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2 YIFEI ZHAO

You must go where I cannot,

Pangur Bén, Pangur Bén.

Nil sa saol seo ach ceo.

Is ni bheimid beo,

ach seal beag gearr.

(This world is nothing but mist. And
we will live but a little while.)

—Aisling from the Secret of Kells

1. DEFINING SCHEMES

Schemes are globalizations of rings, in the same way that topological manifolds are glob-
alizations of Euclidean spaces.

Given a topological manifold X, we can cover it by open subspaces X; — X (i € I),
where each X; is homeomorphic to a Euclidean space. Then we can cover the intersections
Xi; :==X;nX; (4,5 € I) by open subspaces X;;r = X;; (k € K;;) homeomorphic to Euclidean
spaces. This gives a presentation of each topological manifold X as “glued” from copies of
Euclidean spaces. Formally, X is a coequalizer in the category Top of topological spaces:

U s jer Xije = Lia Xs — X,
keK;

We wish to do the same for “spaces” defined by general rings. But, what is a suitable
category of “spaces” in which we can do this?

The first idea is Top itself, where each ring A corresponds to its set of primes | Spec(A)]
equipped with the Zariski topology. But this is too coarse: the passage from A to | Spec(A)|
loses all information about nilpotents in A, for instance. Instead, we shall perform this
gluing in a more sophisticated category Shv of “Zariski sheaves”.

1.1. Functors of points.

1.1.1. Let Ring denote the category of commutative, unital rings (henceforth referred to
simply as rings). Define the category of presheaves to be the functor category:

PShv := Fun(Ring, Set),

where Set stands for the category of sets.!
Given a presheaf X and a ring R, elements of the set X(R) are called R-points of X. For
this reason, presheaves are also called “functors of points”.

Remark 1.1.2. We think of presheaves as “spaces” in algebraic geometry. Let me illustrate
this intuition with an example.

Consider the ring A := Z[z,y]/(2? + y? + 1) and the presheaf X := Homging(A,~) co-
represented by it. We think of X as the “space” defined by 22 + y? + 1 = 0 in some abstract
sense. It follows from the definition that an R-point of X consists of a pair (a,b) € R*?
satisfying a? + b®> + 1 = 0, i.e. we are indeed solving the equation z2 + 2 + 1 = 0, but in the
ring R. For example, our X has no R-points but plenty of C-points.

IThere are size issues in the formation of PShv. Namely, because Ring is a large category, “Hom sets”
in PShv are proper classes. To avoid proper classes, what one can do is to fix a universe U (which is a set
closed under certain set-theoretic operations) and define Set to consist only of those elements of U and Ring
for those rings whose underlying sets lie in Set. If we admit Grothendieck’s axiom that every set belongs to
a universe, then objects and Hom-sets of PShv really are sets (but belonging to a larger universe). Going
forward, we will only point out size issues when absolutely necessary.
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By definition, a presheaf is determined by its values on all R € Ring together with their
functoriality. This is one sense in which our “spaces” are defined by their “points”.

1.1.3. An object of PShv is called an affine scheme if it is representable. Denote by Sch?ft

the category of affine schemes, so there is a fully faithful functor:
Sch*™ - PShv. (1.1)

By the Yoneda lemma, Sch®T is equivalent to Ring®®. For a ring A, we denote by Spec(A)
the corresponding object of Sch*® and call it the spectrum of A. Thus, for every R € Ring,
the R-points of Spec(A) are precisely the ring homomorphisms A — R.

The category Ring contains all (small) limits and colimits. Hence the same holds for
Sch*f. The category of presheaves PShv also contains all limits and colimits, which are
computed pointwise (as in any functor category). The functor (1.1) preserves limits (as
Yoneda embeddings do) but does not preserve colimits in general.

Remark 1.1.4. The initial object of PShv is the presheaf taking value & at every ring; note
that this is not the affine scheme @ := Spec(0)—the latter evaluates to a singleton on itself.
The terminal object of PShv is the presheaf taking value the singleton at every ring; it is
representable by Spec(Z).

Example 1.1.5. The functor Ring — Set sending a ring R to its underlying set is repre-
sentable by the affine scheme AL := Spec(Z[z]). This affine scheme is called the affine line
over Z. Likewise, for any A € Ring, we write A} := Spec(A[x]).

Note that Aj, is a ring object in the category of affine schemes: The addition AL xAL — A}
is defined by Z[z] - Z[x1,22], © = o1 + 2 and the multiplication Aj, x A, — A is defined
by Z[x] - Z[x1,22], * = 7122. The additive and multiplicative units Spec(Z) - A} are
defined by the maps from Z[z] to Z carrying x to 0, respectively 1. This ring structure
induces the ring structure on R for any R-point of Aj.

Example 1.1.6. Since the functor (1.1) preserves limits and push-outs in Ring are given
by tensor products, we see that the following diagram of affine schemes:

Spec(A1 ®a As) — Spec(Aq)

l l (1.2)

Spec(Ay) — Spec(A)

is Cartesian in PShv. In other words, the fiber product of affine schemes is the affine scheme
associated to the tensor product of the corresponding rings.

In particular, for every set I, the product AL := [T;;; A} is isomorphic to Spec(Z[x;]ie1),
where Z[z;];c is the polynomial ring on generators x; (i € I). The affine scheme Al is called
an affine space. If I={1,---,n}, we write A7, := AIZ.

Remark 1.1.7. Given any A € Ring, we may choose a set x; (i € I) of generators of A to
obtain a surjection Z[z; ];er - A. Then we may choose a set of ideal generators y; (j € J) of
its kernel I ¢ Z[x;];e1 to present A as a tensor product A = Z[x; ] ®7( Z. The affine
scheme Spec(A) is then the fiber product:

yj]jé.]

Spec(A) — AL

l l (1.3)

Spec(Z) — A},



4 YIFEI ZHAO

In particular, every affine scheme is constructed from A} by iterated limits. Combined
with Example 1.1.6, this shows that Sch®? is precisely the smallest full subcategory of PShv
which is closed under limits and contains AJ.

1.2. Zariski sheaves.

1.2.1. A morphism Spec(R’) — Spec(R) of affine schemes is called a standard open? if
there exists some f € R and an isomorphism R’ = Ry of R-algebras; here, Ry stands for the
localization of R at the multiplicative subset generated by f. (Caution: the choice of f € R
which exhibits R’ as the localization Ry is generally not unique.)

A collection of morphisms Spec(R;) — Spec(R) (¢ € I) of affine schemes is called a standard
open cover if 1 is finite, each Spec(R;) — Spec(R) is a standard open, and any field-valued
point of Spec(R) factors through Spec(R;) — Spec(R) for some i € 1.

The condition on field-valued points can be characterized in ring-theoretic terms.

Lemma 1.2.2. Let Spec(R;) — Spec(R) (i € 1) be a family of standard opens, with each
R; 2Ry, for some f; € R. Then the following are equivalent:

(1) any field-valued point of Spec(R) factors through Spec(R;) for some i €1;

(2) the ideal generated by f; (i €1) equals R.

Proof. Statement (1) says that every map R — K, where K is a field, sends one of the f;’s
to a nonzero element.

By taking kernels, this is equivalent to the assertion that every prime p of R does not
contain f; for some ¢ € I, which is equivalent to the assertion that R/(f;)ieq contains no
primes, i.e. it is the zero ring. This is statement (2). O

Remark 1.2.3. In particular, if Spec(R;) — Spec(R) (i € I) is a family of standard opens
satisfying the equivalent conditions of Lemma 1.2.2; then the same holds after replacing [
by a finit subset.

Indeed, this follows by writing 1 € R as an R-linear combination of f; (i €I), if R; = Ry,,
which involves finitely many terms.

1.2.4. Given any X € PShv and any morphism Spec(R’) — Spec(R) of affine schemes with
x € X(R), we shall use the notation z|gs for its image along X(R) - X(R'). We think of
x|rs as the “restriction” of the R-point z to R’.

Given any X € PShv and any standard open cover Spec(R;) — Spec(R), we may form a
diagram in Set:

X(R) = ITia X(Rs) =TT, jer X(Raj)- (1.4)

Here, R;; := R; ®& R and the two parallel morphisms from [T, X(R;) to [T, ; X(R4;) sends
an I-indexed family of points z; € X(R;) to the I x I-indexed family z;; = 2i|r,; € X(Ry;),
respectively z;; := zj|r,; € X(Rij;).

Note that the first morphism X(R) — [1; X(R;) equalizes the two parallel morphisms.
Indeed, this follows by functoriality of X, applied to the commutative diagram below for
each 7,75 el:

R — R;

L]

Rj — Rij

2Some authors call it a “distinguished open”. We generally try to follow the terminology of the Stacks
project [Stals].
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1.2.5. An object X € PShv is called a Zariski sheaf if (1.4) is an equalizer for every standard
open cover Spec(R;) - Spec(R) (i €I).

Concretely, this means that elements of X(R) are in bijection with I-indexed families of
elements x; € X(R;) such that z; Ri; = Tj|R,; for every pair of elements 7, j € I.

Denote by Shv the full subcategory of PShv consisting of Zariski sheaves. This gives us a
fully faithful functor:

Shv — PShv, (1.5)

which preserves all limits.

Remark 1.2.6. Let @ denote the initial object of Shv. We claim that & is represented by
Spec(0), where 0 stands for the zero ring.

Indeed, it is enough to prove that for any Zariski sheaf X, the value X(0) is a singleton.
To do this, we consider the standard open cover of Spec(0) indexed by the empty set I:= &.
Then the products in (1.4) are singleton sets, so the same holds for X(0).

Proposition 1.2.7. Every affine scheme is a Zariski sheaf.

1.2.8. We shall deduce Proposition 1.2.7 from an assertion about modules which will be
useful later.

Namely, given a standard open cover Spec(R;) — Spec(R) (i € I) and an R-module M, we
may set M; := M ®r R; and M;; := M ®r R;; for 4,j € I. We have morphisms of R-modules
induced from the ring maps R - R; and R; = R;; < R;:

M — @iaM; = @ ja M;;. (1.6)
Lemma 1.2.9. Diagram (1.6) is an equalizer in Modg.

Proof. The assertion that (1.6) is an equalizer can be verified after localizing at every prime
of R. Indeed, by taking the kernel and cokernel of the map from M to the equalizer of
the two parallel arrows in (1.6), this reduces to the following statement: if an R-module N
satisfies N, = 0 for every prime p of R, then N = 0. (Let us recall how this goes: take any
2 € N and consider its annihilator Ann(z) c A. The assumption shows that for every prime
p, there exists some f € Ann(z), f ¢ p. Hence Ann(z) = A and x =0.)

Since direct sums commute with localization, we may assume that R is local with maximal
ideal m. Write R; = Ry, for elements f; € R (i € I). Since they generate R as an ideal (Lemma
1.2.2), we have f; ¢ m for some ¢ € I. Fix an element 1 €I with f; ¢ m, so it is a unit. Then
the natural map M — M; is an isomorphism. The map from M to the equalizer of the two
parallel arrows in (1.6) thus has inverse given by projection onto M; = M. O

Proof of Proposition 1.2.7. We first prove that AL is a Zariski sheaf. Unwinding the defini-
tions, this means that for every standard open cover Spec(R;) - Spec(R) (¢ €I finite), with
Ri; := R; ®r Ry, the following diagram in Set is an equalizer:

R = [TiaRi = i ja Rij- (1.7)

Since I is finite, this is diagram (1.6) for the special case M = R, so the assertion follows
from Lemma 1.2.9.

To prove that each affine scheme is a Zariski sheaf, we observe that affine schemes are
obtained from A} via iterated limits (Remark 1.1.7), while the property of being a Zariski
sheaf is preserved under limits. O
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1.3. Sheaves on sites.

1.3.1. We shall now look more closely at how the category Shv of Zariski sheaves behaves
as a full subcategory of PShv.

In fact, we shall prove our assertions about Shv in greater generality, as there is nothing
really special about standard open covers.

1.3.2. A site consists of a category € together with a set Cov(c) of families of morphisms
¢; = ¢ (i €I) for each object c € C, satisfying the following conditions:

(1) every isomorphism ¢’ = ¢ belongs to Cov(c);

(2) if ¢; > ¢ (i €I) belongs to Cov(c), and for each i € I, we have a family ¢;; — ¢; (j € J;)
in Cov(c;), then the family ¢;; - ¢; > ¢ (i €1, j € J;) belongs to Cov(c);

(3) if ¢; - ¢ (i €I) belongs to Cov(c), then for every morphism d — ¢, the fiber product
d; := ¢; x. d exists for all i € I, and the family d; - d (i € I) belongs to Cov(d).

Each family of morphisms ¢; — ¢ (i € I) in Cov(c) is called a cover of c. We will refer
to the three axioms above as (1) identity, (2) locality, and (3) base change. (“Base change”
generally refers to fiber products in categorical contexts: we think of the operation x.d as
changing the base from ¢ to d.)

1.3.3. Given a site €, we write PShv(€) := Fun(C°P,Set) and call its objects presheaves on
C. Note that this category does not depend on the chosen covers in €. For X € PShv(€) and
c € C, elements of X(c¢) are also called sections of X over ¢. Given a morphism ¢’ — ¢ in C,
we write x|~ for the image of x € X(¢) in X(¢') and call it the restriction.

A sheaf on C is a presheaf X € PShv(C) for which the diagram:

X(e) = Tlia X(ci) = Hi,jeIX(cij) (1.8)

is an equalizer for every family ¢; - ¢ in Cov(c); here ¢;; := ¢;x.c; and two parallel morphisms
in (1.8) are defined by restrictions along the first, respectively the second factor (c¢f. §1.2.4).

Example 1.3.4. Let C be a site whose covers consist only of isomorphisms. Then every
object of PShv(@) is a sheaf.

Example 1.3.5 (Sites defined by topological spaces). Let T be a topological space. Let
C be the poset of open subsets of T, i.e. an object of € is an open subset U c T and a
morphism of € is an inclusion of open subsets U; — U,. For each U € €, we define Cov(U)
to be the set of families U; - U (i € I) which cover U as a set. This choice of covers turns €
into a site. (Pre)sheaves on the site € are typically called (pre)sheaves on T.

