §3.3.3). The fact that acting on the
neutral point of BGβ recovers the isomorphism (4.21) is a consequence of the construction
of (3.18) (which uses the trivialization of b2 ⊗BΨ⊗2 over BG ×BZ♯). �



EXTENDED PURE INNER FORMS OF COVERS 35

4.3.7. By Lemma 4.3.6 and Schur’s lemma, we have a map

Π(G̃β) → Π(Z̃♯) (4.22)

sending the isomorphism class [V] of an irreducible ζ-genuine smooth representation V of

G̃β to the character of Z̃♯ by which it acts on V through (4.20).
The image of [V] under (4.22) can be viewed as the “central core character” of [V],

generalizing the construction of §4.1.5.

4.3.8. We now arrive at a crucial point: The isomorphism (4.19) is generally incompatible
with the inclusions of K via i and iβ (cf. (4.3), (4.14)). In other words, the quotient iβ/i
factors through a character

K→ A. (4.23)

We express this character in terms of the Kottwitz invariant of β (cf. §1.1.6).

Theorem 4.3.9. The character (4.23) equals the image of Kott(β) under (4.7), i.e.

iβ

i
= γ(Kott(β)). (4.24)

Proof. Using the isomorphism (4.15) and the Z-linear structure on Cov(Z(F),A), we may
express (4.23) as follows: Consider the cover

∫
F
(b2 ⊗BΨ⊗2)(β, ⋅) ∈ Cov(Z(F),A)

equipped with the splitting over Z♯(F) defined by the trivialization of (b2⊗BΨ⊗2)(β, ⋅) over
BZ♯. The restriction of this splitting to K is the character (4.23).

The Z-linear morphism b2 ⊗Ψ⊗2 ∶ BGab ⊗BZ→ B4A(1) is trivialized over BGab ⊗BZ♯, so
by taking fibers, we obtain a pairing

⟨⋅, ⋅⟩ ∶ BGab ⊗ Fib(Z♯ → Z) → B2A(1).

This pairing encodes the character (4.23) in the following manner: Given β ∶ X → BGab

and a ∈ K ≅ H0(Spec F,Fib(Z♯ → Z)), the class of ⟨β, a⟩ in

H2(X,A(1)) ≅ H2(Spec F,A(1)) ≅ A (4.25)

is the image of a under (4.23). Here, the isomorphisms are given by pullback along X →
Spec F (cf. Lemma 1.2.5) and Tate duality.

On the other hand, ⟨⋅, a⟩ ∶ BGab → B2A(1) is the tensor product of a Z-linear map
π1G → A with the Kummer map. By construction, this Z-linear map is the image of a ∈ K
under (4.11). The desired equality (4.24) thus reduces to the following compatibility between
Kottwitz invariant (1.3) and Tate duality: Given any map of étale sheaves f ∶ π1G→ A, the
following diagram commutes

π0IsocGab
(π1G)GalF

H2(X,A(1)) A

Kott

f⊗Ψ f

(4.25)

(4.26)

Here, the left vertical arrow is induced from f ⊗ Ψ ∶ Gab → BA(1). The commutativity of
(4.26) reduces to the case where G is a torus by construction (cf. §1.1.6), then to the case
where G = Gm by functoriality (cf. [Kot85, §2]), where it follows from the definition. �
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4.3.10. Finally, let us define (the generalized) Weissman’s obstruction

Ωβ ∶ Φ(H̃) → Hom(K,C×)

for an arbitrary G-isocrystal β.
We set Ωβ to be the composition

Ωβ ∶ Φ(H̃) → Φ(H̃ab)
≃Ð→ Π(Z̃♯)

i∗βÐ→ Hom(K,C×).

The proof of Lemma 4.1.8 also yields the following result.

