WHAT ARE THE EXTENDED PURE INNER FORMS OF A COVER?

LUOZI SHI AND YIFEI ZHAO

ABSTRACT. Kottwitz suggested to study all extended pure inner forms together in the
local Langlands correspondence for linear reductive groups. We extend this philosophy
to a large class of covers, including those defined by Brylinski and Deligne, and explain
its relation with Weissman’s observation that L-packets for covers are sometimes empty.
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INTRODUCTION

The goal of this article is to define a notion of “extended pure inner forms” of a covering
group and argue that it is relevant for the local Langlands program for covers.
Let us begin by describing the puzzle that motivated our consideration.

0.1. The “missing” L-packets. In the usual local Langlands program, one takes as input
a local field F and a reductive group F-scheme G. To these data, one attaches the set
II(G(F)) of isomorphism classes of irreducible smooth G(F)-representations and the set
®(LG) of L-parameters, and posits the existence of a natural map

LLC: TI(G(F)) - ®(~Q). (0.1)

The local Langlands program for covers requires a cohomological input g, in addition to
F and G. Traditionally, u is defined in terms of algebraic K-theory (c¢f. [BD01, Weil8]). For
now, let us ignore the precise meaning of © and accept that it gives rise to a topological
central extension
1-A-G->GF) -1
for a finite subgroup A of C*, as well as an “L-group” H. Imitating the linear situation, one
posits the existence of a natural map

LLC:1I(G) - ®(H), (0.2)

where I1(G) is the set of isomorphism classes of irreducible genuine smooth G-representations
and ®(H) is the set of L-parameters defined in terms of H. (The adjective “genuine” means
that A acts through its inclusion in C*.) We refer the reader to [GGW18, Weil8, GG18|
where foundations of this program are laid out.

The map (0.2) has been constructed by Weissman when G is a split torus. He observed
an intriguing phenomenon: It may not be surjective. This stands in contrast with (0.1),
which is expected to be surjective when G is quasi-split.

The goal of our article is to relate this phenomenon to Kottwitz’s philosophy of treating
all extended pure inner forms of G together in the formulation of (0.1) (¢f. [Kot85, Kot97,
Kal14]). Namely, for each basic G-isocrystal 3, we shall construct a cover Gg of the extended
pure inner form Gg(F) associated to 8. We expect (0.2) to fit into a family of maps

LLCs : 11(Gp) — @(H), (0.3)
parametrized by 5. Weissman’s observation above, in fact, leads to an obstruction Qg (o)
for the nonemptiness of LLC[}1 (0). Our main result determines the set of 8 for which Qg(0o)
vanishes. The key point is that this set of 8 is always nonempty, though it may not contain
the trivial element. When G is a torus, we prove that LLC/_;(U) is indeed nonempty and
finite whenever Qg(o) vanishes.

Informally, our results indicate that the “missing” L-packets observed by Weissman may
appear on an “extended pure inner form” ég of the cover G.

0.2. Results. Let us give a more precise account of the content of this article.

In the remainder of this introduction, we fix a local field F, a reductive group F-scheme
G, and a finite subgroup A of C* whose order is invertible in F.

Our first task is to define the cover 6/3 for an arbitrary G-isocrystal 3, given the cohomo-
logical input u. It turns out that the K-theoretic formalism of Brylinski-Deligne (¢f. [BDO01])
is too restrictive for this purpose. Instead, we take u to be an étale metaplectic cover, i.e. a
morphism of pointed (higher) étale stacks (cf. [Del96, GL18, Zha22])

BG - B*A(1).
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The reason is as follows: An étale metaplectic cover p of G induces an étale metaplectic
cover pug of each Gg, hence a cover Gg of Gg(F). However, even if y comes from algebraic
K-theory, ug may not (cf. Remark 4.5.4). In other words, étale metaplectic covers are
necessary even if one is only interested in Brylinski-Deligne covers.

Next, we turn our attention to Langlands duality. The L-group of an étale metaplectic
cover is defined in [Zha22]. Let us sketch (a minor variant of) this construction, as it is
important for the formulation of our main results.

This construction consists of three steps.

In the first step, we replace the pair (G, 1) by another one (G, uqy). Here, Gt is a reduc-
tive group F-scheme, endowed with an étale metaplectic cover pugs which is “as commutative
as possible”.

To explain the last phrase, we recall that every reductive group F-scheme G maps to the
stack quotient G,p := G/Gsc, where Gy, is the simply connected form of G. In fact, Gy, is a
commutative group stack and the gentlest kind of étale metaplectic covers are pulled back
from “Z-linear” morphisms!

BGab, — B*A(1)
Such morphisms are parametrized by maps of complexes m1G — A[2]. Kaletha (cf. [Kal22])
has studied the covers defined by them, at least for quasi-split G, and reduced the Langlands
correspondence for them to that for linear reductive groups.?

The next, and slightly less gentle, kind of étale metaplectic covers is pulled back from
symmetric monoidal morphisms® from BG,p, to B*A(1). The étale metaplectic cover uc
is of this kind. The passage from (G, pu) to (Gt uai) is analogous to the “sharp cover”
construction of Weissman (cf. [Weil8]).

The second step has to do with the subtle, but important difference between symmetric
monoidal and Z-linear morphisms from BG!, to B4A(1). Namely, there is a canonical
decomposition

pa 2 pGy +ps (0.4)
where ,“gu) is 2-torsion and ,“gu) comes from a Z-linear morphism. The decomposition (0.4)
appeared first in Gaitsgory and Lysenko’s work (c¢f. [GL18]), who used it to explain a sign
occurring in the twisted geometric Satake equivalence.

The third step is the passage to the Galois side: We take H to be the Langlands dual
group of G and define a sum of Zy(C)-gerbes over the étale site of Spec F

T =7 + 72, (0.5)
where Zy is the center of H. The summands in (0.5) are constructed from the respective
summands in (0.4). The L-group H is obtained formally from Zy, by rewriting an étale gerbe
as a Galois cocycle. In the K-theoretic context, Weissman defined the L-group as a Baer
sum similar to the above (cf. [Weil8]). However, the decomposition (0.4) has no K-theoretic
counterpart, so our formalism renders the situation more symmetric.

Slightly extending Kaletha’s work, one can relate the Langlands duality for the “sharp
cover” (GY, ugs) to that for linear reductive groups (cf. §2.5). The passage from (G, ) to
(GY, ugy) is more mysterious and is responsible for the “missing” L-packets.

However, before we can go any further, we must first construct the Langlands duality for
sharp covers of tori. The following result is proved in §2.

I homotopical terms, this means morphisms of sheaves of HZ-module spectra.

2H0wever, Kaletha’s construction of the covers is different from ours. His uses the Langlands duality for
tori, and ours does not. The equivalence of these two constructions is a consequence of our results in §2.

3This means morphisms of sheaves of (grouplike) Eoo-monoids, or equivalently of spectra.
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Theorem A. Let T be an F-torus equipped with a symmetric monoidal morphism i : BT —
B4A(1), defining a cover T and an L-group H. There is a canonical bijection

I(T) = o(H),

where TI(T) is the set of genuine smooth characters of T and ®(H) is the set of L-parameters
defined in terms of H.

The special case of Theorem A where p comes from algebraic K-theory and T is split is
established by Weissman (cf. [Weil8, Part 3]). This serves as justification for his definition
of the L-group and is not at all a trivial consequence of class field theory.

Our proof of Theorem A is independent of op.cit.. It establishes that, in a precise sense,
the decompositions (0.4) and (0.5) match under Langlands duality. The main novelty in our
proof is the treatment of a subtle 2-torsion phenomenon, which explains how Gaitsgory and
Lysenko’s “sign gerbe” (cf. [GL18, §4.8]) and Weissman’s meta-Galois group (c¢f. [Weil8,
§4]) are interchanged under Langlands duality (c¢f. Corollary 2.2.14).

We shall use Theorem A to formulate the compatibility of the conjectural local Langlands
correspondence for (G, ) with “central core characters”. According to Weissman’s vision,
this is a substitute for the compatibility with central characters for the usual local Langlands
correspondence.

Let us be more precise. There is a natural map from the center Z! of G! to the center
Z of G. (There is, however, no natural maps between G! and G.) This map is compatible
with their étale metaplectic covers, so it induces a map on the covers of their F-points

VAREA (0.6)

Given an irreducible genuine smooth representation V of G, the Zf-action on V through
(0.6) is given by a genuine smooth character: This is the central core character of V.
Compatibility of the local Langlands correspondence for (G, u) with central core characters
asserts that the following diagram commutes:

I(G) =S o(H)

l l (0.7)

I1(ZF) = @(Hab)

Here, the left vertical arrow extracts the central core character, the right vertical arrow is
the “abelianization” of an L-parameter o, and the lower horizontal equivalence is defined by
Theorem A, or rather, its mild generalization to disconnected groups.

Assuming the commutativity of (0.7), we can now explain the failure of surjectivity of
LLC. Let K be the kernel of (0.6). Given an L-parameter o € ®(H), whose abelianization
corresponds to a genuine smooth character x, AR C*, if the restriction

Qo) = xolk (0.8)

is nonzero, then the fiber of LLC at ¢ is empty. This is because the central core character
of any V € II(G) must annihilate K.

We call (0.8) Weissman’s obstruction, as he first discovered it for tori (cf. [Wei09, Weil6]).
The main goal of this article is to generalize it to C‘:g for every G-isocrystal § and to
characterize those 3 for which this obstruction vanishes.

The first task is easy, given our definition of Gﬁ. Indeed, there is a natural map Z! — ég
for every G-isocrystal 8 with central image. This allows us to formulate the compatibility of
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the conjectural local Langlands correspondence (0.3) with central core characters, in analogy
with (0.7). For each L-parameter o € ®(H), we may then define a character

Qs(0) K - C*.

If Q5(0) # 1, then the fiber of LLCs at o is empty.
Let us now state our main theorem. It will be established in §4.

Theorem B. Let G be a reductive group F-scheme endowed with an étale metaplectic cover

w. Let Gt and K be defined as above.
(1) There is a canonical exact sequence of abelian groups

(ﬂ'lG“)GalF - (WlG)Galp l> HOHI(K7 CX) - 1.

(2) For each G-isocrystal B and L-parameter o, the character Qg(o) vanishes if and
only if the Kottwitz invariant of 3 maps to (o)™ under ~.

In particular, for any L-parameter o, there always exists a basic G-isocrystal 8 for which
Qs(0) vanishes and the set of isomorphism classes of such 8 is a torsor under the image
of (m1G")Gal.- When G is a torus, we prove that the vanishing of Q3(c) is necessary and
sufficient for LLCZ,l(J) to be nonempty (cf. Proposition 4.4.4).

Let us say one word about the proof of Theorem B.

The key ingredient is the “canonical quadratic structure” of an étale metaplectic cover p
with respect to the BZ-action on BG (¢f. Proposition 3.1.3). This appears to be a funda-
mental piece of structure of étale characteristic classes, valid over an arbitrary base scheme.
Informally, it expresses

w(&® Z) - (&) - m(Za),
for any G-torsor & and Z-torsor & (with induced G-torsor Z¢), in terms of an explicit
bilinear expression in % and the G,p-torsor induced from &. One classical manifestation of
this phenomenon is the formula of Chern classes

c2(E® L) —co(E) —co(L®")=(n—1)-ci(det &) ucy (L)
for any rank-n vector bundle & and any line bundle .Z.

0.3. Conventions. This paper uses homotopical algebra as developed by Lurie (c¢f. [Lur09,
Lurl7]). While certain aspects of the theory of covers can be handled using traditional
methods of homological algebra?, manipulations of higher symmetric monoidal structures in
this article are infeasible without Lurie’s theory.

Following Lurie’s convention, we refer to co-groupoids as spaces. We invoke the equiva-
lence between connective spectra and grouplike E.-monoids (¢f. [Lurl7, Remark 5.2.6.26])
and view them as spaces with additional structure. We abbreviate “connective HZ-module
spectra” as Z-linear spaces. In particular, there are forgetful functors from Z-linear spaces
to grouplike Eo.-monoids, and from grouplike E.-monoids to pointed spaces.> These are
essentially the only higher algebraic structures we will need.

Given a scheme S, we use B to denote the deloop functor for fppf sheaves over S. In
particular, for a group S-scheme G, BG is the usual classifying stack of G. If G is smooth
and affine, then its deloops in the fppf and étale topologies coincide.

4For example, by taking a simplicial resolution of BG, one can encode an étale metaplectic cover as an
étale hypercocycle, which is how this notion was originally conceived of by Deligne (cf. [Del96]). The Z-linear
part of pugy can also be encoded by a map of complexes over SpecF, hence by a Galois hypercocycle. This
is how Kaletha describes them (cf. [Kal22]).

5For a usual groupoid, i.e. a 1-truncated space, a Z-linear structure is the structure of a strictly commu-
tative Picard groupoid, whereas a grouplike Ec-monoid structure is the structure of a Picard groupoid.
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Given an fppf sheaf of abelian groups & over S and an integer n > 1, we view the n-fold
deloop B"«7 as an fppf sheaf of Z-linear spaces over S. If <7 is pulled back from the small
étale site of S (e.g. &/ = A(1) where A is a finite abelian group of invertible order), then
its deloops in the fppf and étale topologies coincide (c¢f. [Stal8, 0DDT]). We invoke this
equivalence when applying the formalism of [Zha22].