The presheaf on T assigning to each U c T the set of continuous real-valued functions is
a sheaf. The presheaf on T assigning to each U c T the set of bounded real-valued functions

is generally not a sheaf.
Example 1.3.6 (The standard Zariski site). The example we are interested in is € := Sch?ft
where covers of an affine scheme Spec(R) are the standard open covers (cf. §1.2.1). Sheaves

on this site are precisely the Zariski sheaves defined earlier.

1.3.7. Sheaves on C form a full subcategory Shv(€) of PShv(€). In other words, we have a
fully faithful functor:
Shv(€) = PShv(€). (1.9)

We shall explicitly construct a left adjoint of (1.9).

3More precisely, the singleton {c’ = c}, for any isomorphism ¢’ Z ¢, is an element of Cov(c).
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1.3.8. First, let us turn the set of covers Cov(c) of an object ¢ € € into a category, whose
morphisms are given by “refinements”.

Given two covers ¢; » ¢ (i €I) and ¢; » ¢ (j € J), a refinement {c;} - {¢;} consists of a
map ¢ : J — I together with morphisms ¢; — c,;y over ¢, for each j € J.

A refinement where ¢ is injective and each ¢; - c,(;y is an isomorphism is also called a
subcover.

1.3.9. Let X be a presheaf on €. For each family ¢; — ¢ (i € I) in Cov(c), we write H°({¢;}, X)
for the equalizer of the two parallel morphisms in (1.8):

HO({Ci}aX) = lm( [Te X(ei) = Hi,jeIX(Cij) )-

Explicitly, an element of H°({c;},X) is an I-indexed tuple z; € X(¢;) such that for each
i,j €1, there holds z|c,; = zjlc,; -

The association {c; tier = H({¢;},X) is contravariantly functorial with respect to refine-
ments. We set H(c,X) as the colimit over Cov(c)°P with refinements as morphisms:

H(¢,X):= colim H°({¢},X). 1.10
(e, X) (oS0, ({ei},X) (1.10)

This is a filtered colimit in view of the following observation.
Lemma 1.3.10. The diagram Cov(c)°P — Set assigning H°({¢;},X) to {¢;} is filtered.*

Proof. Explicitly, we need to check that:
(1) Cov(c) is not empty;
(2) every pair of covers of ¢ has a common refinement;
(3) for every pair of refinements in Cov(c):

{ej} 3 {ai} (1.11)

there exists a refinement {c;} - {¢;} in Cov(c) such that the two induced maps
from H({¢;},X) to HO({cx},X) coincide.

Statement (1) follows from the identity axiom.

Statement (2) follows from the base change and locality axioms. More precisely, given
two covers ¢; - ¢ (i € I) and ¢; - ¢ (j € J), we form ¢;; := ¢; xc ¢;. Then ¢;; > ¢; (i €1) is
a cover for each j € J by the base change axiom, so ¢;; - ¢ (i €I, j € J) is a cover by the
locality axiom.

For statement (3), one can prove directly a stronger assertion: the two induced maps
from H°({¢;},X) to H'({c;},X) already coincide. Indeed, given refinements ¢ : {c;} - {c;}
and ¢ : {¢;} = {¢;}, then both maps ¢; — c,(;), ¢; = cy(;) factor through c,;y x. cy(jy,
where a tuple of elements x; € X(¢;) agreeing on overlaps is equalized. O

Remark 1.3.11. The fact that H°(¢, X) is a filtered colimit in Set gives rise to the following
explicit description of it: any element of FI°(¢, X) is represented by an element of H°({c;},X)
for some cover ¢; - ¢ (i € I), i.e. an I-tuple z; € X(¢;) agreeing on overlaps, and two such
tuples {z;}, {x;} represent the same element in H°(c,X) whenever there is a common
refinement {c;} of the covers {c;}, {¢;} such that their images in H°({c;.},X) coincide.

4Caution: the category Cov(c)°P itself is not filtered in general, i.e. we are not always able to equalize the
two parallel morphisms in (1.11) in Cov(c). For example, consider the discrete topological space {1,2,3},
covered by the two open subsets {1,2},{2,3}. This cover receives two refinements from the cover by {1},
{2}, {3} defined by sending {2} into {1, 2}, respectively {2,3}. These two refinements cannot be equalized.
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1.3.12. The assignment ¢~ H°(¢, X) is functorial, so it defines a presheaf X* on € with:
X*(¢) = H(¢, X).

Furthermore, the assignment X — X* is an endofunctor of PShv(C).
Note that there is a natural morphism of presheaves:

X - X", (1.12)

defined by the restriction map X(c) - H({¢;},X) for each cover ¢; - ¢ (i € I). If X is a
sheaf, then (1.12) is an isomorphism.

Moreoever, sections of X* “locally lift to X” in the following sense: given any c¢ € € and
x* € X*, there exists a cover ¢; - ¢ (i € I) such that each z*|., € X*(¢;) is the image of an
element x; € X(¢;) (¢f Remark 1.3.11).

Proposition 1.3.13. For any presheaf X on C, the presheaf (X*)* is a sheaf.

Proof. In fact, a finer statement holds. Let us call a presheaf X € Shv(C) separated if every
cover ¢; - ¢ (i €I), the induced map below is injective:

X(¢) = lim( Tier X(ci) = T jer X(cij) ), (1.13)

where c¢;; := ¢; % ¢; is the overlap.

Since the colimit (1.10) is filtered, any section x € X*(¢) is an equivalence class of I-tuples
x; € X(¢;) agreeing on X(c¢;;), for some cover ¢; € ¢ (i € I) (¢f. Remark 1.3.11). Using this
description, we will prove the two claims below.

Claim: X* is separated for any X € PShv(C).

Namely, we need to prove that given a cover ¢; - ¢ (i € I) and two elements z*,y* € X*(c¢)
which agree in [],i; X" (¢;), there holds z* = y*.

Taking common refinements, we can find a cover ¢; - ¢ (j € I) such that 2% and y* are
both represented by J-tuples of elements z; € X(¢;), y; € X(¢;).

For each j € J, the base change ¢;; = ¢; x.¢; = ¢; (1 €1) is a cover of ¢; with the property
that z;l.,, and y;.,; have the same image in X*(¢;;) for each 7 € I. This means that for each
pair (i,7) € I x J, there is a cover ¢;ji — ci; (k € Ki;) such that zjlc,,, = yjle,,, in X(cijr).-
Thus, ¢;x — ¢; (i €1, k €K;;) is a refinement with the property that (z;) and (y;) have the
same image in H°({c;;1},X). Thus z* = y*.

Claim: X* is a sheaf if X is separated.

By (1), X* is already separated. It suffices to prove that given a cover ¢; - ¢ (i € I) and
elements z7 € X*(¢;) agreeing on overlaps, there exists an element x* € X*(¢) restricting to
xf € X*(¢;) for each i e L.

For each i € I, consider a cover ¢;; — ¢; (j € J;) such that x|, is represented by a J;-
tuple of elements x;; € X(¢;;). The hypothesis that the x;’s agree on overlaps implies that
Tijlessxec and xy Cijxcey; Agree on a refinement of the cover ¢;; xc ¢irjr = ¢; Xc ¢y (j €4,
j"€Jir). Since X is separated, this implies that the collection of elements x;; € X(c¢;5) (i €1,
j €J;) agrees on overlaps. Hence it defines an element x2* € X*(c¢).

To prove that z*|., = ] for each i € I, we use the fact that the x|, is the image of
xi; € X(ci;) for each i €1, j € J;, and so is xf]c,;. Thus |, and 2] coincide on the cover
¢ij = ¢ (j€J;). Since X* is separated by the first claim, we have z*|., = 7. O

Proposition 1.3.14. The functor X — (X*)* provides a left adjoint of (1.9).
Proof. Tt suffices to prove that for any Y € Shv(€), restriction along (1.12) defines a bijection:
Hompshy(e) (X", Y) = Hompshy(e) (X, Y). (1.14)
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The inverse map is constructed as follows: given any morphism X — Y, we apply the functor
()" to obtain a morphism X* - Y* and observe that Y* is naturally isomorphic to Y. To
check that this is indeed inverse to (1.14), one may use the fact that sections of X* locally
lift to X (¢f. §1.3.12). O

1.3.15. We call the left adjoint of (1.9) (¢f. Proposition 1.3.14) the sheafification functor:
PShv(@) — Shv(€), X X'z (X*)*. (1.15)

The unit of this adjunction coincides with the natural morphism of presheaves defined by
an iteration of (1.12):
X - X" - (XN)F 2 X, (1.16)

It is universal among morphisms from X to sheaves.

Remark 1.3.16. From the adjuction, it follows that (1.9) commutes with limits (which can
also be verified directly) and that the colimits in Shv(C) are computed by sheafification of
the colimits taken in PShv(C).

Remark 1.3.17. From the isomorphism X' = (X*)*, it follows that every section of XT lifts
locally to X, i.e. given z' € XT(¢), there exists a cover ¢; — ¢ (i € I) such that each zf|., is
the image of a section x; € X(¢;) (¢f. §1.3.12).

Remark 1.3.18 (Monomorphisms and epimorphisms in Shv(C)). Let f : Y - X be a
morphism in Shv(€). Then:
(1) f is a monomorphism if and only if it is a subfunctor, i.e. Y(¢) - X(c¢) is injective
for every ce C;
(2) f is an epimorphism if and only if every section of X lifts locally to Y, i.e. for every
x € X(c), there exists a cover ¢; - ¢ (i € I) such that each z|., is the image of a
section y; € Y(¢;); indeed, the “<=” direction is clear and the “=" direction follows
from considering the two maps from X to X uy X and the description of X uy X as
the sheafification of the presheaf push-out;
(3) f is an isomorphism if and only if it is both a monomorphism and an epimorphism;
indeed, it suffices to show that every section of X lifts to Y, which follows from
taking a local lift using (2) and glue them using (1) and the sheaf axiom of Y.

Remark 1.3.19 (Local objects). An object ¢ € € is local if every cover ¢; — ¢ (i € I) splits,
i.e. there exists a morphism ¢ — ¢; for some i € I so that the composition ¢ - ¢; — ¢ is
the identity. Then for any X € PShv(€), the map induced from (1.16) is bijective: X(c¢) =
XT(c). Indeed, the injectivity is clear and the surjectivity follows from existence of local lifts
(¢f. Remark 1.3.17).

For the site of affine schemes Sch®® equipped with standard open covers, an object
Spec(R) is local in the above sense if and only if R is a local ring.® This gives a site-
theoretic meaning to the notion of local rings.

1.3.20. Finally, we note one important consequence of the fact that sheafification is given
by the functor X — (X*)*.

Corollary 1.3.21. The sheafification functor (1.15) commutes with finite limits.

Proof. This is because the colimit in the formation of H%(¢,X) (1.10) is filtered (cf. Lemma
1.3.10), and filtered colimits and finite limits in Set commute. O

5This is on the homework.
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1.4. The category of sheaves.
1.4.1. Let C be a site. We have constructed an adjunction:
PShv(€) == Shv(@)

where the right adjoint (the forgetful functor) is fully faithful and the left adjoint preserves
finite limits (cf. Corollary 1.3.21).

In this subsection, we explore some consequences of this structure. In fact, we shall see
that Shv(C) shares many formal properties with the category Set (which is also the special
case of Shv(€) for € = x). We begin by proving that colimits in Shv(€) are “universal”,
i.e. their formation commutes with arbitrary base change.

Lemma 1.4.2 (Colimits are universal). For every (small) diagram I — Shv(@), i » X;
equipped with a morphism to the constant diagram on X € Shv(€) and any morphism Y — X,
the canonical map below is an isomorphism:

cqlilm(Xi xx Y) = chiIm(Xl-) xx Y.
1€ 1€

Proof. The analogous property holds for Set, so it holds for PShv(€). Then we use the
fact that sheafification commutes with colimits (because it is a left adjoint) and finite limits
(¢f. Corollary 1.3.21). O

1.4.3. Quotients. Let X be a sheaf on C. An equivalence relation on X is a subsheaf:
RcXxX (1.17)

such that for each ¢ € €, the image of R(c) in X(c) x X(c¢) is an equivalence relation on
X(¢). (This means that for any z,y,z € X(c¢), we have (z,z) € R(c), (z,y) € R(¢) implies
(y,2) € R(c), and (x,y) € R(c), (v, 2) € R(c) implies (x,z) € R(c).)

Given an equivalence relation R ¢ X x X, its quotient X/R is the sheafification of the
presheaf sending c € C to the set of equivalence classes X(c)/ ~g(c) of elements of X(c) with
respect to R(c). In other words, X/R is the coequalizer in the category Shv(C):

R = X — X/R.

Remark 1.4.4. By Lemma 1.4.2, the formation of quotients in Shv(C) is universal, i.e. it
commutes with base change. More precisely, given a morphism Y — X in Shv(€) and an
equivalence relation R on Y over X, then for any morphism X’ — X, we obtain an equivalence
relation R’ := R xx X’ on Y’ := Y xx X’ over X’ and there is a canonical isomorphism:

Y'/R' 5 Y /R xx X

1.4.5. The natural map X — X/R is an epimorphism and we have the following Cartesian
diagram in Shv(C), as sheafification preserves finite limits (c¢f. Corollary 1.3.21):

R— X

l l (1.18)

X — X/R
The following lemma shows that every epimorphism in Shv(C) arises this way.

Lemma 1.4.6 (Epimorphisms are quotients). Let Y — X be an epimorphism in Shv(C).
Then X is identified with the quotient of Y by the equivalence relation Y xx Y c Y xY.
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Proof. The claim holds in Set, so it holds for PShv(€). Let X’ ¢ X be the presheaf image
of Y in X. Since the natural map Y xx' Y - Y xx Y is a bijection, we see that X’ is the
presheaf coequalizer of the two parallel morphisms in:

YxxY =Y. (1.19)

Since Y — X is an epimorphism, so is the induced morphism (X’ )T — X. On the other
hand, (X’)" - X is a monomorphism since X’ — X is a subfunctor and sheafification com-
mutes with finite limits (¢f. Corollary 1.3.21). Hence (X') 5 X (¢f. Remark 1.3.18) and X
is identified with the sheaf coequalizer of (1.19). O

1.4.7. Next, we show that certain fundamental properties of morphisms in Shv(€) are both
“stable under base change” and “local on the target”.