Lemma 4.3.11. Suppose that there is a map LLCβ ∶ Π(G̃β) → Φ(H̃) satisfying the following
compatibility with central core characters: It renders the diagram

Π(G̃β) Φ(H̃)

Π(Z̃♯) Φ(H̃ab)

LLCβ

(4.22) (2.36)

(2.40)

(4.27)

commutative. Then for any σ ∈ Φ(H̃) with Ωβ(σ) ≠ 1, the set LLC−1
β (σ) is empty. �

Corollary 4.3.12. For each σ ∈ Φ(H̃) and β ∈ IsocG, the character Ωβ(σ) vanishes if and
only if

γ(Kott(β)) = Ω(σ)−1. (4.28)

Proof. The quotient Ωβ(σ)/Ω(σ) is the character iβ/i ∶ K → C×. By Theorem 4.3.9, the
latter equals γ(Kott(β)). Hence the equality (4.28) holds if and only if Ωβ(σ) = 1. �

4.3.13. To conclude, let us rewrite the short exact sequence (4.12) using (1.5):

π0(BasicG♯) → π0(BasicG) → Hom(K,C×) → 1.

Here, the middle arrow sends β to γ(Kott(β)). The group structure on π0(BasicG) is induced
from that on (π1G)GalF , and similarly for π0(BasicG♯).

Given σ ∈ Φ(H̃), Corollary 4.3.12 shows that there exists a basic G-isocrystal β for which
(4.28) holds. Furthermore, the subset of π0(BasicG) consisting of isomorphism classes of
such β forms a torsor under the image of π0(BasicG♯).

By Remark 4.3.12, the character Ω(σ)−1 of K is arbitrary as σ varies. This means that
to guarantee the equality (4.28), one really needs to consider basic G-isocrystals spanning a
full set of representatives of π0(BasicG)/π0(BasicG♯).

4.4. Example: tori.

4.4.1. In this subsection, we specialize to the case G = T is an F-torus. We shall construct
the local Langlands correspondence (cf. Conjecture 1.4.16) for T.

More precisely, for each β ∈ IsocT, we shall construct a map

LLCβ ∶ Π(T̃β) → Φ(H̃). (4.29)

In fact, LLCβ is uniquely determined by the compatibility diagram (4.27) since (2.36)
becomes an isomorphism in this case, so let us turn this into a definition.
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4.4.2. Construction of LLCβ. The map (4.20) specializes to a map

T̃♯ → T̃β (4.30)

whose image is central (cf. Lemma 4.3.6). Thus, given any irreducible ζ-genuine smooth

representation V of T̃β , the action of T̃♯ on V through (4.30) is a ζ-genuine smooth character.
This defines a map

Π(T̃β) → Π(T̃♯). (4.31)

The map LLCβ is the composition of (4.31) with the local Langlands correspondence for
T♯ equipped with the restriction µT♯ of µ (cf. §2.1.8).

4.4.3. The following description of LLC−1
β (σ) generalizes Weissman’s result for the trivial

T-isocrystal β (cf. [Wei16, Theorem 2.12]), with the same proof.

Proposition 4.4.4. Given β ∈ IsocT and σ ∈ Φ(H̃), the set LLC−1
β (σ) is finite and nonempty

if and only if (4.28) holds.

Proof. Lemma 4.3.11 and Corollary 4.3.12 together imply that LLC−1
β (σ) is empty when

(4.28) fails. It remains to prove that when (4.28) holds, LLC−1
β (σ) is nonempty and finite.

The L-parameter σ corresponds, under the local Langlands correspondence for (T♯, µ♯)
(cf. §2.1.8), to a ζ-genuine smooth character χσ of T̃♯. By construction, a ζ-genuine smooth

representation V of T̃β,ζ has L-parameter σ if and only if T̃♯ acts on V via χσ. Since (4.28)
holds, χσ annihilates the kernel of (4.30), so it factors through a character

χ̄σ ∶ T̃♯/K→C×,

where T̃♯/K is identified with a subgroup of the center C̃β of T̃β (cf. Lemma 4.3.6).