We shall use “Kummer theory” extensively in the following form. For any integer n > 1,
we have the coboundary G,, - BZ/n(1) of the Kummer exact sequence. This yields a
morphism in the pro-category of fppf sheaves of Z-linear spaces

U :G,, - BZ(1) := limBZ/n(1),

where the formal inverse limit is taken over the divisibility poset of positive integers. We
shall also frequently use the deloop BV : BG,, — BQZ(I) of .

0.4. Acknowledgements. L.S. would like to thank Jessica Fintzen for introducing him to
the topic of covers. Y.Z. thanks Tianyi Feng, Dennis Gaitsgory, Wee Teck Gan, and Tasho
Kaletha for illuminating conversations about the subject of this article.

1. Covers OF Gg(F)

Let F be a local field with residue field f. We fix an algebraic closure f of f.

In this section, we first recall the notion of G-isocrystals following Kottwitz (c¢f. [Kot85,
Kot97]). Then we define the cover GIB for a reductive group F-scheme G together with an
étale metaplectic cover p and a G-isocrystal 8. Next, we recall some combinatorial data
associated to p in order to define the set of L-parameters and extend Weissman’s conjectural
local Langlands correspondence to C‘:g (¢f. Conjecture 1.4.16).

1.1. G-isocrystals.

1.1.1. Denote by F the completed maximal unramified extension of F determined by f.
Denote by ¢ the cardinality of f. The gth power Frobenius of f extends by functoriality to
an automorphism of F‘, which we denote by o.

Denote by X the prestack quotient Spec(F)/o%. The inclusion F ¢ F induces a morphism
of prestacks

X — SpecF. (1.1)

In what follows, we treat SpecF as the base scheme, so fiber products taken over SpecF

will be written without SpecF.

1.1.2. For any affine group F-scheme G of finite type, we write Isocg for the groupoid of
G-torsors over X, which we refer to as G-isocrystals.

Equivalently, a G-isocrystal 3 consists of a G-torsor & over Specp and an isomorphism
of G-torsors ¢ : 0*& = &.

Note that any element g of G(F) defines a G-isocrystal (&£,¢), where & is the trivial
G-torsor over Spec]?‘ and ¢ is multiplication by g. Conversely, if a G-isocrystal is endowed
with a trivialization over Spec F, then ¢ is given by multiplication by an element of G(F‘)

Remark 1.1.3. If F is of characteristic zero and G is connected, then any G-torsor over
SpecF is trivial (cf. [Ste65, Theorem 1.9]). If F is of characteristic p # 0 and G is reductive®,
then any G-torsor over SpecF is trivial (cf. [BS68, §8.6]).

60ur convention is that “reductive” implies “connected”.
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For our purposes, however, we will sometimes need the case for disconnected G such as
the center of a reductive group F-scheme.

1.1.4. Given a G-isocrystal 3, we write Gg for the group F-sheaf of automorphisms of 3.
Namely, for any F-algebra R, an R-point of Gg is an automorphism of the pullback of 3 to
the prestack X x SpecR.

By [Kot97, §3.3], the group F-sheaf Gg is represented by an affine group F-scheme.

1.1.5. For a reductive group scheme G over any base scheme S, we employ the following
notation: Gg. (respectively G,q) stands for the simply connected (respectively adjoint) form
of G. Write T (respectively Tg., Taq) for the abstract Cartan of G (respectively Ggc, Gaa).
Denote by A (respectively A) the fppf sheaf of cocharacters (respectively characters) of T.
We use the same notation Ag., A.g, ete. for Ty and Taq.

Denote by A c A (respectively Ac A) the subsheaf of simple coroots (respectively simple
roots). Thus A generates Ag. and A generates the subsheaf dual to Aaq.

Denote by Z the center of G, so we have a canonical isomorphism

7 2 Fib(A > Agaq) ® Gy,

where Fib stands for the fiber of complexes of fppf sheaves of abelian groups, and the tensor
product is understood in the derived sense.
Denote by m1 G the quotient of fppf sheaves A/Ay.. We view

Gap =m GG,y

as an fppf sheaf of Picard groupoids and refer to it as the cocenter of G. (It coincides with
the abelianization of G when 71 G is torsion-free.) The identification Z/Zs. = G/Gg. induces
a monoidal morphism

G = Gap- (1.2)

1.1.6. For a reductive group F-scheme G, we have the Kottwitz invariant
Kott : Isocg — (WlG)GaIF, (1.3)

where (m1G)galr denotes the group of Galois coinvariants of mG.7

Since (1.3) plays a major role in this text, let us recall its definition.

Denote by Isocg,, the space of Gap-torsors over X, i.e. maps from X to BG,p. Since T
is reductive, every Ty.-torsor over SpecF is trivial (¢f. Remark 1.1.3). Combining this with
the fact that Z has cohomological dimension 1, we see that H?(X, Ts.) = 0, so the quotient
map yields an equivalence

Isocr/lsocy,. — Isocq,,, - (1.4)

The functorial isomorphism 7 (Isoct) 2 (X, T)gale for tori (¢f. [Kot85, §2.4]) induces an

isomorphism mo(lsocg,,, ) 2 (711G)gay, via (1.4). We set (1.3) to be the composition
Isocg — Isocg,,

- 7T0(|SOCGab) i (WlG)GaIF,
where the first map is defined by functoriality with respect to (1.2).

1.1.7. We keep the assumption that G is reductive.
Recall that a G-isocrystal g is basic if its induced G,g-isocrystal is the pullback of a
Gaa-torsor over SpecF (cf. [Kot85, §4.5, §5.1]). Thus, if § is basic, then Gg is an inner form

"The formation of Galois coinvariants does not require the choice of an algebraic closure of F.



8 LUOZI SHI AND YIFEI ZHAO

of G. Inner forms arising in this manner are called extended pure inner forms of G. Denote
by Basicg the full subgroupoid of Isocg consisting of basic G-isocrystals.
According to [Kot85, Proposition 5.6], (1.3) induces a bijection

mo(Basicg) = (m1G)qalp- (1.5)
1.2. Construction of covers.

1.2.1. Let G be an affine group F-scheme of finite type and A be a finite abelian group
whose order is invertible in F.

For each n € Z, write A(n) for the corresponding Tate twist of A, viewed as an étale sheaf
of finite abelian groups over SpecF.

1.2.2. Denote by Maps,(BG,B*A(1)) the space of rigidified morphisms BG — B*A(1),
i.e. morphisms of pointed F-stacks. It admits a Z-linear structure induced from the abelian
group structure on A(1).
For a topological group K, we refer to a topological central extension
1>A->K->K-1,

where K — K is a local homeomorphim, as a cover of K. The collection of covers of K form
a Z-linear groupoid under Baer sum, which we denote by Cov(K;,A).

Let us equip G(F) with the topology inherited from F. The construction of [Zha22, §2.1]
yields a Z-linear functor

fF : Maps, (BG, B*A(1)) — Cov(G(F), A). (1.6)

1.2.3. For any G-isocrystal 5, we shall construct a functor
Tps : Maps, (BG,B*A(1)) - Maps, (BGs, B*A(1)), (1.7)
to be conceived of as “translation by 3”.
If Gg is of finite type, then by composing (1.7) with the functor (1.6) applied to Gg, we

obtain a functor
fm : Maps, (BG, B*A(1)) - Cov(G4(F), A). (1.8)

Under (1.8), every rigidified morphism BG — B*A(1) defines a cover Gg of Gg(F).

1.2.4. Construction of Tg. Let us view 8 as a morphism X — BG. Since Gg is the group
F-sheaf of its automorphisms, 8 extends to a morphism of fppf stacks

X x BG4 - BG. (1.9)

More precisely, there is a natural morphism of group X-sheaves X x Gg - X xpg X, where
the target is the fiber product of 8 with itself, and (1.9) is obtained as its deloop.

Given a rigidified morphism u : BG - B4A(1), the pullback of p along (1.9) is a morphism
X xBGg - B*A(1) whose restriction along the neutral section e : X - X x BG4 is isomorphic
to f*u. Thus, sending p to the difference p—p* B, where p : XxBGg — X is the projection,
defines a functor

Maps, (BG,B*A(1)) - Maps, (X x BGs,B*A(1)), (1.10)

where the target is the space of maps X x BGg — B4A(1) rigidified along e.
Thanks to Lemma 1.2.5 below, pullback along the projection X x BGg - BGg induces an
isomorphism
Maps, (BGz,B*A(1)) = Maps, (X x BGg, B*A(1)). (1.11)
The desired functor (1.7) is the composition of (1.10) with the inverse of (1.11).
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Lemma 1.2.5. For any F-scheme S, pullback along the projection S x X — S induces an
isomorphism of étale cochains

I'(S,A(1)) > T(SxX,A(1)). (1.12)

Proof. Denote by v : SpecF — SpecF the natural map. The complex v,A(1) is endowed
with an automorphism ¢* defined by pullback along o : Spec F' — SpecF. We claim that it
is sufficient to identify the fiber of

o —id: v, A1) > v A(1) (1.13)
with A(1), along the unit map A(1) - v, A(1).

Indeed, the complex I'(S x X, A(1)) is the (derived) Z-invariants of the complex T'(S x
SpecF,A(1)), with 1 € Z acting by o*. On the other hand, base change (cf. [Stal8, 0F1I))
yields an isomorphism

['(S x SpecF, A(1)) = I'(S, v A(1)).
Hence, T'(S x X, A(1)) is identified with the image under I'(S,-) of the fiber of (1.13). If
the latter is identified with A(1) along the unit map, then I'(S x X, A(1)) is identified with
I'(S,A(1)) along the pullback map.

We now identify the fiber of (1.13). Let F"™" denote the maximal unramified extension
of F determined by f, so F is the completion of F"™. Pulling back along SpecF — Spec Funr
induces an equivalence of étale sites, so we may replace Spec]?‘ by Spec F""".

The map Spec F""" — SpecF is a Z-torsor and the desired isomorphism can be verified
at a geometric point of SpecF. We thus reduce to the following assertion: For any torsion
Z-module M, its Z-invariants coincide with its Z-invariants along the natural map Z — Z.
This follows from the computation of group cohomology of Z (¢f. [Ser79, X111, §1]). g

Remark 1.2.6. The proof of Lemma 1.2.5 applies when A(1) is replaced by any torsion
étale sheaf over SpecF of order invertible in F. Tt expresses the fact that the morphism (1.1)
induces, universally, an isomorphism on étale cohomology with such coefficients.

1.3. Combinatorics of covers.

1.3.1. Let G be a reductive group scheme over a base scheme S. Let A be a finite abelian
group whose order is invertible on S. We employ the notation of §1.1.5.
Denote by Maps,(BG,B*A(1)) the space of rigidified morphisms BG - B*A(1). We shall
recall certain combinatorial data associated to it.
1.3.2. Given a quadratic form Q: A - A(-1), we write
b:A®A— A(-1)

for the associated symmetric form, sending A1, As € A to
b(A1,A2) = Q(A1 + A2) = Q(A1) = Q(A2)-
We say that Q is strictly Weyl-invariant if the equality
b(a, \) = Qa){a, A) (1.14)

holds for any A € A and any simple coroot a € A.
The right-hand-side of (1.14) makes sense for any A\ € A,q, if we understand (-,-) as the
canonical pairing between the root lattice and A,q. Thus it extends to a bilinear form

b1t Ase ® Mg — A(=1).
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1.3.3. The pairing by. The coincidence between b and b; over Ay ® A implies that their
adjoints make the following diagram commute:

A — Hom(A,A(-1))

l l (1.15)

Aaa — Hom(Age, A(-1))

Taking fibers of the vertical maps, we obtain a map

Fib(A > Ayq) > Hom(m G, A(-1)). (1.16)
Denote by bs the bilinear pairing obtained from (1.16) by passing to the adjoint
b227T1G®Fib(A—>Aad) —>A(—1). (117)

1.3.4. Denote by Af c A the kernel of b. Denote by Af. ¢ Ay, Al ¢ Auq the kernels of b;.
Write Af for the dual of Af.
For each simple coroot « € A, we shall also write

at:=ord(Q(a)) o, @t :=ord(Q(a))™-a,

where ord(Q(a)) denotes the order of Q(a) € A(~1). The set Al of af (respectively Af of
al) forms a subsheaf of Al (respectively Al).

Observe that Af_ is the span of A¥: An element Y ca do - @ of Ag belongs to Al if and
only if it pairs to zero under b; against each fundamental coweight w,, and this occurs if
and only if d, - Q(a) = 0 for each a € A. Likewise, A}, is dual to the span of At c Al

Moreover, the quadruple

(AFc AF Al c AY) (1.18)
is a locally constant étale sheaf of based root data over S. In particular, (1.18) is the root
data of a reductive group F-scheme G# with sheaf of cocharacters Af. We decorate with (-)*
all the objects associated to G! in §1.1.5.