A property of morphisms P is stable under base change if given every morphism f:Y - X
in Shv(@) satisfying P and any morphism X’ — X in Shv(€), the base change [’ : Y’ :=
Y xx X’ - X’ also satisfies P.

A property of morphisms P is local on the target if given a morphism f : Y — X in
Shv(€) and a collection of morphisms X; - X (i € I) in Shv(€) such that | l;.; X; - X is an
epimorphism and each base change f;:Y; =Y xx X; - X satisfies P, the morphism f also
satisfies P.

Lemma 1.4.8. The following properties P of morphisms in Shv(C) are stable under base
change and local on the target:

(1) P = “epimorphism”;

(2) P = “monomorphism”;

(3) P = “isomorphism”.

Proof. (1) To prove that the property P = “epimorphism” is local on the target, we first
observe that if each f; : Y; — X; is an epimorphism, then so is the induced morphism
Lier Yi = Llier X;- Since the composition | ;1 Y; = L Xy = X factors through f, the
former being an epimorphism implies that f is an epimorphism.

To prove that stability under base change, note that f is an epimorphism if and only if
the natural map X uy X — X is an isomorphism. Since colimits are universal (¢f. Lemma
1.4.2), the latter implies that X' uys X" - X’ is an isomorphism, i.e. f’ is an epimorphism.

(2) The property P = “monomorphism” is clearly stable under base change. To prove that
it is local on the target, we first observe that if each f;:Y; - X; is a monomorphism, then
so is the induced morphism | ;1 Y; = Lljer X;. Indeed, this follows from checking that the
diagonal is an isomorphism, which follows from universality of colimits (¢f. Lemma 1.4.2).

Consider Z € Shv(C) equipped with morphisms g1, g2 to Y with f-g; = f-g2. Base change
along | ;1 X; = X, we obtain morphisms g7, g5 such that f’- g1 = f'- g5:

’

91 ’
2= Uia Yy AN Llier X
)

L5,

z—=v—Lox
2

Assuming that f’ is a monomorphism, we see that g7 = g5. Thus ¢g; and g, are equalized

after composition with Z’ - Z, which we know is an epimorphism by (1). Hence g1 = gs.
(3) The fact that the property P = “isomorphism” is stable under base change and local

on the target follows from (1) and (2) (¢f. Remark 1.3.18). O



12 YIFEI ZHAO

1.4.9. Gluing sheaves. Finally, we prove that the category of sheaves itself is “local on
the target”, i.e. it can be glued along collections of morphisms X; — X (i € I) for which
Llier X; = X is an epimorphism.

For each X € Shv(€), we consider the category Shv(C) x of sheaves over X. The assign-
ment X ~ Shv(C)/x is functorial in the sense that it is supplied with the following data:
given a morphism [ : X’ — X, we have a functor defined by Cartesian product:

ShV(e)/X nd Shv(e)/)(l7 Y — Y|XI =Y XX X,.

1.4.10. Given a family of morphisms X; - X (i € I) in Shv(C), we shall define the category
Shv(C€)¢x,) of descent data with respect to the family X; — X (7 € I). We write X;; := X;xxX;
for each 4, j € I and similarly for X;jy.
An object of Shv(C),(x,} consists of a sheaf Y; € Shv(€)x, for each i € I, together with
an isomorphism in Shv(C)/x,,:
@i+ Yilx,, = Yjlx,, (1.20)

for each i, j € I, making the following diagram in Shv(€)x,;, commute for each i,j,k € I:

Y¢|Xijk.pﬂ;ij|x

* \ lpgsw (1.21)
P13Pik
Y

kXK

ijk

Here, p12 : Xijr — Xy; is the projection onto the first two factors, and similarly for pas,
p13. The commutativity of (1.21) is called the cocycle condition satisfied by the collection
of isomorphisms ¢;;.

A morphism ({Y;},{wi;}) = ({Z:i},{ti;}) in Shv(€),rx,; is a family of morphisms Y; —
Z; in Shv(€)/x, for each i € I, making the following diagram commute for each 4, € I:

Pij
Yi Xij — Y, Xij
|
Zi|x,; AN Zilx,;

Remark 1.4.11. Note that if X;; is the empty sheaf, i.e. the initial object of Shv(C), then
©i; (1.20) is the unique isomorphism @ = @. Indeed, this is because the base change of any
morphism Y — Z in Shv(€) along @ — Z is isomorphic to @, as one verifies for PShv(€) and
uses the fact that sheafification commutes with finite limits (¢f. Corollary 1.3.21).

In particular, if X;; ¢ @ for each 4,5 €I, then the category of descent data Shv(€)/ix,y is
equivalent to [T, Shv(€)/x, -

1.4.12. Given a family of morphisms X; — X (i €I) in Shv(C), there is a functor:
Shv(@)/x d Shv((?)/{xi} (1.22)

sending Y to the pair ({Y;},{¢i;}) where Y; := Y|x, for each i €I, and ;; : Yi|x,, 5 Ylx,;
is the canonical isomorphism obtained from identifying both sides with Y]x,;.

Proposition 1.4.13 (Descent of Shv). Given a family of morphisms X; - X (i € 1) in
Shv(@) such that | ;e X; = X is an epimorphism, the induced functor (1.22) is an equivalence
of categories.
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Proof. We shall construct the functor inverse to (1.22) as follows.
Given a descent datum ({Y;}, {¢i;}), we consider the pair of commutative squares:

p
Ui jer Yilx,, =— Lier Yi

9 ppif

l l (1.23)

P1
Lli jer Xsj ?; Lier X

where the two bottom horizontal morphisms are defined by projections p; : X;; — X,
p2 + Xj; - X; onto the first, respectively the second factor, and the two top horizontal
morphisms are defined by the projection p: Y;|x,; = Y;, respectively from the composition
of PYij ¢ YZ'|X” i Yj|Xij with the projection p: Yj|Xij d Yj.

It follows from the cocycle condition (1.21) that R := L; jer Y4|x,; is an equivalence relation
on Y := ;1 Y; with respect to the two morphisms in (1.23). We define Y := Y/R. It admits a
natural morphism to X, since the latter is identified with the quotient of | ;1 X; by Ll jer Xy;
(cf. Lemma 1.4.6). Thus we may view Y as an object of Shv(C) x.

We claim that the assignment of Y to ({Y;},{i;}) provides an inverse to the functor
(1.22). The fact that any Y € Shv(€)/x is recovered from the composition follows from the
fact that | ;e Y; = Y is an epimorphism (¢f. Lemma 1.4.8), hence a quotient 1.4.6). The
fact that any descent datum ({Y;},{;;}) is recovered from the composition will follow,
once we show that the induced square:

LiaY; — Y

l l (1.24)

LiaX; — X

is Cartesian. This statement can be checked upon base change along the epimorphism
Ll;er Xi = X (¢f. Lemma 1.4.8). However, once we perform this base change, (1.24) becomes
the top square in (1.23), which we know to be Cartesian. O

1.5. Open immersions.

1.5.1. Let us now return to the category Shv of Zariski sheaves, namely sheaves on the site
€ := Sch®® of affine schemes whose covers are the standard open covers.

In this subsection, we shall define the notion of “open immersions” in Shv. We will first
define this notion when the target is an affine scheme, and then generalize it to arbitrary
morphisms in Shv using base change.

1.5.2. A morphism f:Y — Spec(A) in Shv (A € Ring) is called an open immersion if it is
a monomorphism and there exists a family of standard opens Spec(A;) - Spec(A) (i € I)
factoring through Y, such that any field-valued point of Y factors through Spec(A;) for
some ¢ € I.

Note that if f is an open immersion and A — A’ is a ring map, then the base change
7Y =Y xgpec(a) Spec(A’) — Spec(A’) is also an open immersion. Indeed, this follows
from inspecting the Cartesian squares below for Al := A’ ®4 A;:

Spec(A]) — Y’ N Spec(A”)

Ll

Spec(A;) — Y —— Spec(A)
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We define a morphism f : Y — X in Shv to be an open immersion if for any R-point
x : Spec(R) - X (R € Ring), the base change Y xx Spec(R) - Spec(R) is an open immersion
in the sense above.

This generalizes the notion of open immersions when X = Spec(A) is affine, oweing to the
base change property observed above. It follows immediately from this definition that open
immersions are stable under base change (cf. §1.4.7).

Lemma 1.5.3. Open immersions in Shv are closed under compositions.

Proof. Let Z—-Y and Y — X be open immersions of Zariski sheaves. We want to prove that
the composition Z - Y — X is still an open immersion. By base change, we may assume
that X = Spec(A) is an affine scheme.

Choose a family of standard opens Spec(A;) — Spec(A) (i € I) factoring through Y such
that any field-valued point of Y factors through some Spec(A;). Base change Z — Y to
each Spec(A;), we may also find a family of standard opens Spec(A;;) - Spec(A) (j € J;)
factoring through Z xy Spec(A;) such that any field-valued point of the latter factors through
some Spec(A;;). But the family of morphisms:

Spec(A;;) - Spec(A) (iel,jeld;)
has the desired property with respect to Z. O

Remark 1.5.4. Open immersions enjoy the following permanence property. Given a com-
mutative diagram in Shv:

y L x

!

where 4 is a monomorphism, if f is an open immersion, then so is f’. Indeed, this is because
given an R-point of X’ (R € Ring), we have an isomorphism Y xx/ Spec(R) — Y xx Spec(R)
of Zariski sheaves over Spec(R).

1.5.5. Open covers. A family of open immersions X; - X (i € I) in Shv is called an open
cover if every field-valued point of X factors through X; for some 7 € 1.

For example, a standard open cover of an affine scheme is an open cover. By definition,
every open immersion into an affine scheme admits an open cover by affine schemes. The
following Lemma shows that every open cover of an affine scheme can be “refined” by a
standard open cover.

Lemma 1.5.6. Let A € Ring and X; — Spec(A) (i €1) be an open cover in Shv. Then X; —
Spec(A) (i €1) admits a refinement by a standard open cover, i.e. there is a standard open
cover Spec(A;) — Spec(A) (j€J) and a map ¢ :J -1 such that each Spec(A;) - Spec(A)
factors through X ;-

Proof. We may find standard opens Spec(A;;) — Spec(A) (i € I, j € J;) such that each
Spec(A;;) — Spec(A) factors through X; and any field-valued point of X; factors through
some Spec(A;;). It follows that every field-valued point of Spec(A) factors through some
Spec(A;;j). One may then pass to a finite subset of |];J; to obtain the desired standard
open cover of Spec(A) (c¢f. Remark 1.2.3). O

Corollary 1.5.7. Let X; > X (1 €1) be an open cover in Shv. Then the induced morphism
Llier X; = X in Shv is an epimorphism.
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Proof. For any R-point x of X, the base change Spec(R) xx X; — Spec(R) (i € I) is open
cover, and any refinement of it by a standard open cover (which exists thanks to Lemma
1.5.6) provides local lifts of = to [ ;g X;. O

1.5.8. In the last part of this subsection, we shall prove that open immersions are local on
the target (c¢f. §1.4.7). This requires some preliminary discussions.

Lemma 1.5.9. Given an isomorphism X1 U Xs 2 Spec(A) for Xy,Xs € Shv and A € Ring,
Xy and X5 are affine schemes and their inclusions into Spec(A) are open immersions.

Proof. We will prove that X; is an affine scheme and X; — Spec(A) is an open immersion.

Consider the isomorphism of rings induced from X; uXs 2 Spec(A):

A 5 Hom(Spec(A), Ay) = Hom(X;, AL) x Hom(Xy, Ay),
where the ring structures on the Hom-sets® are induced from the ring structure on A}
(cf. Example 1.1.5). For i = 1,2, we write A; := Hom(X;,A}) and e; := (1,0), es = (0,1) for
the elements of A under the isomorphism A = A; x As. Then Spec(A;) — Spec(A) is the
standard open defined by localization at e;. We shall prove that X; coincides with Spec(A;)
as subfunctors of Spec(A).

Note that X; — Spec(A) factors through Spec(A;) via the natural map X; — Spec(A1).
For the opposite inclusion, it suffices to prove that Spec(A1) xgpec(a) X2 is the empty sheaf,
by universality of colimits (¢f. Lemma 1.4.2). Now, an R-point (R € Ring) of this fiber
product defines a ring map A — R such that the image of e; is both invertible and zero.
Such a map only exists if R 2 0, where it is unique. O

Lemma 1.5.10. Given a family of morphisms X; — X (i € 1) in Shv such that | ;e X; = X
is an epimorphism and an R-point z : Spec(R) - X (R € Ring), there exists a standard open
cover Spec(R;) — Spec(R) (j € J) such that for each j € J, x|, lifts to X; for some i €l:

Spec(R;) — X;

L

Spec(R) = X

Proof. Since X := |l;e; X; — X is an epimorphism, we may first find a standard open cover
Spec(Ry) — Spec(R) (k € K) such that each z|g, lifts to X. Using the morphism Spec(Ry) —
X and universality of colimits (¢f. Lemma 1.4.2), we find:

Spec(Ri) 2| |Spec(Ry) x5 X, (1.25)
i€l

where the induced morphism Spec(Ry) xg X; — X factors through the projection onto X;.
By Lemma 1.5.9, each term in (1.25) is an affine scheme Spec(R;x) openly immersed in
Spec(Ry). Hence the collection Spec(Rix) — Spec(R) (i €I, k € K) is an open cover such
that z|g,, lifts to X;. Taking a refinement by a standard open cover (¢f. Corollary 1.5.7),
we obtain the desired standard open cover Spec(R;) — Spec(R) (j € J). O

Corollary 1.5.11. The property of being an open immersion is local on the target.

Proof. Given a family of morphisms X; - X (i € I) and a morphism f:Y — X in Shv, such
that | ;e X; = X is an epimorphism and each base change f; : Y; :=Y xx X; - X; is an open
immersion, we need to prove that f is an open immersion.