By the Stone–von Neumann theorem, Π(T̃β) is in bijection with genuine characters of

C̃β . Hence LLC−1
β (σ) is in bijection with extensions of χ̄σ along the inclusion

T̃♯/K ⊂ C̃β ,

which is of finite index. This implies that LLC−1
β (σ) is nonempty and finite. �

4.5. Z-isocrystals.

4.5.1. We return to the context where G is a reductive group F-scheme. Given a Z-isocrystal
β, we may consider the induced G-isocrystal, hence the group F-scheme Gβ . There is a
canonical isomorphism of group F-schemes

G
≃Ð→ Gβ , (4.32)

defined as follows: Restricting the action map a ∶ BG × BZ → BG along the Z-isocrystal
β ∶ X→ BZ yields a morphism aβ ∶ BG ×X→ BG, which induces (4.32) on loop spaces.

In this subsection, we express the pullback of G̃β along (4.32) in terms of the cover G̃.

4.5.2. Evaluating the bilinear pairing b2 ⊗ BΨ⊗2 ∶ BGab ⊗ BZ → B4A(1) at β ∶ X → BZ and
descending along X→ Spec F (cf. Lemma 1.2.5), we obtain a Z-linear morphism

b2 ⊗BΨ⊗2(⋅, β) ∶ BGab → B4A(1), (4.33)

which defines a rigidified morphism BG→ B4A(1) that we denote by the same expression.
The following result can be thought of as a “dual version” of Proposition 4.3.3.
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Proposition 4.5.3. For any β ∈ IsocZ, there is a canonical isomorphism of covers of G(F)
with regard to the identification (4.32):

G̃β
≃Ð→ G̃ + ∫

F
(b2 ⊗BΨ⊗2)(⋅, β). (4.34)

Proof. Consider the pullback p∗β∗µ of µ along the projection p ∶ BG × X → X and the
G-isocrystal β ∶ X→ BG.

The isomorphism (3.3), restricted along (id, β) ∶ BG×X→ BG×BZ, yields an isomorphism

of rigidified section of B4A(1) over BG ×X:

(aβ)∗µ − p∗β∗µ
≃Ð→ µ + (b2 ⊗BΨ⊗2)(⋅, β), (4.35)

or equivalently, over BG (cf. Lemma 1.2.5).
The isomorphism (4.34) is the image of (4.35) under (1.6). �

Remark 4.5.4. Proposition 4.5.3 expresses G̃β as the image of the rigidified morphism
µ + (b2 ⊗BΨ⊗2)(⋅, β) under (1.6).

If µ is the étale realization of a central extension of G by K2 (cf. [Zha22, §2.3]), one
may wonder whether the rigidified morphism µ + (b2 ⊗ BΨ⊗2)(⋅, β) also comes from étale
realization. This is generally not the case.

For a “naturally occurring” example, let us take G ∶= GL2 endowed with the Kazhdan–
Patterson cover, viewed as a central extension E of G by K2 (cf. [GG18, §13.2]). Assuming

char F ≠ 2, the latter defines a rigidified morphism µ ∶ BG→ B4{±1}⊗2 under étale realization.
Identifying both π1G and Fib(Λ→ Λad) with Z, the bilinear form b2 is given by

b2 ∶ Z⊗Z→ Z/2, 1⊗ 1↦ 1.

We argue that (b2⊗BΨ⊗2)(⋅, β) (hence its sum with µ) does not lift to a central extension
of G by K2, unless β is the trivial Z-isocrystal. Indeed, (b2⊗BΨ⊗2)(⋅, β) arises as the tensor
product of Ψ with a Z-linear morphism

π1G→ B2{±1}, (4.36)

which sends the generator of π1G ≅ Z to the Kummer gerbe BΨ(β) of β—the latter repre-
sents a nontrivial class in H2(Spec F,{±1}) when β is nontrivial. If (b2⊗BΨ⊗2)(⋅, β) lifts to

a central extension of G by K2, then the E1-monoidal morphism Λ → B2{±1}, obtained by
pre-composing (4.36) with the projection Λ↠ π1G, can be expressed in terms of the second
Brylinski–Deligne invariant of E, i.e. it factors as a monoidal morphism

Λ→ BGm
BΨÐÐ→ B2{±1}.

This implies that BΨ(β) lifts to a section of BGm over Spec F, hence trivial by Hilbert 90.
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