1.3.5. Write .Zaps.(BG,B*A(1)) for the étale sheaf over S whose sections over an S-scheme
S, are rigidified morphisms BG xg S; - B*A(1).
By [Zha22, Proposition 5.1.11], there is a canonical fiber sequence

A omz(m G,B*A) - M aps.(BG,B*A(1)) » Quad(A, A(~1))s, (1.19)

where ¢ omz denotes the étale sheaf of Z-linear morphisms and Quad(A, A(-1))s denotes
the étale sheaf of strictly Weyl-invariant quadratic forms on A. The first map in (1.19) is
defined by tensoring with BU and pulling back along BG — BG.,y,.

In particular, to each rigidified morphism 1 : BG - B*A(1), we may associate a strictly
Weyl-invariant quadratic form @Q and pairings b, by, bo as well as the étale sheaf of based
root data (1.18).

Proposition 1.3.6. Let p be a rigidified morphism BG — B4A(1). The restriction of p to
BZ! canonically lifts to an Ee-monoidal morphism

pze : BZE - B*A(1), (1.20)
equipped with a trivialization over BZE,.
Proof. In [Zha22, §6.1], we construct from p a canonical E.,-monoidal morphism gy : BT —

B*A(1) endowed with a trivialization over BT}.. It is enough to identify the restriction of
uri to BZ with the restriction of p.
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To do this, we recall that pry is constructed, étale locally over Spec F, by choosing a Borel
subgroup B c G and restricting 1 to BB. The latter descends to BT and pry is its pullback
to BT!. This provides an identification between the restrictions of pry and p to BZ!, which

a priori depends on B. The independence is proved as in [Zha22, §5.2.6]. O
1.3.7. Note that Z#/Z}, is canonically identified with G!, , so the Eo-monoidal morphism
(1.20) together with its trivialization over BZ!, defines an Ec-monoidal morphism

per, - BGE, — BYA(1). (1.21)

The sheaf of Ee-monoidal morphisms from BG!, to B*A(1) fits into a canonical fiber
sequence
Homz(m1 G B?A) » Mapsg. (BGE B*'A(1)) » #om(m G A(~1)ators),  (1.22)

where A(-1)a_tors denotes the subsheaf of 2-torsion elements of A(-1). Indeed, this follows
from expressing Bng as the cofiber of BT!. - BT# and reducing to the analogous statement
for tori (¢f. [Zha22, Proposition 4.6.2]).

In particular, it follows from op.cit. that the image of hat, along the second map of (1.22)

is the restriction of Q to Af, which is valued in A(-1)2.tors and annihilates Al..
1.4. The local Langlands correspondence.

1.4.1. We specialize to the case where G is a reductive group F-scheme. Fix a finite abelian
group A whose order is invertible in F, equipped with an injective character

(:A-C~.
Note that ¢ identifies A with the subgroup ux(C) for N := |A|.
Let p be a rigidified morphism BG — B4A(1). We shall recall Weissman’s conjectural

local Langlands correspondence for the cover of G(F) defined by p and explain its extension
to extended pure inner forms of G.

1.4.2. For each 8 € Isocg, we apply the construction functor (1.8) to u to obtain a cover
Gp:= .
B .8 2

Denote by H(ég) the set of isomorphism classes of irreducible {-genuine smooth repre-
sentations of Gg. Being “(-genuine” means that A acts through the character (.
As above, we omit the subscript 5 when it is the trivial G-isocrystal.

1.4.3. On the other hand, the rigidified morphism p defines the reductive group F-scheme
Gt (c¢f. §1.3.4) and the E,,-monoidal morphism et (¢f. §1.3.7). The Galois side of the
local Langlands correspondence depends only on (G, ungb), as opposed to (G, u).

Denote by H the Langlands dual of G!, viewed as a locally constant étale sheaf of pinned
split reductive group Z-schemes. In particular, H is equipped with a Killing pair Ty c By c
H, where Ty has sheaf of characters Al.

1.4.4. We shall construct a canonical splitting of the fiber sequence (1.22). The idea of this
construction is originally due to Gaitsgory and Lysenko (cf. [GL18, §4.8]).

If A has odd degree, then A(—1)a.tors vanishes and (1.22) trivially splits.

If A has even degree®, then ¢ identifies A(~1)s.tors with Z/2. To split (1.22), we associate
to each character €: m Gt - Z/2 the Eo-monoidal morphism

BGI, 2% B2{i1} % B4{£1)92 - BYA(1), (1.23)

8By the assumption that |A| is invertible in F, this implies that F has characteristic # 2.
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where sgn is the Eo-monoidal morphism constructed below.

1.4.5. Construction of sgn. We work over the base scheme S := Spec Z[%] The étale sheaf

Mapsg_ (B> {£1},B*{+1}®2) is the fiber of the map
Mapss_ (BG,, B*{£1}°%) > #apsg_ (BG,,,B* {£11%%) (1.24)
given by pullback along (-)? : BG,, - BG,,.

On the other hand, the functor of taking loop spaces and applying .# apse(G,,,-) yields
an equivalence (c¢f. [Zha22, Proposition 4.6.6])

Mapsg. (BG,, B {£1}%?) 5 Hapsg,_ (Z,B*{+1}). (1.25)
This induces an identification of the fiber of (1.24)
Mapsg_ (B*{£1},BH{+112%) 5 Aapsg_ (Z/2,B*{+1}). (1.26)

Note that an Ee,-monoidal morphism Z/2 - B*{21} is equivalent to a symmetric monoidal
extension of Z/2 by B{+1}. We define sgn : B*{+1} —» B*{+1}®? to be the E.,-monoidal
morphism whose image under (1.26) is the trivial monoidal extension of Z/2 by B{+1}, with
commutativity constraint specified by the pairing

Z/20Z)2 - {+1}, a,bw (-1)".
1.4.6. Under the splitting of (1.22), we may write figi, as asum

= 1) (2)
'U/G“ab - /’[’Gglb + 'uGib, (127)
where Ngu) is the composition (1.23) applied to the character € defined by the restriction of
ab

Q to A (cf. §1.3.7) and ,ugﬁ) is defined by a Z-linear morphism
ab

m Gl > B%A. (1.28)

1.4.7. We shall now convert the data e : 7 G} - Z/2 and (1.28) to the Galois side. For this,
it helps to introduce a bit of formalism.
Given a pro-space X = lim; X; and a sheaf of abelian groups o/ over some X;, we write

(X, [n]) := C;)elli/?l I'(X;, </ [n]),

where the transition maps are given by pullbacks. We refer to objects of the Z-linear space
underlying I'(X, &/ [2]) as o -gerbes over X. Thus, the total space of an </-gerbe over X is
a pro-space over X.

Givan pro-group ¥ = lim; X;, we may apply the above formalism to the pro-space */% :=
lim;er #/%;. Any ¥;-module &7 may be regarded as a sheaf of abelian groups over */%;, and
we use Z"(%, &) to denote the Z-linear space underlying I'(*/%, «/[n]). In particular, we
have an isomorphism whenever 0 < m < n:

i Z" (S, ) > (S, ),
the right-hand-side being the continuous group cohomology of ¥ with coefficients in 7.

1.4.8. Fix an algebraic closure F of F lifting f.

Denote by Wy the Weil group of F, which we view as a pro-group Wp := lim X, where
the formal limit is taken over discrete quotients Wg — 3.

By taking fibers at the geometric point SpecF, we may view the étale sheaf H(C) as a
group with a Weg-action through a finite quotient X. In particular, H(C) may be viewed as
a sheaf of groups over */3.
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Analogously, Zi (C) may be viewed as a sheaf of abelian groups over /3. The formalism
of §1.4.7 allows us to make sense of Zy (C)-gerbes over */Wp.

1.4.9. The meta-Weil group. Consider the central extension
1> {21} > Ffy, - F* > 1 (1.29)

defined by the quadratic Hilbert symbol {-,-} as cocycle, i.e. we have le{ilb = F* x {£1} with
the group structure (a,1)-(b,1) := (ab, {a,b}).

The meta- Weil group is defined to be the pullback of (1.29) along the Artin reciprocity
map Wg - F* (c¢f. [Weil8, §4])

1 {21} > Wg > Wp - 1. (1.30)
Taking classifying spaces, (1.30) yields a {+1}-gerbe over */Wg.

1.4.10. Denote by Zg’ the Zy(C)-gerbe over */Wy induced from (1.30) along the dual
€’ : {1} - Zp(C) of the character e.
Denote by Zg) the Zy(C)-gerbe over /W defined by composing (1.28) with ¢. Here,
we invoked the passage from étale Zy(C)-gerbes over SpecF to Zy(C)-gerbes over */Wr.
Consider the sum of Zy (C)-gerbes

T =70 + 7. (1.31)

1.4.11. Inducing (the total space of) Zy along the morphism Zy(C) - H(C) of sheaves of
groups over */Wrg, we obtain a pro-space H over »/Wg.

By an L-parameter, we shall mean a section of the projection H- *[WE.

For any standard parabolic subgroup Py ¢ H with standard Levi subgroup My ¢ Py,
one may induce Zy along Zg(C) - Mg (C) - Py (C) to obtain pro-spaces My and Py over
*/Wg. An L-parameter */Wpg — H is called semisimple if, whenever it factors through Py
for some standard parabolic subgroup Py, it factors through Mp.

Denote by <I>(ﬁ) the set of isomorphism classes of semisimple L-parameters. We shall
often refer to elements of ®(H) simply as “L-parameters”.

Remark 1.4.12. Let us remark on why we define L-parameters in terms of H rather than
the more concrete definition in terms of an “L-group”. The discrepancy has to do with the
choice of base points.
Indeed, choosing a base point of Zu and taking loop spaces, we obtain an extension of
pro-groups
1 - Zu(C) » QUZy) - Wr - 1.

Likewise, the induced base point of H gives rise to an extension Q(H) of Wy by H(C),
which may be considered as the “L-group”.

An L-parameter */Wp — His (non-canonically) isomorphic to one which preserves the
base point, which is equivalent to a section Wi — Q(H). Note that Q(H) is the pullback of
some extension Q(H); of a discrete quotient of Wy by H(C). The composite

Wi — Q(f) » Q(f)

is a morphism of pro-groups, so it factors through a discrete quotient of Wg. Thus, we
recover the classical notion of an L-parameter (or more precisely, a Weil parameter).”?

IWeissman provides a different recipe for restoring the independence of base points, by explicitly lifting
the “category of L-groups” to a 2-category (cf. [Weil8, §5.1]).
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1.4.13. The following is Weissman’s version of the local Langlands correspondence (¢f. [Weil8,
Conjecture 0.1]).

Conjecture 1.4.14 (Weissman). There is a natural finite-to-one map
LLC: II(G) - ®(H). (1.32)
1.4.15. Let us include the covers GB in the formulation of Conjecture 1.4.14.

Conjecture 1.4.16. For each 3 € Basicg, there is a natural finite-to-one map
LLCs : T1(Gp) - ®(H). (1.33)

2. SHARP COVERS

Let F be a local field with a fixed algebraic closure F.

The goal of this subsection is to construct the local Langlands correspondence for sharp
tori (¢f. (2.7)). This is a consequence of Theorem 2.1.6 whose proof occupies §2.2 and §2.3.

In §2.4, we will use this result to establish the Langlands correspondence for the “sharp
center”. This will be needed for the formulation of compatibility with central core character
(cf. §4). In §2.5, we explain another consequence of Theorem 2.1.6 which will not be needed
later. Its purpose is to justify why the local Langlands correspondence for sharp covers is
not far from the local Langlands correspondence for linear reductive groups.

2.1. Duality for tori.

2.1.1. Given topological abelian groups A;, Ay, we write E'(A;, Ay) for the groupoid of
commutative extensions of A; by As. We endow C* with the discrete topology.
For any F-torus T, we shall construct a Z-linear functor (natural in T)
Ly : Z%(We, T(C)) ~ EY(T(F), C), (2.1)
where T stands for the Langlands dual of T and the left-hand-side is defined in §1.4.7.

2.1.2. Construction of (2.1). Since the group H2(Wp, T(C)) vanishes (cf. [Kar13, Theorem
3.2.2]), the space Z*(Wg, T(C)) is connected and thus identified with the classifying space
of Z(Wg, T(C)).
The automorphism group of the zero object in E' (T(F), C*) is the group Hom(T(F), C*)
of continuous characters. To define (2.1), it suffices to define a Z-linear functor
Z'(Wp, T(C)) > Hom(T(F), C*). (2.2)

The functor (2.2) is set to be the projection Z'(Wg, T(C)) - H' (W, T(C)), followed
by Langlands duality for tori (¢f. [Yu09, §7.5])
H'(Wg, T(C)) > Hom(T(F),C*). (2.3)
Remark 2.1.3. By construction, 7Lt is the Langlands duality (2.3) for T.
Remark 2.1.4. There is some asymmetry in the way we defined Lp: The left-hand-side is
a 2-groupoid, while the right-hand-side is a 1-groupoid. This is due to similar asymmetry

in the usual formulation of Langlands duality for tori (2.3). A better formulation would be
an equivalence of groupoids

7' (W, T(C)) = Hom(Isoct, /C*), (2.4)

where Isoct is understood as a pro-Picard groupoid. The equivalence (2.4) ought to recover
(2.3) on 7o and the Pontryagin duality between T(C)%F and (7, T)gal, on 7.
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We will not adopt this point of view in the present article, since the benefits it brings are
not visible at the level of our results.