5There are no size issues: Hom(X;, AL) belongs to Set because it can be realized as a subset of A (i = 1,2).
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Since epimorphisms and open immersions are stable under base change, we reduce to the
case where X 2 Spec(A) is affine. By Lemma 1.5.10, we may find a standard open cover of
Spec(A) consisting of standard opens which factor through X; for some i € I. By base change
fi to these standard opens, we further reduce to the case where X; = Spec(A;) - X 2 Spec(A)
(i €I) is a standard open cover.

Since being a monomorphism is local on the target (c¢f. Lemma 1.4.8), it remains to
construct a family of standard opens of Spec(A) covering Y. However, this can be done by
choosing a family of standard opens of Spec(A;) covering Y; for each i € I. O

1.6. Schemes.

1.6.1. An object X € Shv is called a scheme if it admits an open cover X; - X (i € I) such
that each X; is an affine scheme. In making this definition, we implicitly invoked the fact
that every affine scheme belongs to Shv (¢f. Proposition 1.2.7).

Write Sch for the full subcategory of Shv consisting of schemes.

Lemma 1.6.2. If f:Y — X is an open immersion in Shv and X is a scheme, then' Y is a
scheme. (It is called an open subscheme of X.7)

Proof. If X is an affine scheme, this follows from the observation of §1.5.5.

If X is any scheme, we consider an open cover X; — X (i € I) by affine schemes and form
Y,; =Y xx X;. Since open immersions are stable under base change, Y; — X; is an open
immersion, so Y; is a scheme. We have thus found an open cover Y; > Y (i € I) of Y by
schemes. We conclude by passing to an open cover of each Y; by affine schemes. O

Example 1.6.3 (Gluing along open immersions). A simple way of constructing new schemes
from old ones is by “gluing” along open immersions. More precisely, given open immersions
U - X3 and U - X5 in Sch, we may form the push-out X := X; uy X5 in Shv. We claim that
X is a scheme.

Indeed, the natural morphism X; u Xy — X in Shv is an epimorphism, so it suffices to
prove that X; - X and Xy - X are open immersions. (Then open covers of X; and Xs by
affine schemes will form an open cover of X by affine schemes.) Let us prove that X; — X is
an open immersion. By Corollary 1.5.11, it is enough to that it is an open immersion after
base change along X; - X and X5 — X. However, these two base changes are given by the
identity on Xy, respectively the open immersion U — Xs.

1.6.4. We have constructed a chain of fully faithful functors:
Sch®® - Sch — Shv — PShv.

We have already seen that the full subcategories Sch* and Shv of PShv are closed under
limits. The situation with Sch is slightly less pleasant.

Proposition 1.6.5. The full subcategory Sch of Shv is closed under finite limits.

Proof. Since Sch contains the terminal object Spec(Z) of Shv, it suffices to show that Sch
contains fiber products. In other words, given a Cartesian diagram in Shv:

XxgY — X

|

Y —— S

where X, Y, S are schemes, we need to show that X xg Y is also a scheme.

7Open subschemes of affine schemes may not be affine.
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If X, Y, S are all affine, this holds because the full subcategory Sch*® of Shy is closed
under fiber products, which are computed by tensor products of rings (¢f. Example 1.1.6).

If X, Y, S are schemes, it suffices to construct an open cover of X xgY by affine schemes.
Observe that for any open immersions U - X, T — S, and V — Y such that U - X - S and
V - Y — S factor through T, we have a monomorphism:

UXTV—>X><3Y.

It is an open immersion because it is the fiber product of U xx (X xgY) with (XxgY) xy V
over X xg Y, where both morphisms are open immersions.

Now, we take an open cover S; = S (i € I) of S by affine schemes, as well as open covers
Xij > XxgS; (jeJi), Yir > Y xgS; (k €K;) by affine schemes, which exist because X xg S;,
Y xg S; are schemes (¢f. Lemma 1.6.2). The resulting family:

XinSiYik:_’XXSY (’L'ELjEJi,kJEKi)
is then an open cover of X xg Y by affine schemes. O

Remark 1.6.6. For a pair of open immersions U; - X, Uy — X, we will often write U; n U,
for the fiber product U; xx Us and call it the intersection of the two open subschemes. Note
that this is indeed the intersection as subfunctors of X.

Remark 1.6.7. The full subcategory Sch of PShv does not contain infinite products. In
fact, the infinite product ot the projective line is not a scheme (¢f. [Stal8, 078E]). This fact
does not seem to affect life very much though.

1.6.8. Schemes as colimits of affines. We will now make precise the idea that schemes are
“glued” from affine schemes in the category Shv.

Let X be a scheme and X; — X (i € I) be an open cover by affine schemes. Then we
obtain an epimorphism Y — X in Shv with Y := | ;. X;. Note that Y xx Y is canonically
identified with |l; jer X xx X; (¢f. Lemma 1.4.2), so we obtain a coequalizer diagram in Shv
(¢f. Lemma 1.4.6):

Ui jer X xx X5 =2 L Xi = X (1.26)
On the other hand, Proposition 1.6.5 shows that each X; xx X, is again a scheme. Hence

we may find an open cover X, — X; xx X, (k € K;;) by affine schemes for each 4, j € I. Then
the following diagram is again a coequalizer in Shv:

U g Xije = i Xi — X (1.27)

keK;;
This gives a presentation of X as an iterated colimit (in Shv) of affine schemes.
Corollary 1.6.9. The functor Sch™™ — Sch admits a left adjoint.

Proof. Given a scheme X, the Hom-set® Hom(X,A}) has a ring structure induced from the
ring structure on A} (cf. Example 1.1.5). Note that if X is an affine scheme Spec(A), then
the ring Hom(X, AL) is identified with A.

We argue that the functor sending X to Spec(Hom(X,AZ)) induces a bijection:

Hom(Y, Spec(A)) = Hom(Spec(Hom(Y,A})), Spec(A)) (1.28)
for every Y € Sch and A € Ring. This will prove that the functor Spec(Hom(-, A})) provides

a left adjoint to the inclusion Sch*®  Sch.

8This is an object of Set since it can be realized as a subset of [];s; Hom(X;, A%) for an open cover of X
by affine scheme X; (i €I).
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To prove the bijectivity of (1.28), we may present Y as a coproduct of affine schemes as
in (1.27) and reduce to the case where Y is itself affine, where the assertion is clear. 0

Remark 1.6.10. Informally, the presentation (1.27) says that every scheme is a quotient
of a disjoint union of affine schemes by Zariski (i.e. disjoint union of open immersions)
equivalence relations.

This is analogous to the fact that every topological manifold is the quotient (in Top) of
a disjoint union of Euclidean spaces by equivalence relations defined by open subspaces.

Remark 1.6.11. In the colimit presentation (1.27), it is possible to choose X;j; such that
the morphisms X;;;, — X;, X5 — X; are standard opens for all 4,5 € I, k& € K;;. This
is due to the following fact (the “affine communication lemma”): given open immersions
Spec(A) — X, Spec(B) — X, the scheme Spec(A) xx Spec(B) admits an open cover by affine
schemes which are standard opens in both Spec(A) and Spec(B).

To prove this assertion, let us consider an open cover of Spec(A) xx Spec(B) by Spec(A;)
(i € I) where each Spec(A;) - Spec(A) is a standard open. Similarly, Spec(A) xx Spec(B)
admits an open cover by Spec(B;) (j € J) where each Spec(B;) - Spec(B) is a standard
open. The we claim that Spec(A;) xx Spec(B;) is a standard open in both Spec(A) and
Spec(B). Indeed, from the following two Cartesian squares of schemes:

Spec(A;) xx Spec(Bj) —— Spec(A;) ——— Spec(A;)

| | !

Spec(B;) —— Spec(A) xx Spec(B) + Spec(A)

we deduce that Spec(A;)xxSpec(B;) — Spec(B;) is a standard open. Hence the composition
Spec(A;) xx Spec(B;) — Spec(B;) — Spec(B) is a standard open. The same holds for the
composition Spec(A;) xx Spec(B;) — Spec(A;) — Spec(A). Finally, it is clear that the
collection Spec(A;) xx Spec(B;) - Spec(A) xx Spec(B) (¢ €I, j € J) is an open cover.

1.6.12. The presentation (1.27) of a scheme X has the slight disadvantage that it is not
“canonical”, i.e. it depends on the choice of an open cover by affine schemes as well as the
choice of such for each double overlap. We shall now present X as a colimit of affine schemes
in a canonical manner.

By formal nonsense, every object X € Shv is a colimit of representable sheaves. Namely,
if we consider the category (Schaﬁ) /x of affine schemes over X, then X is identified with the
colimit taken over it:°

li %X,
5,0 Spec(R) ~

If X is a scheme, then a much more economical presentation is available.

1.6.13. The standard Zariski site. Let X be a scheme. Denote by Xgz., the subcategory
of (Schaﬂ) /x whose objects are open immersions Spec(R) — X and whose morphisms are
standard opens Spec(R’) - Spec(R) over X.

Note that Xgz,; has the structure of a site, with covers given by the standard open covers.
Every Zariski sheaf over (Schaﬁ) /x thus restricts to a sheaf over Xgza;.

Corollary 1.6.14. Let X be a scheme. The canonical map below is an isomorphism in Shv:

lim Spec(R) = X. 1.29
5, Colm pec(R) (1.29)
in Xszar

9Caution: this colimit is indexed by a “large category”, i.e. its objects do not form an object of Set.
Consequently, limits/colimits in Set indexed by this category may not exist.
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Proof. Consider the coequalizer presentation (1.27) of X where we take I to be the set of all
open immersions X; — X where X; is affine, and K;; to be the set of all open immersions
Xijk = X;; where X;;, = X;, X, = X; are both standard opens (cf. Remark 1.6.11). Then
the coequalizer of the morphisms:

Lijer Xije = Lhia Xy
keK;

is identified with the colimit in (1.29). O
1.7. The “qcqs” condition.

1.7.1. There is a condition on schemes that allows one to replace the infinite colimit in
(1.27) by a finite one. It has a code name “qcqs” and stands for “quasi-compact and quasi-
separated”. We shall explain in this subsection what these terms mean.

We shall work in the category Sch of schemes and make heavy use of the fact that this
category admits finite limits (¢f. Proposition 1.6.5). A property P of morphisms of schemes
is stable under base change if given a Cartesian square in Sch:

Y/ f’ Xl

l | l (1.30)

y 44X

then f satisfies P implies that f’ satisfies P.

A property P of morphisms of schemes is local on the target if a morphism f:Y - X in
Sch and a family of morphisms X; — X (i € I) in Sch such that | |;;; X; - X is an epimorphism
of Zariski sheaves and each base change f; : Y xx X; — X, satisfies P, then so does f.

1.7.2. A scheme X is called quasi-compact if every open cover of X (¢f. §1.5.5) has a finite
subcover. Note that given a finite collection X; (i € I) of quasi-compact schemes, their
coproduct | J;g X; in Shv remains a quasi-compact scheme.

Lemma 1.5.6 implies that affine schemes are quasi-compact.

Lemma 1.7.3. Let X be a scheme. The following conditions are equivalent:
(1) X is quasi-compact;
(2) X admits a finite open cover by affine schemes.

Proof. (1) = (2). Take an arbitrary open cover of X by affine schemes. Since X is quasi-
compact, we find a finite subcover.

(2) = (1). Let X; = X (i €I) be a finite open cover by affine schemes. Let U; - X (j € J)
be an arbitrary open cover. For each i € I, the collection X; xx U; - X; (j € J) is an open
cover of X;. Since X; is affine, hence quasi-compact (¢f. Lemma 1.5.6), we find an open
cover X; xx U; = X; (j € J;) for a finite subset J; c J. Since I is finite, U; J; is also finite, so
U; = X (j €U; J;) is a finite subcover. O

1.7.4. We now define a relative version of quasi-compactness.

A morphism f :Y — X of schemes is called quasi-compact if for every R-point of X
(R € Ring), the fiber product Y xx Spec(R) is quasi-compact. By definition, the property P
= “quasi-compact” is stable under base change. The fact that it is closed under composition
follows from Lemma 1.7.3.

Note that the following assertions about a scheme X are equivalent:

(1) X is quasi-compact;
(2) some morphism from X to an affine scheme is quasi-compact;
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(3) any morphism from X to an affine scheme is quasi-compact.
Clearly, (3) = (2) = (1). To prove (1) = (3), we need to show that if X is quasi-compact,
then so is any fiber product of the form X xgpec(r) Spec(R'), but this follows again from
Lemma 1.7.3.

Lemma 1.7.5. Quasi-compactness of morphisms in Sch is local on the target.

Proof. Using Lemma 1.5.10, we reduce to the assertion for standard open covers: Given
a morphism f:Y — Spec(A) of schemes and a standard open cover Spec(A;) — Spec(A)
(i € I) such that each base change Y; := Y Xgpec(a) Spec(A;) is quasi-compact, then Y is
quasi-compact. This follows from Lemma 1.7.3, because each Y; admits a finite open cover
by affine schemes and I is finite. O

1.7.6. A morphism f:Y — X of schemes is called quasi-separated if the diagonal Ay:Y —
Y xx Y is quasi-compact. Since the property of being quasi-compact is stable under base
change, so is the property of being quasi-separated.

Let us show that being quasi-separated is closed under composition. This follows from
inspecting the diagram below associated to morphisms g:7Z - Y, f:Y — X of schemes:

72 i T — s Y

s [+

Zxx?Z — Y xxY
Finally, we say that a scheme X is quasi-separated if the morphism X — Spec(Z) is.
Lemma 1.7.7. Quasi-separatedness of morphisms in Sch is local on the target.

Proof. Let f:Y — X be a morphism of schemes and X; - X (i € I) be a family of morphisms
of schemes with base change f; : Y; := Y xx X; - X, for each ¢ € I. Then the following
diagram formed by their diagonals is Cartesian:

Ay,
Y, — Yixx, Y;

||

Ag
Y — YxxY

Furthermore, if | |;; X; - X is an epimorphism, then so is its base change [ l;; Y; xx, Yi =
Y xx Y (c¢f. Lemma 1.4.8). The assertion now follows from Lemma 1.7.5. g

Lemma 1.7.8. Let X be a scheme. The following conditions are equivalent:
(1) X is quasi-separated;
(2) for any open affine subschemes Uy, Us of X, their intersection Uy N Usy is quasi-
compact.

Proof. (1) = (2). Let Uy, Uy be open subschemes of X. The intersection Uy nUs := Uy xx Uy
is the fiber product:
U xx Uy — X
[
Ul X U2 — X x X

If Uy, U, are affine, then the same holds for U; x Us, hence for Uy xx Us as A is assumed
quasi-compact.
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(2) = (1). Take any open cover X; - X (i € I) by affine schemes. The hypothesis shows
that X; n X, is quasi-compact for each pair 4,5 e I. Then X; x X; - X x X (4,5 € I) is an
open cover, such that the base change X; nX; = (X; x X;) xxxx X is quasi-compact. Since
X; x X; is affine, this implies that X; N X; — X; x X; is a quasi-compact morphism, so we
may conclude by Lemma 1.7.5. O

1.7.9. Let X be a quasi-compact quasi-separated scheme. Then we may exhibit X as a finite
colimit of affine schemes in the category Shv.

Indeed, since X is quasi-compact, we may take a finite open cover X; - X (i € I) by affine
schemes (c¢f. Lemma 1.7.3). The intersection X;; := X; xx X; is quasi-compact since X is
quasi-separated (cf. Lemma 1.7.8), so we may take a finite open cover X - X;; (k € Ky5)
of each X;;. This allows us to present X as a coequalizer in Shv:

U g Xije = Lia Xs — X (1.31)
keK;;

where ther index sets I and K;; (4,7 €I) are all finite.
If X is in addition separated, then X;; is already affine (¢f. the proof of Lemma 1.7.8), so
X is the coequalizer in Shv of affine schemes:

Lijer Xij = Uia X = X (1.32)
Lemma 1.7.10. Given a diagram in Sch:

y L x
\lg
;

X

the following statements hold:

(1) if f is quasi-separated, then so is f’;

(2) if f is quasi-compact and g is quasi-separated, then f' is quasi-compact.
Proof. For (1), we note that Ay factors as Ay : Y - Y xx/ Y followed by the monomorphism
Y xx/ Y - Y xx Y. Thus, the base change of Ay along any morphism Spec(R) - Y xx/ Y

(R € Ring) is calculated by the base change of Ay.
For (2), we inspect the commutative diagram with two Cartesian squares below:

vy 1 ox

I |

Y — Yxx X — X’

| !

X 20 Xy X

where the middle composition is f’. Thus f’ is the composition of base changes of A, and
f, both being quasi-compact. O

Corollary 1.7.11. In the category Sch“®® of quasi-compact quasi-separated schemes, every
morphism s quasi-compact and quasi-separated.

Proof. This follows immediately from Lemma 1.7.10. d
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1.8. Local properties.

1.8.1. In this subsection, we systematically generalize a class of properties of rings and
of their morphisms to schemes. These properties are “Zariski local” (and for morphisms,
“Zariski local” both on the source and on the target.)

1.8.2. A property P of rings is called Zariski local if the following statements hold:

(1) if A e Ring satisfies P, then A; satisfies P for any f € A;
(2) if Spec(A;) - Spec(A) (i € 1) is a standard open cover where each A; satisfies P,
then A satisfies P.

Let P be a Zariski local property of rings. Then a scheme X is said to (locally) satisfy
P if for every open immersion Spec(A) — X, the ring A satisfies P. By (1) & (2), this is
equivalent to the existence of an open cover Spec(A;) - X (¢ € I) such that each ring A;
satisfies P (¢f. Remark 1.6.11).

In proving the following statements, we shall repeatedly use fact that given a morphism
M — N of A-modules and a standard open cover Spec(A;) — Spec(A) (i € I) such that each
base change M ®a A; - N ®a A; is injective (respectively, surjective, bijective), then the
same holds for M - N (¢f. Lemma 1.2.9).

Lemma 1.8.3. The property P = “reduced” is Zariski local. (Schemes locally satisfying P
are called reduced.)

Proof. (1) Let A be a reduced ring and f € A. Suppose that (a/f)" =0¢€ Ay, where a € A
and n € Zs1. Then a becomes nilpotent after multiplying by a power of f, so a =0.

(2) Suppose that Spec(A;) - A (i € 1) is a standard open cover where each A; is reduced.
Let /0 c A be its nilradical. Since A; is reduced, v0®x A; =0 for each i €I, s0o V0 =0. O

Lemma 1.8.4. The property P = “Noetherian” is Zariski local. (Schemes locally satisfying
P are called locally Noetherian.)

Proof. Note that the property of a module to be finite is Zariski local. Namely,

(1) if A is a ring and M is a finite A-module, then M/ is a finite A ;-module for every
feA;

(2) if Spec(A;) — Spec(A) (i €1) is a standard open cover and M € Mody is such that
each M ®x A; is a finite A;-module, then M is a finite A-module.

(1) is clear. To prove (2), note that for each i € I, we may find a morphism A®’¢ — M, where
J; is a finite set, that becomes surjective after tensoring with A;. The sum @;q A®’ - M
is thus surjective because it becomes so after tensoring with each A;.

To prove that Zariski locality of P = “Noetherian”, we apply the above observation to
ideals of A, using the fact that every ideal of Ay is of the form a; for an ideal a of A. [

1.8.5. A property P of ring maps is called Zariski local if the following statements hold:
(1) if A » B in Ring satisfies P, then Ay — By satisfies P for any f € A;
(2) given A,BeRing, f €A, geB, and a morphism Ay — B satisfies P, then so does the
composition:
A-A;->B-B,.
(3) given A — B in Ring and a standard open cover Spec(B;) — Spec(B) (i € I) where
each A — B; satisfies P, then A — B satisfies P;
Note that if a property P is stable under base change, then it satisfies (1). If a property
P is stable under composition and standard opens satisfy P, then P satisfies (2).
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1.8.6. Let P be a Zariski local property of ring maps. Let f:Y — X be a morphism of
schemes.

The morphism f is said to (locally) satisfy P if for every open immersions Spec(B) - Y,
Spec(A) — X such that the restriction of f to Spec(B) factors through Spec(A), the induced
ring map A — B satisfies P. If P is stable under base change, then the same condition holds
for any morphism Spec(B) — Y and open immersion Spec(A) - Y xx Spec(B).

By (1)-(3) above, this is equivalent to the existence of open covers Spec(B;) - Y,
Spec(A;) - X (i € I) such that the restriction of f to each Spec(B;) factors through Spec(A;),
and the induced ring map A; - B; satisfies P.

Remark 1.8.7. Let P be a Zariski local property of ring maps which is also stable under
base change, i.e. given a ring map A — B satisfying P and another ring map A — A’, the
induced map A’ — A’ ®4 B also satisfies P. Then the property of “(locally) satisfying P” for
morphisms of schemes is also stable under base change and local on the target (c¢f. §1.7.1).

Indeed, stability under base change is clear. To prove locality on the target, we may
use base change and Lemma 1.5.10 to reduce to the case of standard open covers, where it
follows from the definition of Zariski locality.

Lemma 1.8.8. The property P = “open immersion” is Zariski local.

Proof. Since the property of being an open immersion is stable under base change and
composition, it satisfies (1) & (2). Condition (3) is a special case of Corollary 1.5.11. O

Lemma 1.8.9. The property P = “flat” is Zariski local. (Morphisms of schemes locally
satisfying P are called flat.)

Proof. Flatness is stable under base change and composition and open immersions are flat,
so P = “flat” satisfies (1) & (2). Property (3) follows from the fact that injectivity of maps
of A-modules can be checked over a standard open cover of Spec(A). O

1.8.10. Recall that a morphism f : A — B in Ring is said to be of finite type if B is a
quotient of the A-algebra A[x1, -, 2, ] for some n € Zo. In this case, we also call B a finitely
generated A-algebra. Note that this condition is equivalent to the existence of a closed
immersion Spec(B) — AR} (n € Zyy).

A morphism f: A — B in Ring is of finite presentation if B is a quotient of the A-algebra
Alzxy, -, x,] for some n € Zyo by a finitely generated ideal I = (f1,, fin) (m € Zxp). In this
case, we also call B a finitely presented A-algebra.

Note that the condition for B to be finitely presented means precisely that Spec(B) is a
fiber product in Sch;gpec(a) of the following form, for some n,m € Zso:

Spec(B) — AR}

l l (1.33)

Spec(A) — AR

Indeed, being finitely presented is a priori equivalent to the existence of (1.33) where the
bottom morphism corresponds to the origin 0 : Spec(A) - AY', but any Cartesian square
(1.33) is isomorphic to one of this form, by applying a translation on A’}

Lemma 1.8.11. The following properties are Zariski local:

(1) P = “of finite type”;
(2) P = “of finite presentation”.
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(Morphisms of schemes locally satisfying P are called locally of finite type, respectively
locally of finite presentation.)

Proof. Both properties are stable under base change and composition, and standard opens
are of finite presentation because Ay = A[¢]/(ft - 1).

It remains to prove that given A — B in Ring and a standard open cover Spec(B;) —
Spec(B) (i € I) where each A — B, is of finite type (respectively, of finite presentation),
then A — B is of finite type (respectively, of finite presentation). This follows from a direct
argument, see [Stal8, 00EP] for details. O

Remark 1.8.12. If X is locally Noetherian, then any morphism f : Y — X is locally of
finite type if and only if it is locally of finite presentation. This follows from Hilbert’s basis
theorem, which asserts that if A is a Noetherian ring, then so is A[z] (¢f. [Stal8, 00FN]).

Lemma 1.8.13. Given a diagram in Sch:

y L x
N
X

the following statements hold:
(1) if f is locally of finite type, then so is f';
(2) if f is locally of finite presentation and g is locally of finite type, then f' is locally
of finite presentation.

Proof. Since these properties are local, this reduces to the case where all three schemes are
affine, say X = Spec(A), X’ = Spec(A’), and Y = Spec(B).

Statement (1) is clear. For statement (2): if f is the base change of some morphism A} —
AT (m,n € Zyp) along 0: Spec(A) - A} and there is a closed immersion ¢ : Spec(A’) - A}
(r € Zsp), then f'is the base change of the induced morphism AR — AT*" (identity on the
last r factors) along the morphism Spec(A’) - AT*", which is 0 on the first m factors and

¢ on the last r factors. O

Remark 1.8.14. Let X be a scheme.

Lemma 1.8.13 implies that in the category of schemes locally of finite type (respectively,
locally of finite presentation) over X, every morphism is locally of finite type (respectively,
locally of finite presentation).

In particular, this implies that the category of schemes locally of finite type (respectively,
locally of finite presentation) over X, viewed as a full subcategory of the category of schemes
over X, is closed under finite limits.

1.8.15. The following result characterizes morphisms locally of finite presentation in terms
of the underlying morphisms in PShv.
Proposition 1.8.16. Let f:Y — X be a morphism in Sch. The following are equivalent:

(1) f is locally of finite presentation;
(2) Y, viewed as a presheaf on (Schaﬁ)/x, commutes with filtered colimits, i.e. given any
cofiltered diagram Spec(R;) (i €J) of affine schemes over X, the natural map:

c%ijm Hom/x (Spec(R;),Y) — Hom/x(liigl Spec(R;),Y) (1.34)

s bijective.
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Proof. Let us first prove the assertion when f is a morphism of affine schemes.

For (1) = (2), we first observe that (1.34) is bijective for X = Spec(A) (A € Ring) and
Y := A} — Spec(A). Then we note that both sides of (1.34) commute with finite limits in
Y. Using the Cartesian square (1.33), we then see that (1.34) is bijective for any morphism
Spec(B) — Spec(A) locally of finite presentation.

For (2) = (1), we observe that given any morphism A — B in Ring, the category J of
factorizations A - R; — B, where A - R; is of finite presentation, is filtered (cf. Remark
1.8.14), and B is identified with colim;eg R;. Thus, if (1.34) is bijective, then the isomorphism
lim;es Spec(R;) = Spec(B) factors through some Spec(R;) — Spec(B). This implies that its
section Spec(B) — Spec(R;) is of finite presentation (c¢f. Lemma 1.8.13), so the composite
Spec(B) — Spec(R;) — Spec(A) is also of finite presentation.

Now, we treat the case of an arbitrary morphism f:Y — X in Sch. The implication (2)
= (1) is immediate, since the property of being locally of finite presentation is local on the
source and the target. Let us assume (1) and prove (2).

To prove that (1.34) is injective, we consider two morphisms g;, g; from Spec(R;) to Y
over X which are equalized over Spec(R). We want to show g; = g;. This may be checked
over any standard open cover of Spec(R;), so by localizing, we reduce to the case where
f:Y - X is a morphism of affine schemes.

To prove that (1.34) is surjective, we consider any morphism g : Spec(R) — Y over X. We
want to show that g factors through some g; : Spec(R;) = Y over X. Consider a standard
open cover of Spec(R;) - Spec(R) (j € J) where the restriction of g factors as:

Spec(B) c Y

>l

Spec(R;) — Spec(A) c X

for open affine subschemes Spec(B) c Y, Spec(A) c X. Say that R; is the localization of R
at some a; € R. Since J is finite, there is an object ¢ € J so that each a; lifts along R; — R.
Then R; 2 Ry; is the colimit of (Rir)a]. over i’ € Jif- (We used the observation that for any
i €J, the functor J;; — J is cofinal, so any colimit over J may be computed over J;/, cf. [Stal8,
0BUC].) By the affine case treated above, there is some i’ € Ji such that each g; factors
through Spec((Rs)q;). Thus, there is some i € J;; such that the factorizations glue to a
morphism Spec(R;») =Y through which g factors. O

1.8.17. Let f:Y — X be a morphism in Sch. We say that f is:

(1) of finite type if it is locally of finite type and quasi-compact;
(2) of finite presentation if it is locally of finite presentation, quasi-compact, and quasi-
separated.
In particular, if X is quasi-compact and f is of finite type, then Y is quasi-compact.
If X is quasi-compact and quasi-separated and X is of finite presentation, then Y is also
quasi-compact and quasi-separated.
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2. QUASI-COHERENT SHEAVES

Recall that for every ring R, there is an abelian category Modgr of R-modules. In this
section, we shall assign to each scheme X an abelian category QCoh(X) of “quasi-coherent
sheaves” which generalizes Modg for X = Spec(R). The assignment X —~ QCoh(X) will be
contravariantly functorial, i.e. to every morphism f :Y — X of schemes, there is a functor
called “pullback”:

#*: QCoh(X) - QCoh(Y).