2.1.5. We now let A be a finite abelian group of order invertible in F, equipped with an
injective character (: A - C*.

Let T be an F-torus endowed with an E.-monoidal morphism y: BT — B4A(1). Applying
the construction functor (1.6) to p, we obtain a cover T of T(F). It is commutative since p
is Es-monoidal. Inducing along (, we obtain a commutative extension

1-C* T - T(F) > 1. (2.5)

We shall view T, as an object of E' (T(F), C*).
We shall now apply the construction of the dual datum (1.31) to (T, ). In the present

context, we have Zy = H= T. Thus (1.31) is a T(C)-gerbe T over */Wg, which we view as
an object of Z*(Wg, T(C)).

Theorem 2.1.6. There is a canonical isomorphism in E*(T(F),C*) functorial in (T,p):
Lr(T) > 7. (2.6)

2.1.7. The construction of (2.6) requires some effort and will be completed in §2.3.

The idea is as follows: The decomposition (1.27) exhibits p as the sum of a “sign com-
ponent” £V and a Z-linear component 1(?). The resulting cover of TC is thus a Baer sum
of two covers. Correspondingly, T is also the sum of two T(C)—gerbes. We will construct
the isomorphism (2.6) for these two summands separately and obtain the general case by
adding them up, using the Z-linearity of L.

2.1.8. Theorem 2.1.6 yields the local Langlands correspondence (1.32) for (T, u).

Indeed, the functor Lt cagries trivializations of T to triyializations of TC- The latter are
in bijection with the set TI(T) of {-genuine characters of T.

Furthermore, this map intertwines the Zl(WF’lT(C))—action on trivializations of T with

the Hom(T(F), C*)-action on trivializations of T¢, via the map (2.2). Since (2.2) induces
an isomorphism on 7y, Lt induces an isomorphism

o(T) = 1(T). (2.7)
The local Langlands correspondence for (T, p) is define to be the inverse of (2.7).
2.2. The sign component.

2.2.1. In this subsection, we assume char F # 2. Our goal is to construct (2.6) when u = pm,
i.e. when it arises from the Eo,-monoidal morphism sgn : B2{1} - B*{£1}®2 (¢f. §1.4.5) by
pre-composing with € ® ¥ and post-composing with the inclusion of {+1} in A.

Let us begin by treating the “universal” case, where € is the identity on Z/2.

2.2.2. Viewing sgn as a section of the fiber of (1.24) and applying the construction functor
(1.6) for G := G,,, we obtain a cover of F* whose pullback along (-)? : F* — F* is endowed
with a splitting.

These data can be packaged by a diagram of topological groups

B
/ l(»)z (2.8)

1 — {#1} — F, — F* —1

sgn
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where the lower row is a double cover of F*.
Our main result of this subsection is the explicit identification of (2.8). The answer
involves the cover (1.29) defined by the quadratic Hilbert symbol.

Proposition 2.2.3. There is a canonical isomorphism of covers

I;\'X i) F‘JIX{ilb (29)

sgn
such that T corresponds, under the natural bijection Fﬁﬂb 2 F* x {1}, to the map
F* - F*x {1}, aw (a? {a,a}).

2.2.4. In order to construct the isomorphism (2.9), we first need to describe the rigidified
morphism BG,, - B*{+1}®? defining the cover Fjy, .

Recall that the fiber sequence (1.19) for G := G, and A := {£1} admits a canonical
splitting (¢f. [Zha22, Remark 4.2.8])

Mapse(BG,,, BH{£1}%?) 5 B*{+1} @ Z/2. (2.10)

The inclusion of Z/2 is defined by sending 1 to cup product B¥ u B¥, where B¥ : BG,,, —
B*{x1} is the deloop of the Kummer map.'”
Claim: The image of BU u B¥ under the construction functor (1.6) for G := G,, is

X

canonically identified with ﬁHilb'

2.2.5. Proof of Claim. Let us make the functor (1.6) more explicit. Given a rigidified mor-
phism g : BG,, - B*{£1}®2, we obtain a E;-monoidal morphism G,, — B*{+1}®? by taking
loop spaces. The fiber GI of the latter fits into a fiber sequence of E;-monoidal stacks

B%{£1}%? > GI, - G,,. (2.11)

Evaluating (2.11) at Spec F and using the vanishing of H3(Spec F, {+1}®?), we obtain a short
exact sequence of groups

1 - H%(SpecF, {+1}®?) > G, » F* - 1. (2.12)

The image of ;1 under (1.6) is given by (2.12) under Tate duality H*(SpecF, {+1}%?) = {+1},
endowed with the topology defined by distinguished sections (cf. [Zha22, §2.1.4]).

In the special case p := BU U B, the fiber sequence (2.11) canonically splits as a fiber
sequence of pointed stacks (c¢f. [Zha22, Proposition 4.4.5]). Its monoidal product can thus
be described by a cocycle G,, x G,,, > B2{il}®2, which one identifies with the external cup
product of ¥ with itself. This implies that the induced short exact sequence (2.12) has a
canonical set-theoretic splitting, with cocycle given by the Galois symbol

F*®F* - H?*(SpecF, {£1}®?), a®bw~ [¥(a)]u[¥(D)], (2.13)
where [¥(a)] is the Kummer class of a € F*. However, (2.13) becomes the quadratic Hilbert
symbol after identifying H?(SpecF, {+1}®2) with {+1} under Tate duality. O

2.2.6. Note that every rigidified morphism BG,, — B4{i1}®2 is canonically E.-monoidal
because its associated symmetric form vanishes (cf. [Zha22; Proposition 4.6.2]), so we may
view BU UBW as an E-monoidal morphism BG,,, — B4{i1}®2. Let us identify its image in
Mapsg,_(Z,B*{£1}) under (1.25), viewed as a symmetric monoidal extension:

B{:t].} - ZHilb - 7. (214)

10we temporarily depart from our convention where ¥ has coefficients in Z(l)
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By construction, (2.14) is related to (2.11) (for p:= B¥ uBW) as follows: We apply the
functor A apse(G,y,,—) to (2.11) and form the pullback and pushout along the maps
Z - Mapse(Cm,Gr), Mapse(Gp,, B2 {£1}9?) 5 B{x1},
where the first map sends a € Z to the character x — z® and the second map is defined by

the étale cohomology of G,,, i.e. the inverse to tensoring with W.

2.2.7. Description of Zymp. Since (2.11) (for p:= B¥ uBY) admits a canonical splitting as
a sequence of pointed stacks, so does (2.14). Let us record this splitting as an isomorphism
of pointed stacks

Zyi, — Z x B{x1}. (2.15)
Using (2.15), we may write the monoidal product on Zy, as a cocycle
ZxZ > B{+1}. (2.16)

Let us write (1) for the {£1}-torsor of square roots of —1. There is a natural isomorphism
VUW 20 @p*U(-1) in A apse(G,,, B*{£1}®?), where p : G,, - SpecF is the projection
(¢f. [Zha22, Theorem 3.1.5]). Thus the cocycle (2.16) sends (a,b) € Z x Z to the ab-multiple
of U(-1). The associator of the monoidal product is given by the bilinearity of (2.16).

It remains to describe the commutativity constraint on ZHilb. By the above description
of the monoidal product, this is specified by an isomorphism ab- ¥ (-1) = ba-¥(-1) for each
a,beZ, i.e. by a bilinear pairing

Z®7Z— {£1}. (2.17)
(The bilinearity is a consequence of the hexagon axiom.) By [Zha22, Proposition 4.6.6], the
value of this pairing at 1® 1 is —1. Thus (2.17) is given by a ® b~ (=1)?°.

Remark 2.2.8. It is also possible to arrive at the above description of the monoidal struc-
ture on Zmin by comparing with Brylinski and Deligne’s classification of central extensions
of G,, by Kz (¢f. [BDO1, §3]).

Indeed, BY U BV is the image, under étale realization (cf. [Zha22, §2.3.2]), of the central
extension E of G,, by Ky defined using the canonical pairing G,, ® G,,, - K5 as cocycle. The
étale realization is compatible with second Brylinski-Deligne invariants, in the sense that
we have a commutative square of E;-monoidal stacks

Z —— BG,,

lﬁ lq; (2.18)

Z — B*{x1}

where the top horizontal arrow is the second Brylinski-Deligne invariant of E and the bottom
horizontal arrow is the E;-monoidal morphism corresponding to ZHilb.ll Now, the second
Brylinski—Deligne invariant of E is the central extension of Z by G,,, defined using a,b —
(—1)“” as cocycle. This implies the above description of ZHilb as a monoidal stack.

2.2.9. Monoidal splitting of Zu. Let us construct a splitting of (2.14) as a fiber sequence
of monoidal stacks. Under the identification (2.15), this splitting is given by

Z > Z,  av (a, (‘2‘)-\1:(_1)). (2.19)

HWe make an important cautionary remark. Since the cocycle a,b = (-1)2® is commutative, the top
horizontal arrow in (2.18) is symmetric monoidal. The bottom horizontal arrow is also Eoo-monoidal because
BUUBWV is. However, (2.18) is not a commutative diagram of Eeo-monoidal stacks: The top circuit is Z-linear
while the bottom circuit is not.
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Because the cocycle of Zii, is given by a,b~ ab-¥(-1), the fact that this is a monoidal
splitting follows from the equality of integers

(37)-()- ()=

Denote by Zgg, the trivial monoidal extension of Z by B{+1} with commutativity con-
straint specified by Z ® Z — {+1}, a,b ~ (-1)®. The monoidal splitting (2.19) exhibits an
isomorphism of symmetric monoidal extensions of Z by B{+1}:

Zsgr, = L. (2.20)
2.2.10. Finally, the construction of (2.20) renders it incompatible with the natural splittings
of the two sides over 2:7Z — Z. Let us be more precise.

The extension 'ngn is monoidally equivalent to Z x B{+1} by construction, so it admits
a splitting over 2 : Z — Z sending a € Z to (2a,1). In other words, this is the splitting
induced from sgn (as a symmetric monoidal extension of Z/2 by B{+1}), by pulling back
along Z - Z/2.

The composition of this splitting with (2.20) is the map

Z - Zui, a~ (2a,a-U(-1)), (2.21)
because of the identity
2a
( ) =a mod 2.
2

2.2.11. We are now ready to construct the isomorphism (2.9).

Proof of Proposition 2.2.3. We shall construct an isomorphism of E.-monoidal morphism
BG,, — B*{£1}®? which produces (2.9) under the construction functor (1.6). Using the
equivalence (1.25), it suffices to construct an isomorphism of Ee,-monoidal morphisms Z —
B{+1} classifying the “sign”, respectively “Hilbert” covers. The desired isomorphism is
supplied by (2.20).

It remains to identify the section 7. By §2.2.10, this section is defined by the section of

symmetric monoidal stacks
Z
(2.2‘1)/ l
2

B{:l:].} — ZHilb — 7
Recall the extension G! associated to B¥ uBW (cf. (2.11)) endowed with its natural

m

splitting Gf = G,,, x BQ{il}®2 as a pointed stack. We want to identify the section
Gm — GI, (2.22)

which produces (2.21) under the construction of §2.2.6. (Recall that the construction of
loc.cit. is a reformulation of the equivalence (1.25).) The section (2.22) will, upon evaluating
at SpecF and applying Tate duality, give rise to the section 7:

7:F* > T'(SpecF,G! )
S F* xT(SpecF, B*{+1}®%) - F* x H?(SpecF, {£1}®?) = F* x {+1}.

By construction, the projection of (2.22) onto B*{+1}®? is ¥ ® p*¥(-1), where p: G,, -
SpecF is the projection. By [Zha22, Theorem 3.1.5], the latter is isomorphic to the self
cup-product of ¥. Hence, the second component of 7 sends a € F* to the image of [¥(a)]u
[V(a)] e H*(SpecF, {+1}®?) under Tate duality, which is {a,a}.
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Remark 2.2.12. Proposition 2.2.3 shows that (2.8) is generally not induced from a cover
of the cokernel of (-)? : F* — F*, the obstruction being given by {-1,-1} € F*. This element
is nontrivial if and only if F is an odd degree extension of Q.

2.2.13. Let us now apply Proposition 2.2.3 to the Langlands duality for tori.
Denote by E'(F},,C*) the fiber of the endomorphism of E'(F*,C*) defined by pre-
composition with (-)? : F* — F*. The commutative diagram (2.8) together with the tauto-

logical inclusion {+1} c C*, defines an object
Tx 1 X X
Fsgn,/2 €k (F/27 C )

Applying the functor (2.1) for T := G,,, and using its naturality with respect to (-)? :
G,, = G,,, we obtain a functor

Lo(ary : Z°(Wr, {21}) > E'(F}5, C).
Let us view the meta-Weil group W (cf. §1.30) as an object of Z*(Wg, {£1}).

Corollary 2.2.14. There is a canonical isomorphism in E* (F72, C*):
LB{il}(WF) - F’:gn,/2' (223)

Proof. For an abelian group M, denote by Zg(WF, M) the fiber of the map e* : Z*(Wp, M) —
Z*(%,M) given by pullback along the neutral point e : * - %/Wg. Thus Z2(Wg, M) is
canonically equivalent to the groupoid of central extensions of Wg by M.