When f is quasi-compact and quasi-separated, f* has a well-behaved right adjoint f,, called
“pushforward”. We will study the interaction between pullback and pushforward.

We will also define vector bundles over a scheme X as objects of QCoh(X) satisfying
certain properties; we think of vector bundles as vector spaces “parametrized by X”. When
X is locally Noetherian, QCoh(X) also contains the full abelian subcategory Coh(X) of
“coherent sheaves”, which can be thought of as vector bundles with singularities.

2.1. Definitions.

2.1.1. Geometry “relative to X”. In practice, we sometimes fix a “base” presheaf X and
restrict our attention to presheaves lying over X. (For example, the subject of complex
algebraic geometry has Spec(C) as the base.)

When doing so, we will invoke the canonical identification between PShv,x and the cate-

gory of presheaves on (Schaﬂ) /X

PShv/x = Fun(((Sch®®) x)°P, Set),

where a presheaf Y € PShv x is sent to the functor Y,x carrying Spec(R) — X to the set of
morphisms Spec(R) — Y over X, and the converse sends a functor Y,x to the presheaf Y
whose R-points consist of an R-point of X and an element of Y,x(Spec(R) — X).

If X = Spec(A) for some A € Ring, then (Schaﬂ)/x is opposite to the category of A-algebras,
so PShvx is identified with Fun(Ring,, Set).

2.1.2. Let X be a scheme. There is a presheaf of rings Ox on the category (Schaﬁ)/x of affine
schemes over X. It sends an affine scheme Spec(R) over X to the ring R, and a morphism
Spec(R’) — Spec(R) of affine schemes over X to the induced ring map R — R/.

Note that Ox is representable by a scheme over X, namely A} := AL x X. In particular,
Ox is a sheaf with respect to standard open covers (cf. Proposition 1.2.7). We call Ox the
structure sheaf of the scheme X.

2.1.3. Given a scheme X, an Ox-module is a presheaf M on (Schaﬁ)/x equipped with a
module structure over Ox, i.e. its value M(R) at every affine scheme Spec(R) over X has an
R-module structure, and for every morphism Spec(R’) - Spec(R) of affine schemes over X,
the induced map M(R) — M(R’) is R-linear. Write Mode, for the category of Ox-modules.

An Ox-module is called quasi-coherent if for every morphism Spec(R’) — Spec(R) of
affine schemes over X, the R-linear map M(R) - M(R’) induces a bijection:

M(R) ®g R' = M(R'). (2.1)

Lemma 2.1.4. Let X be a scheme. Every quasi-coherent Ox-module is a sheaf with respect
to standard open covers.

Proof. This is a restatement of Lemma 1.2.9. g
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2.1.5. Because of Lemma 2.1.4, we call quasi-coherent Ox-modules quasi-coherent sheaves.
They form a category QCoh(X), where a morphism M — N in QCoh(X) is a morphism
of presheaves on (Sch®™) /x such that for every affine scheme Spec(R) over X, the induced
morphism M(R) - N(R) is R-linear.

Given an R-point z of X, we write M|, for the R-module M(R) and call it the fiber of M
at the R-point z.

2.1.6. Tautologically, QCoh(X) may be presented as a 2-limit of the categories of modules
indexed by affine schemes over X:
QCoh(X) > lim  Modg, (2.2)
Spec(R)—-X
where the functor Modg — Modg: for each morphism of affine schemes Spec(R’) - Spec(R)
over X is given by (-) ®g R’.

Concretely, the equivalence (2.2) means that a quasi-coherent sheaf on X is a compatible
system (M]|,) of R-modules for each R-point z of X. Here, being “compatible” means that
for each morphism of affine schemes Spec(R’) — Spec(R) over X, there is an isomorphism
of R’-modules ¢, , : M|, ®g R’ 2 M|, for 2’ := z|g/, making the following diagram commute
for any morphisms of affine schemes Spec(R") — Spec(R’) - Spec(R) over X:

(M|, ®r R') ®r' R” —= M|, ®ps R”

lﬁ lgow/,wu

Pz’

M|z or (R' ®@r R") ———— M|~

Remark 2.1.7. It follows from (2.2) that QCoh(X) admits colimits, and the canonical
functor QCoh(X) — Modg, for any affine scheme Spec(R) over X, preserves colimits.

Indeed, this is a general phenomenon: given a diagram of categories C; (i € J) where each
C; admits colimits and the functor €; - C;, for each morphism ¢ — j in J, preserves colimits,
then the 2-limit € :=lim;cy C; admits colimits and the natural functor ¢ — C;, for each i € J,
preserves them.

Remark 2.1.8. The category QCoh(X) has the structure of a symmetric monoidal category
(¢f. [Stal8, OFFJ]). The monoidal product is given by tensor product of R-modules for any
R-point z of X, i.e. for any M, N € QCoh(X), we set:

(M®N)|y := M| ®r N
(In making this definition, we invoked the canonical isomorphism of R’-modules:
(Mo ®r N|2) @& R’ = Ml ®rr Ml

for any morphism Spec(R’) - Spec(R) and ' := x|g.) The monoidal unit of QCoh(X) is the
structure sheaf Ox.

Lemma 2.1.9. Let X = Spec(A) be an affine scheme. There is a canonical equivalence:
QCoh(X) > Mod,. (2.3)

Proof. This follows from the equivalence (2.2), because the index category has an initial
object given by the identity on Spec(A). O

2.1.10. Let f:Y — X be a morphism of schemes. Then there is a functor:
1 QCoh(X) - QCoh(Y), (2.4)
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Indeed, for each M € QCoh(X), f*M is defined by (f*M)l, = M|z, for any R-point y of
Y. For each morphism M — N in QCoh(X), f*M — f*N is given by the R-linear map
M| ¢y = Nlg(y) for any R-point y of Y.

We call (2.4) the pullback functor of quasi-coherent sheaves. Note that it preserves colimits
(¢f. Remark 2.1.7) and is symmetric monoidal (¢f. Remark 2.1.8, [Stal8, OFFY]).

Remark 2.1.11. When Y = Spec(R) is affine, then f*M is the R-module M|; under the
equivalence of Lemma 2.1.9. (The difference in thinking of f*M as the pullback or the fiber
at an R-point is purely psychological.)

2.1.12. Any construction on modules which behaves functorially under tensor product of
rings can be carried out on QCoh(X).

For example, given M € QCoh(X) and n € Zy;, we define A" M € QCoh(X) by (A" M)|,, =
A" (M];) for any R-point 2 of X. This is well-defined because given a ring map R - R’ and
2 = x|ps, there holds A" (M];) ®r R’ 2 A" (M]r)-

The analogous construction can be carried out for the symmetric power Sym” M.

2.1.13. Vector bundles. Let us now define the notion of vector bundles.

Let X be a scheme. A quasi-coherent Ox-module is called free if it is isomorphic to @, Ox
for some set I. If T is in addition finite, then M is called finite free and the cardinality [I] is
called the rank of M.

A quasi-coherent Ox-module is called locally free (respectively, finite locally free) if there
exists an open cover f; : X; - X (i € I) such that each pullback (f;)*M is free (respectively,
finite free). If each pullback (f;)*M is finite free of the same rank r, we also say that M is
finite locally free of rank r.

We shall also call finite locally free Ox-modules vector bundles over X and those of rank
1 line bundles over X. Let us denote the full subcategory of vector bundles by:

Vect(X) c QCoh(X).

2.1.14. Almost every good property enjoyed by finite modules holds because of Nakayama’s
lemma, so let us review it.

Proposition 2.1.15 (Nakayama’s lemma). Let A be a ring, a c A be an ideal, and M be a
finite A-module. Suppose that M ®a Aja = 0. Then there exists some f € A whose image in
A/a is invertible and My = 0.

Proof. Let x1,--,2, € M be a set of generators. The hypothesis M ® A/a = 0 means that
aM = M. Thus each x; is of the form ¥7_, a;jz; for a;; € a. Denote by T : A®" - A®" the
endomorphism e; — ¢e; — Z?:l a;je;. Then the composition of T with the map A®" — M,
e; = x; vanishes. Let adj(T) be the adjugate of T, i.e. the dual of A"™' T under the pairing
A®" @ A"H(A®") > A"(A®") 2 A. Then T -adj(T) = det(T) -1, so:

det(T)-z;=0for all 1 <i<n.
Since det(T) € 1+ a, we see that f := det(T) suffices. O

Remark 2.1.16. We state Nakayama’s lemma in this form because it has a clear geometric
interpretation: if the pullback of M to the closed subscheme Spec(A/a) of Spec(A) vanishes,
then it already vanishes over some standard open Spec(A ) containing Spec(A/a) (i.e. the
closed immersion Spec(A/a) — Spec(A) factors through Spec(Ay)).

Note that if A is local and a is the maximal ideal, then any such f is a unit, so the
conclusion My 2 0 is equivalent to M = 0.
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Lemma 2.1.17. Let X = Spec(A) be an affine scheme. Then finite locally free Ox-modules
are precisely the finite projective A-modules under the equivalence (2.3).

Proof. Let M be an A-module.

Assume that M is finite locally free. Let us prove that M is finite projective. The
assumption implies that we have a standard open cover Spec(A;) - Spec(A) (¢ € I) such
that each M; := M ®4 A, is finite free. This implies that M is a finite A-module, since being
finite is a Zariski local property (cf. the proof of Lemma 1.8.4). It remains to prove that M
is a projective object of QCoh(X), i.e. Hom(M,-) preserves surjections.

We first note that M is a finitely presented A-module, i.e. it is the cokernel of some map
A®" 5 A®" Indeed, choose a surjection A®" — M and write K for the kernel, we show that
K is finite by proving that each K; := K ®a A; is a finite A;-module. Since M; is free, K; is
a direct summand of A®", hence finite.

Since M is a finitely presented A-module, we have a natural isomorphism:

Hom(M,N) ®4 A; > Hom(M, N ®4 A;). (2.5)

The condition of being finite locally free now implies that MY @2 N — Hom(M, N) is bijective:
this reduces to the bijectivity of M} ®, N; — Hom(M;,N;) using (2.5), which holds because
M; is finite free. In particular, Hom(M,-) preserves surjections.

Let us now prove the converse. Assume that M is finite projective. Note that this implies
that S™'M is a finite projective S™'A-module for any multiplicative subset S ¢ A. Indeed,
this follows immediately from the equivalence being finite projective and being a direct
summand of a finite free module.

For any prime p, we shall prove that M, is finite free. Indeed, we may lift a basis of
M, ®a, r(p), for k(p) := A, /pA,, to generators of the Ay-module M, by Nakayama’s lemma
(¢f. Proposition 2.1.15). This gives a surjection Affr — M, for some r € Zyo. Because M,
is projective, the kernel of this surjection is a finite A,-module whose base change to x(p)
vanishes, so by Nakayama’s lemma again it vanishes, giving A?T 5 M,.

Next, we claim that there exists f ¢ p such that M is a finite free A y-module. Indeed,
M, is a filtered colimit of M; over f ¢ p. This implies that for some f ¢ p, we have a
morphism Aj?’“ — M which becomes an isomorphism after localizing at p. This implies that
its cokernel, being a finite A -module which vanishes after localizing at p, vanishes after
possibly modifying the element f ¢ p. Thus we obtain a surjective map A;‘?r — My for some
f ¢ p. However, because My is projective, the kernel is again a finite A y-module which
vanishes after localizing at p.!° By modifying the element f ¢ p once more, we obtain an
isomorphism A?’" = M.

Thus, for each prime p of A, we have found an element f ¢ p such that My is finite free.
The collection of open immersions Spec(A ) - Spec(A) over such f forms an open cover,
so M is finite locally free. O

2.1.18. Coherent sheaves. If X is a locally Noetherian scheme, we define Coh(X) to be the
full subcategory of QCoh(X) consisting of objects M such that M|, is a finite R-module for
every R-point z of X. Objects of Coh(X) are called coherent sheaves.

If X = Spec(A) is affine, then Coh(X) is equivalent to category of finite A-modules under
the equivalence (2.3).

1ONote a subtlety in this proof: we are using the projectivity of M rather than the projectivity of
Mp. In general, a finite A-module M whose localization at every prime p is free may not be locally free
(¢f. MathOverflow, Question 13817).
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Thus, for a locally Noetherian scheme X, we have three categories:
Vect(X) c Coh(X) c QCoh(X).

Remark 2.1.19. If X is not locally Noetherian, the above definition of Coh(X) needs to be
modified in order to yield an abelian category (cf. [Stal8, 01BU]). We will always restrict
to locally Noetherian schemes when we speak of coherent sheaves.

2.2. Zariski descent.

2.2.1. We shall prove that the assignment X — QCoh(X) satisfies Zariski descent. This will
be deduced from two facts: the Zariski descent of the category of sheaves (cf. Proposition
1.4.13) and the fact that quasi-coherence is a “local property”.

Let us consider a family of morphisms X; — X (i € I) of schemes. Denote by QCoh({X;})
the category of descent data for quasi-coherent sheaves with respect to X; — X (i € I).
Namely, an object of QCoh({X;}) is a collection M; € QCoh(X;) (i € I) equipped with
isomorphisms of their pullbacks to X;; := X; xx Xj:

Pij : Mi|xij i MJ|X” € QCOh(XU)
for each 4, j € I, making the following diagram commute (cf. §1.4.10):

Pi2®ij
Mi|Xijk — Mj|Xuk
) \ lpég%-k (26)
P13®Pik
M, Xijk

A morphism ({M;},{wi;}) = ({N:},{¢s;}) is a collection of morphisms M; — N; in
QCoh(X;) (i €I) which intertwine ¢;; with ¢;; for each 4, j € L.