The restriction of Lg, to Z2(Wg, C*) admits the following explicit description: Pulling
back a commutative extension of F* by C* along the Artin reciprocity map Wg — F* yields
an equivalence of groupoids

E'(F*,C%) 5 Z2(Wy, C¥), (2.24)

whose inverse coincides with the restriction of Lg, .
In what follows, we view F,,, as an object of El(FX, C*). It suffices to identify its image
under (2.24) with the extension of Wr by C* induced from VNVF7 and match the 2-torsion
structures defined by 7 and Wy. The identification follows from the isomorphism (2.9). The

matching of 2-torsion structures follows from an explicit calculation, as we now perform.
Multiplication by 2 on F§,, factors through an isomorphism
CX Ugx F’:g i) F’:gn Xgx FX (225)
where the push-out is along (-)? : C* - C* and the pullback is along (-)? : F* — F*. Using
the isomorphism (2.9), we may represent an element of '}, by a pair (a, 2) with a € F* and
z € C*. Tts image under (2.25) is

n

((a*{a,a}z*),a)
which equals the product of z? with the (7(a),a). Hence, splitting of the pushout induced
from 7 sends (a,z) to 2°. The kernel of this map is the extension (1.29), as desired. O

2.2.15. Given any F-torus T equipped with a character € : A > Z/2, where A is the sheaf
of cocharacters of T, we have a commutative diagram

Z(We, {£1}) =4 E'(F},,C)

lev l (2.26)

Z(Wg, T(C)) <5 E'(T(F),C*)
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Denote by p the Eo-monoidal morphism BT — B‘L{il}‘g’2 obtained by composing sgn
with e ® BU (¢f. (1.23)) and by T the induced commutative extension of T(F) by C*.

Denote by T the TgC)—gerbe over the pro-space */Wrp induced from Wr along the dual
character " : {1} - T(C).

Corollary 2.2.16. There is a canonical isomorphism in E'(T(F),C*) functorial in (T,e€):

Lr(T) 5 T. (2.27)
Proof. The isomorphism (2.27) is defined as the image of (2.23) under the right vertical
functor of (2.26), using the commutativity of the latter. O

2.3. The Z-linear component.

2.3.1. Let A be a finite abelian group of order invertible in F equipped with an injective
character ¢ : A - C*. Let T be an F-torus and p be a Z-linear morphism BT - B*A(1).
The first goal of this subsection is to construct the isomorphism (2.6) for (T, u), i.e. we
shall produce an isomorphism in E'(T(F),C*) functorial in (T, p):
Lr(T) > 7. (2.28)
Afterwards, we will combine (2.27) and (2.28) to prove Theorem 2.1.6.
2.3.2. Denote by A the étale sheaf of cocharacters of T. Recall that tensor product with
BW defines an equivalence
Homgz (A, B?A) 5 Homgz (BT, B*A(1)). (2.29)
Thus, p corresponds under (2.29) to a Z-linear morphism A — B?A. Inducing the latter
along ¢ : A - C* and passing to adjoints, we obtain the T(C)-gerbe T.

2.3.3. Split tori. Let us first construct (2.28) in the special case where T is split. We view
A as an abelian group. The functor Lt renders the following diagram commute:

Z*(Wp,T(C)) = Hom(A,Z*(Wg, C*))

J,LT J'Hom(A,L@m )

E'(T(F),C*) =5 Hom(A,E'(F*,C*))

Here, the horizontal isomorphisms are induced from T(C) 2 A ® C* and T(F) 2 A ® F*.

Since 4 is the tensor product of BU with a Z-linear morphism A — B?A, the construction
of (2.28) reduces to the case T = G,,, where y corresponds to a section of B*A. It remains
to identify the composition

~ Lg
I(SpecF, B2A) 5 Z2(Wp, A) 5 Z2(Wg, C*) =7 EL(F*, C¥) (2.30)
with the composition
I(SpecF, B2A) 2% Homy (BG,, B*A(1)) 25 EL(F¥, A) 5 EL(F*, C%). (2.31)

Lemma 2.3.4. The maps (2.30) and (2.31) are canonically isomorphic.

Proof. Both maps are natural in the finite subgroup A of C*. Thus they factor through the
colimit of I'(SpecF, BQAl)7 taken over subgroups A; of C* containing A. Since the colimit
of H2(SpecF, A;) vanishes, we have an isomorphism

copljm +/T(SpecF,BA;) = C(ﬁirnF(SpecF7 BA,).
1 1
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Thus, it suffices to identify (2.30) and (2.31) over the neutral component of I'(Spec F, B*A)
for every finite subgroup A of C*, functorially in A.
By taking loop spaces, this reduces to the commutativity of the diagram

['(SpecF,BA) —=— Z'(Wg,A)
l@‘y lArtin (232)
Homz(G,,,B*A(1)) — Hom(F*, A)

where the right vertical map is Artin reciprocity and the lower horizontal map is the evalua-
tion at SpecF followed by Tate duality H*(SpecF,A(1)) = A. The commutativity of (2.32)
amounts to expressing Artin reciprocity as adjoint to the pairing

H'(SpecF,A) @ F* dew, H'(SpecF,A) ® H (SpecF, Z(1))
= H2(SpecF,A(1)) = A,
which is essentially its definition. O

2.3.5. Induced tori. Suppose that T is the Weil restriction of a split F;-torus T for a finite
Galois extension F c F;. The definition of Lt renders the following diagram commute

Z*(Wg,T(C)) —2» EN(T(F),C")

l: l: (2.33)

Z2(Wr,, T1(C)) -2 E'(Ty(Fy),C¥)

Here, the right vertical isomorphism is induced from the identification T(F) = T4 (F;) and
the left vertical isomorphism is induced from the identification between T(C) and the push-
forward of T1(C) along */Wg, - */Wg.

Denote by v : SpecF; — SpecF the natural map. The étale sheaf A coincides with v, Ay,
where A; is the (constant) sheaf of cocharacters of A;. The adjunction between v, and o'
as functors on étale sheaves yields an isomorphism

Homgz (A, A[2]) = Homgz (v, Ay, A[2])
5 Homg (A1, 'A[2]) S Homg (A1, A[2]), (2.34)

where the last isomorphism comes from the identification 'A =~ A.

Under the equivalences (2.32) and (2.29), the Z-linear morphism p : BT - B*A(1) cor-
responds to a Z-linear morphism y; : BT; - B*A(1) over SpecF;. Furthermore, (2.34) is
compatible with the vertical isomorphisms of (2.33), so the desired isomorphism (2.28) for
T follows from the one for Ty (cf. §2.3.3).

2.3.6. General tori. We turn to the case where T is any F-torus. Choose a finite Galois
extension F c Fq such that T; := T xgpecr SpecFq splits. Denote by T’ the Weil restriction
of T1 to SpecF, so we have an injection T — T’ of F-tori.

Note that u extends to a Z-linear morphism y’ : BT’ - B*A(1): By (2.29), it suffices to
prove that any Z-linear morphism A — B?A extends to a Z-linear morphism A’ — B*A. The
obstruction lies in the cohomology group

H?(SpecF, (A'/A)Y ® A)

which vanishes because A’/A is torsion-free and SpecF has cohomological dimension 2.
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The desired isomorphism (2.28) for T thus follows from the one for T by functorial-
ity along the map of F-tori T — T'. We omit the verification that this isomorphism is
independent of the choice of F; and the extension pu'.

Remark 2.3.7. The cover T associated to a Z-linear morphism p : BT — B*A(1) has been
constructed by Kaletha (cf. [Kal22, §2.2]). However, his construction is effectively the left-
hand-side of (2.28).12 Therefore, one may also interpret (2.28) as the comparison between
our construction of T, which does not invoke Langlands duality, with Kaletha’s.

2.3.8. Let us now gather all ingredients to prove Theorem 2.1.6.

Proof of Theorem 2.1.6. Consider the decomposition (1.27) for u:

p= )

where (1) is defined by a character e: A - Z/2 and p?) is Z-linear. (By convention, ()
is trivial unless |A] is even.)

Denote by Tél) and ng) the extensions of T(F) by C* induced from p("), and by T(*
and T(® the associated T(C)-gerbes over */Wg. The isomorphism (2.27) applied to (T, )
and the isomorphism (2.28) applied to (T, (?) yield isomorphisms

LT(:I:(l)) i T21)7
Lr(T?) 5T
We sum them using the Z-linearity of L:

Lr(T) S Lp(TM + TG
ST LT 5T,
This is the desired isomorphism (2.6). O

2.4. Duality for the center.

2.4.1. Let A be a finite abelian group of order invertible in F, equipped with an injective
character ( : A - C*. Let G be a reductive group F-scheme and p : BG,p, — B4A(1)
be an Eo-monoidal morphism. (The results of this subsection will be applied to the pair
(G“,uGub) defined by a general rigidified morphism BG - B*A(1), ¢f. §1.4.3.) We also use
I to denote its pullback to BG, viewed as a pointed morphism.

Denote by G the image of u under the construction functor (1.6). Its pullback along
Z(F) - G(F) is a commutative extension

1>A->7-7(F) 1. (2.35)

Denote by Z¢ extension of Z(F) by C* induced from (2.35) along (.
In this subsection, we shall construct L-parameters for the set H(z) of (-genuine smooth
characters of Z using Theorem 2.1.6.

2.4.2. Let us first fix notation for data on the Galois side. The dual group H of (G, ) is
the Langlands dual of G and we have an object Zg of Z*(Wg, Zu(C)).

12For this reason, the construction of G for a Z-linear morphism g : BG,, — B*A(1) given in op.cit. re-
quires G to be quasi-split.
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We also slightly extend the formalism of §1.4.7: Given a pro-group % = lim;3; and a
complex of sheaves of abelian groups &/ over */%;, we write Z" (%, «7) for the Z-linear space
underlying

L(*/%, e [n]) := cjoellimf(*/Zj,;z/[n]).
/i

In other words, Z" (X, &) is the space of hypercocycles of degree n. We will still refer to
objects of Z*(X, &) as o/-gerbes over */%.

Denote by H,j, the object of Z*(Wg, Ha,(C)) induced from Zy by functoriality along the
map of complexes Zp(C) - H,p(C). Denote by (I)(ﬁab) the set of isomorphism classes of
trivializations of Hay,.

Remark 2.4.3. Note that the total space of the Hy}, (C)-gerbe H,», is a pro-space over * /W
and ®(H,y,) is the set of isomorphism classes of its sections. In particular, functoriality with
respect to H — H,}, defines a map

o(H) - @(Hap). (2.36)

2.4.4. Denote by Ty the Langlands dual torus of Taq. (It coincides with the maximal
torus of Hg. induced from Ty.) The functor (2.1) for T and T,q fits into a commutative
diagram

23 (Wg, Tise(C)) — Z2(Wp, Tu(C))
lLTad lLT (2.37)
E'(T.a(F),C*) — EY(T(F),C%)

Since H*(Wg, T sc(C)) vanishes, the cofiber of the top row of (2.37) is identified with
Z*(Wg,H,,(C)). Therefore, (2.37) induces a functor

Lz : Z*(Wg, Hap(C)) - E' (Z(F), C*). (2.38)

Since H,j, comes from an object of Z>(Wg, T(C)), the isomorphism (2.6) induces an
isomorphism in E*(Z(F),C*):

Lz(Hap) = Ze. (2.39)

2.4.5. We shall use (2.38) and (2.39) to construct the local Langlands correspondence for

Z, in analogy with §2.1.8:

LLC: 1I(Z) > ®(H,p). (2.40)

Indeed, the functor Ly carries trivializations of ﬁab to trivializations of 'z“c, which are in

bijection with ¢-genuine characters of Z. This map intertwines the Z'(Wg, Hap,(C))-action

on trivializations of Ha, with the Hom(Z(F), C*)-action on trivializations of Z¢, via the

Lz-action on loop spaces. We shall argue that the latter induces a bijection on m: Indeed,
it occurs as the last vertical arrow in the commutative diagram

H'(Wr, Th,se(C)) — HY(Wp, Tu(C)) — H'(Wp,Hap(C)) — 1
lﬂ'l Lr,q lﬂ'l Lt J/ﬂ'l Lz
Hom(T,q(F),C*) — Hom(T(F),C*) — Hom(Z(F),C*) — 1

Here, the top row is exact because H?(Wg, Ty s.(C)) vanishes (cf. [Karl3, Theorem 3.2.2])
and the bottom row is exact because C* is divisible. Since m Ly, , and m Lt are isomorphisms
(¢f. Remark 2.1.3), so is mLyz.
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It follows that the action of Ly on trivializations of Hyy, defines a bijection
®(Hap) > I1(Z). (2.41)
We define (2.40) to be the inverse to (2.41).
2.5. Duality for the cocenter.

2.5.1. We keep the notation of §2.4.1 and §2.4.2. The goal of this subsection is to address
the following question: When does G admit a (-genuine character?

We shall only answer this question when G is quasi-split. For the remainder of this
subsection, we fix a Borel subgroup B and a section of the projection B — T, realizing T as
a subgroup of G.