Proposition 2.2.2 (Zariski descent of QCoh). Let X; - X (i €1) be a family of morphisms
in Sch such that | ;g X; = X is an epimorphism in Shv. Then the pullback functor defines
an equivalence of categories:

QCoh(X) > QCoh({X;}).
2.2.3. Before proving Proposition 2.2.2, let us first observe that Proposition 1.4.13 im-
plies descent for sheaves of Ox-modules, i.e. Ox-modules whose underlying presheaves on
(Sch*™) /x are Zariski sheaves.
Indeed, we may view Ox as a ring object in Shv,x. Then the category of sheaves of Ox-
modules is equivalent to the category of Ox-module objects in Shv/x, i.e. objects M € Shvx
equipped with structural morphisms in Shv x:

0:X-M
add :MxM->M
act: Ox xM->M
satisfying the axioms of a module.
Since the assignment X + Shv/x satisfies descent (cf. Proposition 1.4.13), so does the

assignment of the category of sheaves of Ox-modules to each X € Sch, by applying descent
to the underlying object of Shv x together with the above structural morphisms.

Proof of Proposition 2.2.2. Using descent of sheaves of Ox-modules (c¢f. §2.2.3), it remains
to prove that the condition of quasi-coherence also descends. Namely, given a sheaf of
Ox-modules M such that M|x, is quasi-coherent for each i € I, we want to prove that M
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is quasi-coherent. Since | ;g X; — X is an epimorphism, this reduces to the case where
X =Spec(R) and X; = Spec(R;) — Spec(R) (i € I) is a standard open cover, and it is enough
to prove that the induced map:

M(R) ®g R" = M(R’)
is an isomorphism for any ring map R - R’.

As usual, we write R;; == R; ®r R;, R} := R; ®g R/, and jo :=R;; ®@r R’ (4,7 €I). Since
M is a sheaf, we have a morphism of equalizers:

M(R) — @ia M(R;) = ®; ja M(Ri;)

L | o

M(R') — @ia M(R}) = @, ja M(R];)
Because M|gpec(r,) is quasi-coherent, we have natural isomorphisms:
M(R;) ®@r R’ = M(R]), M(Ry;) ®r R’ = M(R})).

Thus, it suffices to prove that the top row of (2.7) remains an equalizer after applying
() ®r R’. This amounts to the injectivity of the induced map of R’-modules:
M(R)®r R > PM(R;) r R’ (2.8)
iel
To prove that (2.8) is injective, it is enough to do so after applying (-) ®& R} for each j €1
(¢f. Lemma 1.2.9). Let us calculate M(R) ®g R} and M(R;) ®r R.
Since R » R; is flat, M(R) ®r R; is the equalizer of the two parallel arrows:

BiaM(R;) ®r Rj = @, i,aa M(Ri,4i,) ®r R;. (2.9)

Since Mlgpec(r,) is quasi-coherent, the Rj-module M(R;)®rR; is identified with M(Ry;), and
likewise M(Rlllz) ®Rr Rj = M(Riligj) for Riligj = Rilig ®Rr Rj. Since Spec(Rij) - Spec(Rj)
(¢ €I) is a standard open cover, the equalizer of (2.9) is identified with M(R;) (cf. Lemma
1.2.9). Thus, we find:

M(R) ®r R} = M(R) ®r R; ®r, R
> M(R;) ®r, R} > M(R).

On the other hand each M(R;) ®g R/, is identified with M(R;) ®r, R};, which is identified
with M(R};) by quasi-coherence of M|gpec(r,)-

Altogether, each map M(R) ®r R; -~ M(R;) ®r R} induced from (2.8) by tensoring with
R} is given by the restriction M(R}) - M(Rj;). Since Spec(R;;) — Spec(R}) (i €I) is a
standard open cover, M(R}) — @i M(R};) is injective, as desired. O

2.2.4. Let us now give a presentation of QCoh(X) in the same spirit as Corollary 1.6.14.
Recall the category Xszar whose objects are open immersions Spec(R) - X (R € Ring) and
whose morphisms are standard opens Spec(R’) — Spec(R) over X.
The pullback functor gives rise to a functor:
QCoh(X) > lim Modg. (2.10)

Spec(R)—-X
in Xszar

Corollary 2.2.5. For any scheme X, the functor (2.10) is an equivalence.
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Proof. The collection of all open immersions Spec(R) — X (R € Ring) satisfies the hypothesis
of Proposition 2.2.2. Thus, QCoh(X) is equivalent to the category consisting of collections
Mg € Modg for every open immersion Spec(R) — X, together with isomorphisms:

YRR * j\/[R|Spec(R)><XSpec(R’) > MR’|Spec(R)xxSpec(R’) (211)

for every pair of open immersions Spec(R), Spec(R’) — X, satisfiying the cocycle condition
for every triple of open immersions of affine schemes into X.
In this description, the functor (2.10) sends ({Mg},{yr r'}) to the collection of R-

modules Mg equipped with the isomorphism ¢gr r, : Mr ®r Ry 5 Mg, for every standard
open Spec(Ry) - Spec(R) over X.

The assertion that (2.10) is an equivalence amounts to the assertion that the family of
isomorphisms (2.11) is uniquely determined by its subfamily where R’ is a localization of R
at some f € R. To prove this, we cover each Spec(R) xx Spec(R’) by open affine subschemes
Spec(R;) (i € I) which are standard opens in both Spec(R) and Spec(R’) (¢f. Remark 1.6.11).
The cocycle condition for the triple Spec(R), Spec(R;), Spec(R’) - X ensures that

SDR:R’|SDGC(R1') = (@leRi)_l “PRR;-

Finally, pr,r’ is uniquely determined by its restrictions ¢r Rr/|spec(r,) Over ¢ € I, by Proposi-
tion 2.2.2 applied to the family of morphisms Spec(R;) - Spec(R) xx Spec(R’) (ieI). O

Corollary 2.2.6. Let X be a scheme. Then QCoh(X) is an abelian category.

Proof. We use Corollary 2.2.5 and the fact that a limit of abelian categories A := lim; A;,
where the functors A; — Aj, for each morphism 7 — j in I, preserve finite limits and
colimits, remains abelian. (For preservation of finite limits, we use the fact that localization
is exact.) O

Remark 2.2.7. The proof of Corollary 2.2.6 shows that the finite limits and (arbitrary)
colimits in QCoh(X) are computed by those in Modg over Spec(R) € Xgza,-

In particular, we see more generally that given an open immersion f : U — X, the pullback
functor f*: QCoh(X) - QCoh(U) is exact.

2.2.8. We shall adopt terminology from abelian categories to describe QCoh(X): given a
monomorphism M; — M, we call My a subsheaf of M; given an epimorphism M — My, we
call My a quotient sheaf of M.

Note that the properties of being monomorphism and epimorphisms can be verified over
an affine open cover of X, where they amount to injectivity and surjectivity of module maps.
In view of this fact, we also call monomorphisms in QCoh(X) injections and epimorphisms
in QCoh(X) surjections.

Remark 2.2.9. As a consequence of Corollary 2.2.5, any construction on modules compat-
ible with localization at an element also carries over to quasi-coherent sheaves (generalizing
the discussion of §2.1.12).

For example, given X € Sch and a morphism f: M; — My in QCoh(X), the image of f is
the subobject N ¢ My such that N|, is the image of M|, = My, for every open immersion
2 : Spec(R) — X. Note that this description is not valid for arbitrary R-points of X.

2.3. Pushforward.

2.3.1. Given a morphism f:Y — X of schemes, we obtain a pullback functor:

£*: QCoh(X) - QCoh(Y). (2.12)
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Since both QCoh(X) and QCoh(Y) have arbitrary colimits and f* preserves them, the
adjoint functor theorem®! implies that (2.12) admits a right adjoint, called pushforward:

f+ : QCoh(Y) — QCoh(X). (2.13)

2.3.2. Global sections. Let us first understand f, when the target X is affine. Suppose that
X = Spec(A) for some ring A, then QCoh(X) is canonically equivalent to Moda (¢f. Lemma
2.1.9), so f.N can be viewed as an A-module for any N € QCoh(Y). Its underlying set is
computed by:

HOI’H(A, f*N) i> HomQCoh(y) (f*A, N)
= Homqcon(y) (Ov, N)

Thus, an element of f,N corresponds to a morphism Oy — N in QCoh(Y). Thus we call
f+N the A-module of global sections of N. It has the following alternative notations:

L'(Y,N):=H(Y,N) := £.N.

Remark 2.3.3. As a special case, if f : Spec(B) — Spec(A) is a morphism of affine schemes,
then f, corresponds to the functor Modg — Moda of restriction of scalars. Indeed, this is
the right adjoint of the functor (-) ®s B: Moda — Modg, which corresponds to f*.

Remark 2.3.4. In general, the formation of f, is not “local on the target”, which causes
headache. For example, consider the Cartesian square of schemes:

Lier Alz N0 — Lier AlZ

b

ALNO —5 AL

where [ is an infinite set, f identifies each copy of Alz with the target, and the lower horizontal
arrow corresponds to the localization of Z[z] at . Then f, carries the structure sheaf to
the Z[x]-module ], Z[z], whereas (f). carries the structure sheaf to [, Z[z,271]. The
natural map of Z[z,z~']-modules below is not bijective:

(T12[=]) ®z Z[z,z7'] - I1 Z[z,x7'].
i€l iel
2.3.5. The base change morphism. We shall prove that a finiteness condition on f—being
quasi-compact and quasi-separated—prevents the pathology of Remark 2.3.4. Before stating
the result, let us first explain the general paradigm of “base change” morphisms.
Given a Cartesian diagram in Sch:

Y 25 Y

lf, lf (2.14)

X 24X

HIn order to apply the adjoint functor theorem, we need to know that QCoh(X) and QCoh(Y) are
presentable, which involves a set-theoretic condition (“accessibility”) in addition to containing all colimits.
This set-theoretic condition is indeed satisfied (cf. [Stal8, 077K]). However, its proof is not trivial, so it
is somewhat disingenuous to invoke this result. In fact, we will only use f. when f is quasi-compact and
quasi-separated, in which case we will construct it explicitly (cf. Proposition 2.3.9).
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there is a canonical natural transformation of functors from QCoh(Y) to QCoh(X"), obtained
from the isomorphism f,(g')s — g+(f")« by adjunction:

9 fe = () (g")" (2.15)
The natural transformation (2.15) is called the base change morphism.

Remark 2.3.6. The base change morphism (2.15) is compatible with concatenation of
Cartesian squares. Namely, given Cartesian squares:

Y b ey 4y

X"l x4 X
Then pulling back (2.15) by h yields a natural transformation:
(gh)" fe 2 h*g" fo > R (f1)(g")"
= (f")«(R)"(g") = (f")(g'h)", (2.17)

where we use the base change morphism for the left square in (2.16). The natural transfor-
mation (2.17) equals the base change morphism associated to the outer rectangle of (2.16).

Lemma 2.3.7. Suppose that g is a flat morphism of affine schemes (cf. Lemma 1.8.9) and
f is quasi-compact and quasi-separated. Then (2.15) is an isomorphism.

Proof. We write g as Spec(A’) - Spec(A) for a flat ring map A — A’. Since the target of
f is affine, Y is itself quasi-compact and quasi-separated. Thus we may present Y as the
coequalizer of affine schemes:

Ll i jer Spec(Bijr) = L Spec(B;) — Y
keK;
where the index sets I and K;; (¢, € I) are finite (¢f. §1.7.9).

Given N € QCoh(Y), we may apply descent of QCoh (¢f. Proposition 2.2.2) to the cover
Spec(B;) = Y (i €I) to express the A-module f.N as the equalizer of the morphisms:

@it Nlspee(s) = GBki,%’(eI Nlspec(Bi;r) (2.18)
The functor g* corresponds to () ®a A’. Since A - A’ is flat, (f+N)®a A’ is identified with
the equalizer of the tensor product of (2.18) with A’, which is identified with (f").(¢')*N
by covering Y’ with Spec(B; ® A”) and their overlaps by Spec(B;;r ®a A'). O

2.3.8. We shall use Lemma 2.3.7 to calculate f, for any quasi-compact quasi-separated
morphism of schemes f:Y — X.

Recall that QCoh(X) is identified with the limit of the categories Modg over Spec(R) - X
in Xgzar (¢f. Corollary 2.2.5). Identifying f.N, for N € QCoh(Y), amounts to giving an R-
module (f.N)|, for each open immersion x : Spec(R) — X together with compatibility
isomorphisms:

(SN @ R = (£ N) (2.19)
for each standard open Spec(R') - Spec(R) with =’ := z|r:.
For each z : Spec(R) — X, we write Y, := Y xx Spec(R) and N|y, € QCoh(Y,) for the
pullback of N to Y.
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Proposition 2.3.9. Let f: Y — X be a quasi-compact quasi-separated morphism of schemes.
Let N e QCoh(Y). Then f<N corresponds to the family of R-modules:

(fsN)la = T(Ye, Nly,)

for each open immersion x : Spec(R) — X, with compatibility (2.19) supplied by the base
change isomorphism (cf. Lemma 2.3.7).

Proof. This family defines an object of QCoh(X) by the equivalence of Corollary 2.2.5. It
remains to supply a natural bijection for each M € QCoh(X):

Homqcon(y) (f*M,N) is lim Hom(M,, T(Y, Ny, )) (2.20)
pec —

in Xszar

By adjunction for the projection map f, : Y, — Spec(R), we have:
Hom (M, (Y., Ny, ) = Homgcon(y, ) ((f2)* (M]2), Nly, )-

Note that (f;)*(M]|,) is identified with the pullback of f*M to Y,. Moreoever, for any
N1, Nz € QCoh(Y), the limit of Homqcon(y,)(Nily,,Naly,) over Xgza, is identified with
Homqcon(y)(N1,N2) by descent of QCoh (cf. the proof of Corollary 2.2.5). This yields the
desired isomorphism (2.20). O

Corollary 2.3.10. Let f:Y — X be a morphism in Sch. If f is quasi-compact and quasi-
separated, then f.:QCoh(Y) — QCoh(X) commutes with filtered colimits.

Proof. The assertion reduces to the case where X = Spec(A) is an affine scheme (¢f. Propo-
sition 2.3.9). Thus Y is quasi-compact and quasi-separated, so f.M = IT'(Y,M) is given by
a finite limit in Moda (c¢f. the proof of Lemma 2.3.7). We use the fact that filtered colimits
commute with finite limits in Moday. O

2.3.11. Projection formula (baby version). We shall use the above corollaries to prove an
extremely useful result concerning the interaction between f. and f*.