The results of this subsection will not be used in the sequel. We include them because
they support the philosophy that the local Langlands correspondence for covers defined by
Eo-monoidal morphisms s : BG,, — B*A(1) is “not too far” from the local Langlands
correspondence for linear algebraic groups. The case where p is Z-linear is due to Kaletha
(¢f. [Kal22, §2]) and no new idea is needed to treat the E.,-monoidal case.

2.5.2. Under the split fiber sequence (1.22) (cf. §1.4.4), the Eo-monoidal morphism p defines
a character m G — Z/2 (trivial unless |A| is even) and Z-linear morphism m,G — B?A.

Denote by 7t G the torsion subgroup of 71 G. We restrict the two maps above to 7{G and
apply one unit of Tate twist. This gives us two Z-linear maps

€: ﬂ-IiG(l) - H2,
fimiG(1) - B*A(1).
For any section & of B2A(1) over SpecF, we denote by [¢] € A the image of its isomor-
phism class under Tate duality H?(SpecF,A(1)) = A. Write {-,-} for the quadratic Hilbert

symbol—we view it as valued in the subgroup {+1} c A if |A] is even and trivial if |A] is
odd. Then we may form the character

mGL)(F) ~ A, 0 {e(0),¢(0)}-[f(0)]- (2.42)
The following result is an analogue of [Kal22, Proposition 2.4.7].

Proposition 2.5.3. The following statements are equivalent.
(1) the class of Zy in H*(Wg, Zi(C)) vanishes;
(2) the homomorphism (2.42) vanishes;
(8) G admits a (-genuine character.

2.5.4. Let us begin with an elementary observation: Quasi-splitness of G implies that Ty is
the Weil restriction of a split torus, so H'(SpecF, T.) vanishes. The groupoid of F-points
of the cocenter G,;, can thus be identified as
Gab(F) i T(F)/TSC(F) i G(F)/GSC(F)a (243)
where the quotients are taken in the sense of groupoids.
In particular, the 7 of G, (F) is identified with 7{G(1)(F), while its m is identified
with the cokernel of Ty (F) — T(F), as well as the cokernel of Gg.(F) - G(F).

2.5.5. Let us write E'(Gap(F), A) for the fiber of
E'(T(F),A) » E'(T(F), A),
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so an object Gap, of E'(Gap(F),A) can be thought of as a commutative extension T of T(F)
equipped with a splitting over Ts.(F). (The case where G,}, is replaced by B{+1} has already
appeared in §2.2.13.)

The Eo-monoidal morphism g defines an object Gap, of E*(Gap(F), A). Restricting its
splitting Ty (F) — T to 7t G(1)(F), we obtain a character

7t G(1)(F) - A, (2.44)

which vanishes if and only if Gy, is the pullback of a commutative extension of mo(Gap (F))
by A. Let us calculate (2.44).

Lemma 2.5.6. The character (2.44) equals (2.42).

Proof. We perform the decomposition (1.27): u = p™ + u3), where u(?) is defined by e
and p® is Z-linear. The character (2.44) attached to () is given by 6 ~ {e(8),¢(#)}
(¢f. Proposition 2.2.3). It remains to identify the character (2.44) attached to u(® with
6 — [f(0)]. Therefore, we may assume that p is Z-linear in what follows.

In this case, p is the tensor product of BV : BG,,, — BQZ(I) with the Z-linear morphism
711G — B?A which defines f. Applying the loop space functor to 1 and evaluating at SpecF,
we obtain a map of spaces

Gab(F) — I'(SpecF, B*A(1)). (2.45)
The character (2.44) is obtained from (2.45) by taking 7; and identifying H?(Spec F, A(1))
with A under Tate duality. This yields the character 6 — [f(6)]. O

2.5.7. Let us consider the induced cover (N}abﬁ € El(Gab(F), C*) of Gap (cf. §2.5.5). Define
the functor Lg,, by the diagram of fiber sequences

Z2*(Wr, Zu(C)) — Z*(Wg, Tu(C)) — Z*(Wr, T..4(C))

lLGab l'—T l‘-Tsc

E' (Gap(F),C*) — EY(T(F),C*) — E'(Twe(F), C%)
The isomorphism (2.6) for T and Ty, yields an isomorphism
Law, (Zn) = Gap ¢ (2.46)
2.5.8. We now prove Proposition 2.5.3.

Proof of Proposition 2.5.3. (1) < (2). According to Lemma 2.5.6, the commutative exten-
sion Gap ¢ splits if and only if the character (2.42) vanishes. On the other hand, the functor
Lg,, induces an isomorphism on the set of isomorphism classes

H?(Wr, Zir(C)) — Hom(x} G(1)(F), C*),

so the equivalence of (1) and (2) follows from (2.46).

(2) = (3). A splitting of G,y ¢ induces a (-genuine character of G.

(3) = (2). Since the cover G is induced from G,j,, we have a canonical section G (F) — G,
whose restriction to m{G(1)(F) 2 Ker(Gs(F) — G(F)) is the character (2.42) (c¢f. Lemma
2.5.6). If G admits a (-genuine character, its restriction to Gg.(F) must vanish because
Ggsc(F) is perfect by Platonov’s theorem (cf. [PR94, §7.2]). It follows that the character
(2.42) must also vanish. O
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Remark 2.5.9. By Proposition 2.5.3, the obstruction to the existence of a (-genuine char-
acter of G only has to do with the torsion subgroup G of mG.

By taking a z-extension G’ — G, one can thus find a (-genuine character of the induced
cover G of G'(F) and effectively reduces the local Langlands correspondence for G to that
for G'(F). This is explained in [Kal22, Theorem 2.6.2], so we shall not repeat it.

3. STRUCTURES ON

In this section, we work over an arbitrary base scheme S and let G be a reductive group
S-scheme. We adopt the notation of §1.1.5 for objects associated to G. Let A be a finite
abelian group whose order is invertible over S.

Fix a rigidified morphism p : BG - B4A(1). Write Q for its associated quadratic form
and b, by, by for the induced pairings (cf. §1.3.5).

The goal of this section is construct the “canonical quadratic structure” on p with respect
to the BZ-action on BG (¢f. Proposition 3.1.3). This provides the key technical ingredient
in our calculation of Weissman’s obstruction in §4.

3.1. The canonical quadratic structure.

3.1.1. Consider the self-tensor product B¥®? : BG,, ® BG,, — B*Z(2) of the delooped
Kummer map BU. Tensoring it with the pairing bs yields a bilinear pairing

by ® BU®?: BG,p, ® BZ - B*A(1). (3.1)

We shall use the same notation by ® BU®? to denote the pullback of (3.1) to BG x BZ.
It is bi-rigidified in the sense that it is equipped with trivializations over e x BZ and BG x e
which are compatible over e x e.

3.1.2. Consider the morphisms pi, p2, a in the diagram

BG x BZ —*+ BG
V \’: (3.2)
BG BZ

which are, respectively, projections onto the first and the second factors and the action map.
Denote by uyz the restriction of p to BZ.

Proposition 3.1.3. In reference to (3.2), there is a canonical isomorphism of bi-rigidified
morphisms BG x BZ - B*A(1):

a* = (p1)* 1= (p2)* iz = by ® B, (3.3)

3.1.4. The proof of Proposition 3.1.3 will appear in §3.2.5. Let us make some preliminary
remarks about its statement.

First, (3.3) is supposed to be an isomorphism in a 1-groupoid. Namely, the space of
bi-rigidified morphisms BG x BZ — B*A(1) is 1-truncated.

To see this, we note that the space of bi-rigidified morphisms BG x BZ — B4A(1) is
equivalent to that of pointed morphisms BZ — .# aps.(BG, B4A(1)). Because the third term
in (1.19) is discrete, such morphisms factor through J€omz(m G, BQA), so they correspond
to monoidal morphisms

Z - H#omz(mG,BA),
which form a 1-groupoid. (Moreover, this shows that any bi-rigidified morphism BGg.xBZ —
B*A(1) is canonically trivial.)
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3.1.5. Next, we shall state a cocycle condition satisfied by (3.3). Given a G-torsor & and a
Z-torsor 2 over an S-scheme, (3.3) supplies a functorial isomorphism of sections of B*A(1)

p(E® L) - (&) - p(Z) = (b ® BU®)(&, 2). (3.4)

Furthermore, the isomorphism (3.4) is compatible with the natural trivializations of the
two sides, when either & or £ is the trivial torsor.

Now, given & along with two Z-torsors %7, 2% over an S-scheme, there are two isomor-
phisms between (& ® 27 ® 2%) and

w(&) + p(21) + n(22)

+ (by ® BUB?) (&, 29) + (by ® BU®?) (&, 25) + (by ® BU®?) (24, 25),
given by iteratively applying (3.4) in different orders. The cocycle condition states that
these two isomorphisms are canonically identified. (We omit drawing this rather large com-
mutative diagram.)

Note that this is indeed a condition and not additional structure, because the space of
pointed morphisms BZ x BZ — .# aps.(BG,B*A(1)) is 1-truncated (cf. §3.1.4).

3.2. Construction of (3.3).

3.2.1. We shall first construct (3.3) in the case where G is split and equipped with a Killing
pair TcBcG.

Recall that any bi-rigidified morphism BG x BZ — B*A(1) is canonically trivialized as
such over BGgy. x BZ (cf. §3.1.4).

By restrictions along BT — BG and BTy, - BGs., the bi-rigidified morphism a*p —
(p1)*p— (p2)* piz, defines a bi-rigidified morphism

BT x BZ - B*A(1), (3.5)
equipped with a trivialization 7 as such over BT, x BZ.
3.2.2. The bi-rigidified morphism (3.5) extends to the bi-rigidified morphism
m*p = (p1)* = (p2)"p: BT x BT - B'A(1), (3.6)

where m, p1, p2 are the multiplication and projection morphisms from BT x BT to BT.

By [Zha22, Proposition 4.7.3], the bi-rigidified morphism (3.6) is identified with b®BW®?2,
where b is the symmetric form attached to Q. By restricting to BT x BZ, we obtain an
isomorphism of bi-rigidified morphisms

a*p—(p1) - (p2)*pz = b o BU®? (3.7)
from BT x BZ to B*A(1).
3.2.3. Since the restriction of b to Ag. ® A extends to Ag. ® Ayq as the bilinear pairing by,
the restriction of b ® BU®? to BT, x BT likewise extends to BTy, x BT,q as a bi-rigidified
morphism. This endows b ® B¥®? with a trivialization 7 over BT x BZ.

We shall prove that the trivializations 7, 71 are intertwined by the isomorphism (3.7).
More precisely, consider the diagram of bi-rigidified morphisms BTy, x BZ — B4A(1):

a*p—(p1)* 1= (p2)* pz|BT. *xBZ

(3.7)l ~ 0 (3.8)

T1

b® BU®?|gr, 87
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Lemma 3.2.4. The diagram (3.8) commutes.

Proof. We first observe that this assertion involves no additional structure. Indeed, bi-
rigidified morphisms BT, x BZ — B4A(1) are classified by pointed morphisms

BZ - #omz (A, B*A), (3.9)

which form a 1-groupoid (cf. §3.1.4).

Next, we reduce the commutativity of (3.8) to its pullback along BTy, x Toq — BTy x BZ.
Indeed, bi-rigidified morphisms BT, x Tpq — B4A(1) also form a 1-groupoid, isomorphic to
Maps, (Tad, #0om(Age, B>A)). We need to show that the pullback functor

Maps, (BZ, #0om(As, B*A)) - Maps, (Tad, #0om(Age, B>A)) (3.10)

is faithful. Since (3.10) is a functor of Picard groupoids, it suffices to prove that its induced
map on 7 is injective. The latter occurs as the bottom horizontal arrow of the following
commutative square

Homgz(BZ, 57 0omz(Asc,BA)) — Homz(Taq, 70mz(Asc, BA))

l: lz (3.11)

Maps,(BZ, 7 omz(Asc, BA)) — Maps, (Taq, 7 omz(Asc, BA))

Here, the vertical functors are the forgetful ones: The left one is an isomorphism for degree
reasons, and the right one is an isomorphism by the étale cohomology of T,q. The kernel of
the top horizontal arrow of (3.11) is identified with

Homgz (BT, #omz(Ase, BA)) = Homg (T, 7 omz (A, A))

which vanishes because J#omz(Age,A) is discrete. We may now prove the commutativity
of (3.8) after replacing BT x BZ by BT x T,g.

Along the composite BTg. x Thq = BTs. x BZ - BT x BT, the restrictions of m and p;
coincide and the restriction of ps is trivial. This endows a*p — (p1)*p — (p2)*puz with a
trivialization over BTy, x Toq. Since (3.7) is compatible with the trivializations over BT x e,
it intertwines this trivialization with the one of b ® BU®?|gt__«r,, induced from b(-,0) = 0.

Using these two trivializations, the restriction of (3.8) to BTy, x Taq reads as follows:

idl ~ 0 (3.12)

Here, 7 is induced from the G,q4-equivariance structure of the restriction of u to BGg. and
71 is the map BTg. x Toq — BSA(I) given by applying the loop space functor to the second
factor in b; ® BU®2, The commutativity of (3.12) is precisely [Zha22, Proposition 5.5.4]. [

3.2.5. We are now ready to construct the isomorphism (3.3).
Proof of Proposition 3.1.3. Consider the monoidal morphism
Z - Homz(m G,BA) (3.13)

classifying the bi-rigidified morphism a* pu—(p1)* p—(p2)*uz (cf. §3.1.4). We need to construct
an isomorphism between (3.13) and the adjoint of the pairing

bb®¥:1G®Z —~> BA (314)
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defined by tensoring with ¥ : G,,, — BZ(l) along the second factor of bs.

Suppose first that G is split and equipped with a Killing pair T ¢ B ¢ G. In this case,
we have identified (3.5) with b® BU®?|gT.pz via the isomorphism (3.7) and proved that the
trivialization 7 corresponds to the trivialization of b ® B\IJ®2|BTSC><BZ defined by b, ® BU®2
(¢f. Lemma 3.2.4). This yields a morphism of fiber sequences

7% Homg(mG,BA)

|

T 2% #omgz(A,BA) (3.15)

|

Toa % #omz(Ase, BA)

which gives an isomorphism between (3.13) and the adjoint of (3.14).

We shall argue that this isomorphism is independent of the choice of the Killing pair
T c B c G. For this, it suffices to show that the commutativity witness of the top square in
(3.15) is independent of the choice of the Killing pair. Given another Killing pair T' ¢ B’ ¢ G,
we need to show that the canonical identification BT = BT’ intertwines the isomorphism
(3.7) defined for BT, respectively BT'. This follows because (3.7) is the restriction of an
isomorphism between rigidified morphisms BT xBT — B4A(1)7 and the latter form a discrete
space classified by bilinear pairings A ® A - A(-1).

Since the isomorphism between (3.13) and the adjoint of (3.14) is constructed for any
split G without additional choices, the case for any reductive G follows by étale descent. [

3.3. BZ!-equivariance.

3.3.1. Recall the reductive group S-scheme G! and its center Z! (cf. §1.3.4). There is
a natural map of group S-schemes of multiplicative type Z! — Z. The BZ-action on BG
restricts to a BZ!-action, which we record in the diagram

BG x BZ! —% 5 BG

Iy Y (3.16)
BG BZ!

Denote by pz: the restriction of p to BZ!. Recall that uz has a canonical Eq.-monoidal
structure (c¢f. Proposition 1.3.6).

Corollary 3.3.2. In reference to (3.16), there is a canonical isomorphism of bi-rigidified
morphisms BG x BZ! - B*A(1):

(a")* 1= (p1)* 1= (p2)*pze = 0. (3.17)
Proof. The bilinear pairing bs (cf. (1.17)) restricts to the trivial pairing

TG Fib(Af - Al ) - A(-1),

because the horizontal arrows of (1.15) vanish over A! respectively Ag q- This induces a
trivialization of the restriction of by ® BU®? to BG,y, ® BZ!.

The isomorphism (3.17) is the restriction of (3.3) to BG x BZ!, composed with the trivi-
alization of the right-hand-side defined above. O
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3.3.3. The isomorphism (3.17) induces an isomorphism of rigidified (not bi-rigidified) mor-
phisms BG x BZ! - B*A(1):

(a')* i > (p1)* e+ (p2)* iz, (3.18)

which may be regarded as the part of a BZ!-equivariance structure on p “against pz”. The
restrictions of (3.18) to BG x e and e x BZ! are induced from the equality of maps at = py,
al = py over these loci.

The isomorphism (3.18) is equipped with cocycle data. To be more transparent, let us
formulate it in functorial terms: Given a G-torsor & and Z!-torsors 25, 25 over an S-scheme,
the diagram of sections of B*A(1) commute

(& ® 20 ® 25) ———— (&) + pz: (21 ® 25)

l: l (3.19)

(€@ ) + pzi(22) — (&) + pza (21) + pze (22)

Here, the right vertical arrow appeals to the monoidal structure on puzs and the remaining
arrows are instances of (3.18).

The commutativity of (3.19) follows from the cocycle condition on the canonical quadratic
structure (c¢f. §3.1.5). Similarly to the latter, it is a condition and not additional structure.
Likewise, higher coherence (for triples of Z!-torsors, etc.) is trivially satisfied.

4. WEISSMAN’S OBSTRUCTION

Let F be a local field with a fixed algebraic closure F. Let G be a reductive group F-
scheme. Let A be a finite abelian group with order invertible in F', equipped with an injective
character ( : A - C*. Let u be an A-valued étale metaplectic cover of G.

In this section, we define Weissman’s obstruction Qg (o), starting with the case Q(co) for
the trivial G-isocrystal, and explain why it obstructs the existence of fibers of the conjectural
map LLCgs (¢f. Conjecture 1.4.16) at 0. Being conjectural, we need to assume something
about LLCg to make this precise: This is the compatibility with central core characters
(cf. Lemma 4.3.11) which requires Theorem 2.1.6 to state. Then we express g(c) in terms
of Q(o) and the Kottwitz invariant of 8 (¢f. Theorem 4.3.9, Corollary 4.3.12).

The last two subsections, §4.4 and §4.5, can be considered supplements to the article. In
§4.4, we prove that for tori, the vanishing of 23(0) is necessary and sufficient for LLC?(U).
In §4.5, we prove a “dual version” of one of the ingredients in Theorem 4.3.9: It identifies
the cover G when G is isomorphic to G, i.e. when § comes from a Z-isocrystal.

4.1. The case for G.
4.1.1. We shall associated to G and p a finite abelian group K and a map
Q:®(H) - Hom(K,C"). (4.1)

For any o € ®(H), we shall refer to Q(o) as Weissman’s obstruction of o. It has the prop-
erty that Q(c) # 1 implies that the fiber of the conjectural local Langlands correspondence
(1.32) at o is empty, assuming “compatibility with central core characters”.

The obstruction € was first observed by Weissman when G is a torus (cf. [Wei09, §4],
[GG18, §8.3]).
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4.1.2. Definition of K. We let Q be the quadratic form associated to p (cf. §1.3.5) and
consider the induced étale sheaves Af, Af Agd (¢f. §1.3.4). Tensoring with G,,,, we obtain

sc?

F-tori T#, Tf., T!, fitting into a commutative diagram of isogenies

sc?

T, — T — T!,

l l l (4.2)

Tge — T —— Taa

Denote by Zf the kernel of T# - T# |, so we have a natural map Z! - Z. Define
K := Ker(Z!(F) — Z(F)).

4.1.3. Denote by G the image of y under (1.6). Write Z for its pullback along Z(F) - G(F)
and Z! for its further pullback to Z#(F).
The subgroup Ker(Z! — Z) of Z! is identified with K via the projection onto Z!(F). Thus,
we obtain a map
it K -7 (4.3)

Lemma 4.1.4. The group Z! is commutative and its image in G is central.

Proof. The commutativity of Z! follows from the fact that pzt is Eq-monoidal (¢f. Propo-
sition 1.3.6). It remains to prove that the image of 7! in G is central.

Denote by at : G(F) x Z!(F) - G(F) the multiplication map. Applying the construction
functor (1.6), with G x Z! playing the role of G, to the isomorphism (3.18), we obtain an
isomorphism of covers of G(F) x Z!(F):

(a')'G = (p1)* G + (p2)"ZH, (4.4)

whose restrictions to G(F) x e and e x Z(F) are induced from the equality of maps al = p1,
respectively af = py over these subgroups.
Equivalently, one may express (4.4) as a morphism of short exact sequences

1 — AxA — GxZ! — G(F)xZ{F) — 1

El

1 A y G » G(F) —— 1

where al restricts to the identity on G x e and the natural map on e x Zf. By expressing an
element (g,2) € G xZ¥ as (g,1) - (1, 2), respectively (1,%)-(g,1), and using the fact that a!
is a group homomorphism, we see that § commutes with the image of Z. O

4.1.5. By Lemma 4.1.4 and Schur’s lemma, Z! acts by a character x on any irreducible
¢-genuine smooth representation V. The association of x to [V] defines a map

I(G) - II(Z), (4.5)

where the target stands for the set of (-genuine smooth characters 74 > C*.
We refer to the image of [V] e II(G) under (4.5) as the central core character of [V].

Remark 4.1.6. Our notion of the “central core character” is different from Weissman’s
(cf. [Weil8, §6.3]). Namely, the notion of op.cit. concerns only the maximal torus of Z#
whereas ours concerns the entire Z!.
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4.1.7. Definition of Q. The map (4.1) is defined to be the composition of (2.36) with the
inverse of (2.40) and the restriction along (4.3):

Q: &(T) - o)
257 S Hom(K, C).

Lemma 4.1.8 (Weissman). Suppose that there is a map LLC : TI(G) - ®(H) satisfying the
following compatibility with central core characters: It renders the diagram

(G) % o(1)
l(4.5) l(z.ses) (4.6)
m(z) 2% (i)
commutative. Then for any o € ®(H) with Qo) # 1, the set LLC () is empty.

Proof. Fix o € ®(H) and let V be an irreducible ¢-genuine smooth representation of G
belonging to fiber of LLC at o.

Suppose that 7} acts on V via some character X. By the commutativity of (4.6), the
subgroup K of Z! acts by the character Q(o). However, since the image of K in G is trivial,
this implies that Q(o) = 1. O

Remark 4.1.9. Every character x : K - C* occurs as (o) for some o € ®(H).

Indeed, one may first extend (¢, x) along the inclusion A x K c Tt to obtain a (-genuine
character of Tf. Under the local Langlands correspondence for (T¥, up) (cf. §2.1.8), the
latter defines an L-parameter o € @(TH) with respect to the canonical maximal torus Ty
of H. The image o € ®(H) of o satisfies Q(o) = x, by construction of (2.40).

4.2. The Pontryagin dual of K.

4.2.1. Recall the finite abelian group K associated to G and p (cf. §4.1.2). In this subsection,
we shall construct a surjective map

v : (m1G)gal, ~ Hom(K, C*). (4.7)
Let us note a consequence of Pontryagin duality.

Lemma 4.2.2. Let Ay, Ay be étale sheaves of finite free Z-modules over SpecF equipped
with a pairing ¢ : Ay ® Ay > A. Denote by A} ¢ Ay, A c Ay the kernels of c. Then the
adjoint of ¢ factors through an isomorphism of étale sheaves

AiJAL S Hom(As/Ab, A). (4.8)

Proof. Tt suffices to check that (4.8) is an isomorphism over a separable closure of F, so we
may assume that A;, Ao are finite free Z-modules rather than sheaves of such.
Since Aa/Al is N-torsion for N := |A|, ¢ induces an isomorphism

Aom(Aa/Ah, A) > (Aa/AB)Y,

where (+)Y denotes Pontryagin dual, i.e. continuous homomorphisms into the topological
group U; of unit complex numbers.
We view the composite ( - ¢ as a Uj-valued pairing and consider its adjoint

Ay — (A)". (4.9)
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The kernel of (4.9) equals A}. We claim that its cokernel is identified with (A§)Y. Indeed,
since Pontryagin duality is an exact involution, the dual of (4.9) is Ay — (A1)", which has
kernel A. The isomorphism (4.8) follows. O

4.2.3. We shall apply Lemma 4.2.2 to the pairings b and by associated to Q. More precisely,
applying a Tate twist to (1.15) and using Lemma 4.2.2, we find a commutative square

(A/ANY(1) —=— Hom(AJAF A)

l l (4.10)

(Aad/Agd)(l) > %Om(ASC/Agc,A)
where the horizontal maps are isomorphisms.

4.2.4. Construction of v. Taking global sections of (4.10) over SpecF, we obtain the com-
mutative square

Ker(T! - T)(F) —— Hom((A/AN)gal,, A)

l |

Ker(T!; - Taq)(F) = Hom((Ase/Al)Gate,A)
Taking kernels of the vertical maps, we obtain an isomorphism
K5 Hom((m1G)gale/(m1GH) Gatp, A). (4.11)
Since (m1G)Galp/(m1GH)Gale 18 N-torsion (for N := |A]), its Pontryagin dual is identified
with K under (4.11). Applying bi-duality yields a short exact sequence
(11GHGalp = (11G)Galy — Hom(K, C*) > 1. (4.12)
The map (4.7) is defined as the second map displayed in this short exact sequence.
4.3. The case for Gg.
4.3.1. For each (3 € Isocq, we have a morphism of group F-schemes
Z — Gg, (4.13)
sending an R-point z of Z to the automorphism of the pullback of 8 to X x SpecR given by
acting by z. The image of (4.13) is central in Gg.

Let Gg denote the image g under the construction functor (1.8). Denote by Zg the
pullback of G along the map Z(F) — Gs(F) induced from (4.13) and by Z% its further
pullback to Z!(F). Thus Ker(zuﬁ — 7) is identified with K along the projection onto Z(F).
This yields an injection

ig: K -7} (4.14)

This map specializes to (4.3) when § is the trivial G-isocrystal.

4.3.2. Let us now identify Zﬁ for any [ € Isocg.
Recall the bilinear pairing by ® BU®? : BG,p, ® BZ — B*A(1) (¢f. §3.1.1). Evaluating at
the G,p-isocrystal defined by 8, we find a rigidified morphism
(by ® BU®?)(B,-) : X x BZ - B*A(1),

whch is canonically the pullback of a rigidified morphism BZ — B*A(1) (¢f. Lemma 1.2.5),
to be denoted using the same expression.

The following result is a consequence of the canonical quadratic structure (¢f. Proposition
3.1.3). Its statement invokes the construction functor (1.6) for Z.
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Proposition 4.3.3. For any f € Isocg, there is a canonical isomorphism of covers of Z(F):
75 iZ+[F(bz®B\y®2)(5,-). (4.15)

Proof. Consider the action map a : BG x BZ - BG. Its restriction along the G-isocrystal
B :X - BG yields a morphism
ag: X xBZ - BG. (4.16)

The loop space functor applied to (4.16) recovers (4.13). More precisely, taking fiber product
of X with itself over the two stacks in (4.16), we obtain a morphism from X x Z to the group
X-sheaf of automorphisms of 3, which is adjoint to (4.13).

Let us pull back p along the composition of the projection p: XxBZ — X and p: X - BG.
By construction, we have an identification of covers of Z(F)

Zs> [ (@) n-p B (4.17)

It remains to identify the right-hand-sides of (4.15) and (4.17). We shall do so by iden-
tifying the “integrands”, i.e. providing an isomorphism

(ap)" =B = pz + (b ® BUS)(5,) (4.18)
of rigidified morphisms X x BZ — B4A(1), where pz denotes the restriction of o along the

composition X x BZ - BZ - BG.
The isomorphism (4.18) is the restriction of (3.3) along (3,id) : X xBZ - BG xBZ. O

Remark 4.3.4. It follows from Proposition 4.3.3 that the cover Zg depends only on the
Gap-isocrystal induced from (.

4.3.5. Note that pairing b, ® BU®? is canonically trivialized over BG,}, ® BZ! (cf. the proof
of Corollary 3.3.2). In particular, the pullback of (4.15) along Z}(F) — Z(F) yields an
isomorphism of covers of Z!(F):
Zh -7} (4.19)
Let us compose the inverse of (4.19) with the natural map AZ% - C‘:g to obtain a map:
7t - Gg, (4.20)
Lemma 4.3.6. The image of (4.20) is central in Gg.

Proof. Denote by pg, = Tg(p) the translation of p by § (cf. §1.2.3). Consider the BZ!-
action on BGg via the inclusion (4.13).

By the proof of Lemma 4.1.4, it suffices to show that pug, is BZ!-equivariant against
pzy s BZE — B4A(1) in the sense of §3.3.3 and that, upon acting on the neutral point of BGg,
this equivariance structure reduces to the isomorphism

HGylBz = iz (4.21)

induced from (4.18) and the trivialization of by ® BU®? over BG,;, x BZ!.

By Lemma 1.2.5, it suffices to construct the BZ!-equivariance structure after base change
along X — SpecF. The base change of pug, to X x BGg is the pullback of x along (1.9)
minus the constant section p*B*u. However, (1.9) is BZf-equivariant, so the desired BZ!-
equivariance structure on pg, follows from that of 4 (cf. §3.3.3). The fact that acting on the
neutral point of BGg recovers the isomorphism (4.21) is a consequence of the construction
of (3.18) (which uses the trivialization of b, ® BU®? over BG x BZ!). O
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4.3.7. By Lemma 4.3.6 and Schur’s lemma, we have a map
1(Gg) - IL(ZH) (4.22)

sending the isomorphism class [V] of an irreducible {-genuine smooth representation V of
Gp to the character of Z! by which it acts on V through (4.20).

The image of [V] under (4.22) can be viewed as the “central core character” of [V],
generalizing the construction of §4.1.5.

4.3.8. We now arrive at a crucial point: The isomorphism (4.19) is generally incompatible
with the inclusions of K via ¢ and ig (cf. (4.3), (4.14)). In other words, the quotient ig/i
factors through a character

K - A. (4.23)
We express this character in terms of the Kottwitz invariant of 8 (cf. §1.1.6).

Theorem 4.3.9. The character (4.23) equals the image of Kott(8) under (4.7), i.e.

%ﬁ = y(Kott(B)). (4.24)

Proof. Using the isomorphism (4.15) and the Z-linear structure on Cov(Z(F),A), we may
express (4.23) as follows: Consider the cover

[F(b2 ® BU®2)(8,.) ¢ Cov(Z(F), A)

equipped with the splitting over Z!(F) defined by the trivialization of (b ® BU®?)(}3,-) over
BZ!. The restriction of this splitting to K is the character (4.23).

The Z-linear morphism by ® U®? : BG,;, ® BZ - B*A(1) is trivialized over BG,p, ® BZ!, so
by taking fibers, we obtain a pairing

(-,-) : BGap ® Fib(Z! - Z) - B*A(1).

This pairing encodes the character (4.23) in the following manner: Given §: X — BGyy,
and a € K 2 H(SpecF, Fib(Z! - 7)), the class of (3,a) in

H?(X,A(1)) =2 H*(SpecF,A(1)) = A (4.25)

is the image of a under (4.23). Here, the isomorphisms are given by pullback along X —
SpecF (c¢f. Lemma 1.2.5) and Tate duality.

On the other hand, (-,a) : BGa, — B*A(1) is the tensor product of a Z-linear map
71 G — A with the Kummer map. By construction, this Z-linear map is the image of a € K
under (4.11). The desired equality (4.24) thus reduces to the following compatibility between
Kottwitz invariant (1.3) and Tate duality: Given any map of étale sheaves f: m G - A, the
following diagram commutes

molsoca,, X% (m1G)qal,

lfw lf (4.26)
A

H2(X, A1) 222

Here, the left vertical arrow is induced from f® ¥ : G,, - BA(1). The commutativity of
(4.26) reduces to the case where G is a torus by construction (cf. §1.1.6), then to the case
where G = G,,, by functoriality (cf. [Kot85, §2]), where it follows from the definition. O
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4.3.10. Finally, let us define (the generalized) Weissman’s obstruction
Qp : ®(H) - Hom(K, C)

for an arbitrary G-isocrystal (.
We set €25 to be the composition

Qp: ®(H) - &(Hap)
2171 2 Hom(K, CY).
The proof of Lemma 4.1.8 also yields the following result.

Lemma 4.3.11. Suppose that there is a map LLCg : T1(Gg) — ®(H) satisfying the following
compatibility with central core characters: It renders the diagram

1(Gs) — ()
l(4.22) l(z.ge) (4.27)
(Z) 2% (i)
commutative. Then for any o € ®(H) with Qg(o) # 1, the set LLClgl(a) is empty. O

Corollary 4.3.12. For each o € ®(H) and 8 € lsocg, the character Qs(o) vanishes if and
only if

y(Kott(B)) = Qo). (4.28)
Proof. The quotient Qg(c)/Q (o) is the character ig/i : K » C*. By Theorem 4.3.9, the
latter equals v(Kott(5)). Hence the equality (4.28) holds if and only if Q(c) = 1. O

4.3.13. To conclude, let us rewrite the short exact sequence (4.12) using (1.5):
mo(Basicgs) = mo(Basicg) - Hom(K, C*) — 1.

Here, the middle arrow sends 3 to y(Kott(8)). The group structure on mo(Basicg) is induced
from that on (m1G)galy, and similarly for mq(Basicg).

Given o € ®(H), Corollary 4.3.12 shows that there exists a basic G-isocrystal 8 for which
(4.28) holds. Furthermore, the subset of m(Basicg) consisting of isomorphism classes of
such S forms a torsor under the image of mo(Basicas).

By Remark 4.3.12, the character Q(c)™! of K is arbitrary as o varies. This means that
to guarantee the equality (4.28), one really needs to consider basic G-isocrystals spanning a
full set of representatives of 7y(Basicg)/mo(Basicat ).

4.4. Example: tori.

4.4.1. In this subsection, we specialize to the case G = T is an F-torus. We shall construct
the local Langlands correspondence (cf. Conjecture 1.4.16) for T.
More precisely, for each § € Isoct, we shall construct a map

LLCj : TI(Tp) — ®(H). (4.29)

In fact, LLCg is uniquely determined by the compatibility diagram (4.27) since (2.36)
becomes an isomorphism in this case, so let us turn this into a definition.



EXTENDED PURE INNER FORMS OF COVERS 37

4.4.2. Construction of LLCg. The map (4.20) specializes to a map
T > Tp (4.30)

whose image is central (¢f. Lemma 4.3.6). Thus, given any irreducible (-genuine smooth
representation V of T, the action of T* on V through (4.30) is a (-genuine smooth character.
This defines a map

I1(Ts) - II(TH). (4.31)
The map LLCg is the composition of (4.31) with the local Langlands correspondence for
T* equipped with the restriction purs of p (cf. §2.1.8).

4.4.3. The following description of LLC;(J) generalizes Weissman’s result for the trivial
T-isocrystal 8 (c¢f. [Weil6, Theorem 2.12]), with the same proof.

Proposition 4.4.4. Given 3 € Isocy and o € ®(H), the set LLC[}l(a) is finite and nonempty
if and only if (4.28) holds.

Proof. Lemma 4.3.11 and Corollary 4.3.12 together imply that LLC;;l(O') is empty when
(4.28) fails. It remains to prove that when (4.28) holds, LLCEI(J) is nonempty and finite.

The L-parameter o corresponds, under the local Langlands correspondence for (T¥, ut)
(cf. §2.1.8), to a {-genuine smooth character x, of T!. By construction, a (-genuine smooth
representation V of Tgyg has L-parameter o if and only if T# acts on V via y,. Since (4.28)
holds, x, annihilates the kernel of (4.30), so it factors through a character

Xo: THK - C*,
where T'/K is identified with a subgroup of the center Cg of T4 (¢f. Lemma 4.3.6).

By the Stone—von Neumann theorem, H(Tﬁ) is in bijection with genuine characters of
Cp. Hence LLC;(U) is in bijection with extensions of Y, along the inclusion

THK c Cg,
which is of finite index. This implies that LLCEl(O‘) is nonempty and finite. 0
4.5. Z-isocrystals.

4.5.1. We return to the context where G is a reductive group F-scheme. Given a Z-isocrystal
B, we may consider the induced G-isocrystal, hence the group F-scheme Gg. There is a
canonical isomorphism of group F-schemes

G5 G, (4.32)

defined as follows: Restricting the action map a : BG x BZ - BG along the Z-isocrystal
B :X — BZ yields a morphism ag : BG x X - BG, which induces (4.32) on loop spaces.
In this subsection, we express the pullback of GB along (4.32) in terms of the cover G.

4.5.2. Evaluating the bilinear pairing by, ® BU®? : BG,;, ® BZ — B4A(1) at §: X - BZ and
descending along X — SpecF (¢f. Lemma 1.2.5), we obtain a Z-linear morphism

by ® BU®2(., 3) : BG,.p — BYA(1), (4.33)

which defines a rigidified morphism BG — B4A(1) that we denote by the same expression.
The following result can be thought of as a “dual version” of Proposition 4.3.3.
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Proposition 4.5.3. For any (3 € Isocy, there is a canonical isomorphism of covers of G(F)
with regard to the identification (4.32):

Gy 50+ [F(b2 ® BU®?)(., 3). (4.34)

Proof. Consider the pullback p*8*u of u along the projection p : BG x X - X and the
G-isocrystal g : X - BG.

The isomorphism (3.3), restricted along (id, 8) : BGxX - BGxBZ, yields an isomorphism
of rigidified section of B*A(1) over BG x X:

(a5) p=p" B 1= p+ (b2 ® BE®)(,, B), (4.35)
or equivalently, over BG (¢f. Lemma 1.2.5).
The isomorphism (4.34) is the image of (4.35) under (1.6). O

Remark 4.5.4. Proposition 4.5.3 expresses ég as the image of the rigidified morphism
p+ (by ® BU®?2)(-, 3) under (1.6).

If 1 is the étale realization of a central extension of G by Ka (¢f. [Zha22, §2.3]), one
may wonder whether the rigidified morphism u + (by ® BU®?)(-, ) also comes from étale
realization. This is generally not the case.

For a “naturally occurring” example, let us take G := GLy endowed with the Kazhdan—
Patterson cover, viewed as a central extension E of G by Ky (¢f. [GG18, §13.2]). Assuming
charF # 2, the latter defines a rigidified morphism p : BG - B4{il}®2 under étale realization.
Identifying both ;G and Fib(A — A,q) with Z, the bilinear form b, is given by

by:Z®Z —~>7Z/2, 1®1~1.

We argue that (b, ® BU®?)(-, 3) (hence its sum with y) does not lift to a central extension
of G by Ky, unless f3 is the trivial Z-isocrystal. Indeed, (b, ® BU®?)(-, 3) arises as the tensor
product of ¥ with a Z-linear morphism

™G - B*{£1}, (4.36)

which sends the generator of 71 G 2 Z to the Kummer gerbe BU(3) of S—the latter repre-
sents a nontrivial class in H2(SpecF, {+1}) when 3 is nontrivial. If (b, ® BU®?)(, 3) lifts to
a central extension of G by Ky, then the E;-monoidal morphism A — B*{+1}, obtained by
pre-composing (4.36) with the projection A - 71 G, can be expressed in terms of the second
Brylinski—Deligne invariant of E, i.e. it factors as a monoidal morphism

A - BGp, =5 B?{21}.
This implies that BU(8) lifts to a section of BG,, over SpecF, hence trivial by Hilbert 90.
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