Namely, let f:Y — X be a morphism of schemes. Let M € QCoh(X) and N € QCoh(Y).
Then there is a morphism in QCoh(X) natural in M and N:

M ®ox f+N = f*(f*M ®0y N) (2.21)

Indeed, this is the map obtained by adjunction from the composition:

Moy fuN) = [ Mo, f* N~ [*Meo, N.
Proposition 2.3.12. Let f: Y — X be a morphism of schemes. Suppose that f is quasi-
compact quasi-separated, and M is locally free. Then (2.21) is an isomorphism.

Proof. Since f is quasi-compact quasi-separated, we may reduce to the case where X =
Spec(A) is affine (¢f. Proposition 2.3.9) and M is free. Note that (2.21) is an isomorphism
for M = A, and its two sides, viewed as functors in M € Moda, commute with direct sums
because they commute with finite sums and filtered colimits (¢f. Corollary 2.3.10). O

2.4. Relative spectra.

2.4.1. A morphism f : Y — X of schemes is called affine if for every R-point z of X
(R € Ring), the fiber product Y xx Spec(R) is an affine scheme.

The notion of affine morphisms can be viewed as a relative version of the notion of affine
schemes. We shall use the pushforward functor on QCoh to construct a relative version of
the adjunction between schemes and affine schemes (cf. Corollary 1.6.9).

First, we note that pushforward along an affine morphism is especially pleasant.
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Lemma 2.4.2. Let f:Y — X be an affine morphism in Sch. Then:
(1) the functor f,: QCoh(Y) - QCoh(X) is exact;
(2) the natural morphism (2.21) is an isomorphism for any M € QCoh(X), N € QCoh(Y):

M ®ox f*N - f*(f*M ®oy N)

Proof. Since affine morphisms are quasi-compact quasi-separated, both assertions reduce to
the case where X = Spec(A) is an affine scheme (cf. Proposition 2.3.9).

Since f is affine, Y = Spec(B) is also affine, so f. corresponds to restriction of scalar along
the ring map A — B, which is exact. This proves (1). Statement (2) follows from the fact
that given M € Moda and N € Modg, the natural map:

M®s N> (MesB)es N
is an isomorphism. O

2.4.3. Given a symmetric monoidal category O, we write CAlg(O) for the category of com-
mutative monoids in 0. (If we write ® for the monoidal product of O and 1 € O for its
monoidal unit, then objects of CAlg(O) are objects A € O equipped with maps A® A - A
and 1 - A satisfying the unitality, associativity, and commutativity axioms.)

Note that Ring is equivalent to CAlg(Modz), by definition. More generally, the category
Ringg, of R-algebras (R € Ring) is equivalent to CAlg(Modg).

2.4.4. Given a scheme X, an object of CAlg(QCoh(X)) is called a quasi-coherent sheaf of
Ox-algebras. We shall define a relative spectrum functor:

CAlg(QCoh(X))°? — Sch/x, B~ Specx(B), (2.22)

where an R-point of the presheaf Specy(B) consists of an R-point x of X, together with a
morphism z*B — R of R-algebras. The natural map Specy (B) — X is the one remembering
the R-point z. (For X = Spec(Z), we recover the functor Spec.)

2.4.5. We will prove in Proposition 2.4.6 below that Specy(B) is indeed a scheme, so the
functor (2.22) is well-defined. But first, we note that the construction of Specy(B) as a
presheaf over X is functorial in X in the following sense.

Given any morphism of schemes f:Y — X, we have a Cartesian diagram in PShv:

Specy (f*B) — Specx(B)

l l (2.23)

y — 1 ox

Indeed, given an R-point y of Y with induced R-point = := f(y) of X, the datum of an
R-algebra morphism y* f*B — R is equivalent to z*B — R.

Proposition 2.4.6. Let X be a scheme and B be a quasi-coherent Ox-algebra. Then:
(1) the presheaf Specx(B) is a scheme;
(2) the structural morphism Specy (B) - X is affine.

Proof. The fact that Specy(B) is a Zariski sheaf follows from descent of QCoh (c¢f. Propo-
sition 2.2.2). For (1), it remains to construct an open cover of Specx(B) by affine schemes.
The Cartesian diagram (2.23) shows that if f: Y — X is an open immersion (respectively,
surjective on field-valued points) of schemes, then the same holds for the induced morphism
Specy (f*B) - Specx (B) in Shv.
Now, if X = Spec(A) is affine, then B can be identified with an A-algebra B, and Specx (B)
is represented by Spec(B). Combined with the above observation, this shows that given an
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open cover f; : X; - X (i € I) where each X; is an affine scheme, Specy, ((f;)*B) — Specx (B)
(i €I) is an open cover by affine schemes.
The above paragraph also proves (2). O

Remark 2.4.7 (Total spaces of vector bundles). Let us give an application of Proposition
2.4.6, by representing vector bundles by schemes.
Recall that every M € QCoh(X) has an underlying object of Shv/x, carrying an R-point
z of X (R € Ring) to the set underlying x*M € Modg.
We claim that when M is finite locally free, this object of Shv x is representable by a
scheme, called the total space of M. Indeed, we set:
V(M) := Specx (Sym M) € Schyx,

where MY is the Ox-module dual of M. By definition of Specy, an R-point of V(M) consists
of an R-point x of X together with a morphism Symg(z*MY) - R in CAlg(Modg), or
equivalently a morphism z*M" - R in Modg, i.e. an element of x*M.

2.4.8. Given a morphism f : Y — X of schemes, the pullback functor f* : QCoh(X) —
QCoh(Y) is symmetric monoidal. By formal nonsense, this implies that the adjunction
(f*, f+) lifts to an adjunction on the category of commutative monoids:

f*: CAlg(QCoh(X)) 7= CAlg(QCoh(Y)): f. (2.24)

Explicitly, the algebra structure on f,R (for R € CAlg(QCoh(Y))) can be described as
follows. The mutiplication is the map f.R ®oy f+R — f+R, which under adjunction, corre-
sponds to the composition:

T (feR®0y f+R) = [ f.R®0y [ f+R > R®0, R > R,
and the unit Ox — f,R corresponds to f*Ox — Oy - R.

Remark 2.4.9. If f: Spec(B) — Spec(A) is a morphism of affine schemes, then (2.24) is
the familiar adjunction between A-algebras and B-algebras (viewed as under-categories of
Ring), where the right adjoint is the restriction of structure map along A — B, and the left
adjoint is taking pushout along A — B.

2.4.10. We view Oy as an object of CAlg(QCoh(Y)), so f+Ovy is an object of CAlg(QCoh(X)).
The association from f:Y — X to f,Oy defines a functor:

Sch/x — CAlg(QCoh(X))°?, (f:Y =>X)~ f.0y. (2.25)

Proposition 2.4.11. Let X be a scheme. Then:
(1) (2.25) is the left adjoint of (2.22);
(2) (2.22) is fully faithful;
(3) given a morphism f:Y — X in Sch, the unit of the adjunction:
Y — Specx (f+Ov) (2.26)
18 an isomorphism if and only if f is affine.

Proof. Statement (1) means that we have a natural bijection:

Homcag(qcon(x)) (B, £+ Oy ) = Homsen . (Y, Specy (B)), (2.27)

for each B € CAlg(QCoh(X)) and morphism f:Y — X in Sch. If Y = Spec(R) is affine, then
the bijection (2.27) is a restatement of the definition of Specy (B) as a presheaf. The general
case follows from this one, by writing Y as a colimit of affine schemes Spec(R) indexed by
Yszar (¢f. Corollary 1.6.14, Corollary 2.2.5).
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For statement (2), we need to prove that the co-unit for each B € CAlg(QCoh(X)):
B - f.0yv, (2.28)

where Y := Specy (B), is an isomorphism. Since f is affine, we may reduce to the case where
X =Spec(A) is affine (cf. Proposition 2.3.9). In this case, B corresponds to an A-algebra B
and (2.28) is the identity on B.

For statement (3), if (2.26) is an isomorphism, then f is clearly affine. Conversely, assume
that f is affine. To prove that (2.26) is an isomorphism, we may reduce to the case where
X =Spec(A) is affine (c¢f. Proposition 2.3.9). In this case, Y corresponds to an A-algebra B
and (2.26) is the identity on Spec(B). O

Remark 2.4.12. The adjunction of Proposition 2.4.11 shows that every morphism f:Y —
X in Sch canonically factors as:

y L xr

\ lg with X := Specy (f+Oy),
f
X

where g is affine and f’ has the property that the unit Ox: — (f).Oy is an isomorphism in
CAlg(QCoh(X")), as it becomes an isomorphism upon applying g.. This is called the Stein
factorization of the morphism f.

Corollary 2.4.13. Let X be a scheme. Then the functor (2.22) is an equivalence between
CAlg(QCoh(X))°P and the category of affine morphisms Y — X.

Proof. This is a formal consequence of Proposition 2.4.11. O

Corollary 2.4.14 (Affine pushfoward commutes with any base change). Given a Cartesian
square (2.14) in Sch, where f is affine, the base change map (2.15) is an isomorphism.

Proof. Since f is affine, in particular quasi-compact quasi-separated, we reduce to the case
where g : Spec(A’) - Spec(A) is a morphism of affine schemes (¢f. Proposition 2.3.9). Then
Y is an affine scheme Spec(B) for an A-algebra B. The functor f, corresponds to the
restriction of scalar functor Modg — Mody, so the base change isomorphism follows from
the canonical isomorphism of A’-modules:

Nes A’ 5> NegB,
for B':=B®j A’. O
Corollary 2.4.15. Affineness of morphisms in Sch is local on the target (cf. §1.7.1).

Proof. We use Lemma 1.5.10 to reduce to the case of standard open covers: Given a standard
open cover Spec(A;) - Spec(A) (i € I) and a morphism of schemes f:Y — Spec(A) such
that each base change f; : Y := Y xgpec(a) Spec(A;) — Spec(A;) is affine, we want to prove
that f is affine. Since quasi-compactness and quasi-separatedness are local on the target
(¢f. Lemma 1.7.5, Lemma 1.7.7), we know that f is quasi-compact quasi-separated.

By Proposition 2.4.11, f is affine if and only if the unit morphism Y — Spec(f.Oy) is
an isomorphism. Since f is quasi-compct quasi-separated, the formation of f,Oy is local on
the target (c¢f. Proposition 2.3.9), so the unit morphism is an isomorphism after base change
to Spec(A;) for each i € I. We conclude because being an isomorphism is local on the target
(¢f. Lemma 1.4.8). O
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2.5. Closed immersions.

2.5.1. A morphism f:Y — X of schemes is a closed immersion if for every R-point = of
X (R € Ring), the fiber product Y xx Spec(R) is an affine scheme Spec(R’) such that the
induced ring map R — R’ is surjective.

In particular, closed immersions are affine and monomorphisms. They are closed under
composition and stable under base change, and satisfy the permanence property.

We call a morphism f:Y — X of schemes a locally closed immersion if it can be factored
as f =7j-1i, where i is a closed immersion and j is an open immersion.

2.5.2. Given a scheme X, the equivalence of Corollary 2.4.13 restricts to an equivalence
between closed immersions f : Y — X and quotient algebras of Ox. To a closed immersion
f:Y > X, we may associate a short exact sequence in QCoh(X):

0—-7J-0x —>f*OY —>0, (2.29)

where J is called the “ideal sheaf” associated to Y.
Conversely, we may call an ideal sheaf any subobject of Ox in QCoh(X), so we also obtain
an equivalence between ideal sheaves over X and closed immersions with target X.

Lemma 2.5.3. The property of being a closed immersion is local on the target.

Proof. Using Corollary 2.4.15 and Lemma 1.5.10, we reduce to the following assertion: Given
a standard open cover Spec(A;) — Spec(A) (i € I) and a morphism Spec(B) — Spec(A)
such that each base change Spec(B ®a A;) — Spec(A;) is a closed immersion, then so is
Spec(B) — Spec(A). This follows from the fact that surjectivity of module maps can be
verified over a standard open cover. O

2.5.4. Infinitesimal neighborhoods. Given a closed immersion f :Y — X corresponding to
the ideal sheaf J c Ox and an integer n > 0, we obtain an ideal sheaf g+l ¢ Ox.

More precisely, for any open immersion z : Spec(R) — X, we set J"™1|, to be the ideal
I" ¢ R for I:=J|,. This construction is compatible with localization because I" c R is the
image of the multiplication map I®g---®g I — R (for n+1 copies of I), so "1 is well-defined
as a subobject of Ox in QCoh(X) (¢f. Remark 2.2.9).

The closed immersion Y("**1) - X corresponding to the ideal sheaf 3"*! is called the nth
order infinitesimal neighborhood of Y.

Remark 2.5.5. Let f: Y - X be a closed immersion corresponding to the ideal sheaf
Jc Ox. Then f*J (2 J/3? viewed as an object of QCoh(Y)) is called the conormal sheaf of
the closed imersion f.

2.5.6. Scheme-theoretic images. Let f : Y — X be a morphism of schemes. Then the
category of closed immersions Z — X such that f factors through Z has an initial object,
called the scheme-theoretic image of f.

Indeed, f induces a morphism Ox — f,Oy in CAlg(QCoh(X)), and we let Z be closed
subscheme of X corresponding to its kernel. Then f factors through Z by the adjunction of
Proposition 2.4.11. The universal property of Z is clear.

We can use scheme-theoretic images to express quasi-compact locally closed immersions
as an open immersion followed by a closed immersion, i.e. swapping the order of the com-
position.

Lemma 2.5.7. Let f:Y — X be a quasi-compact locally closed immersion. Then f factors

iz i . ) . . . .
as Y > Y — X, where j is an open immersion and i is closed immersion.
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Proof. Let Y denote the scheme-theoretic image of f. Then clearly i is a closed immersion.
It remains to prove that j is an open immersion.

Since f is quasi-compact quasi-separated, the formation of f,Oy, hence Y, is local on
X. Write f as a composite Y - U - X where Y — U is an closed immersion and U - X
is an open immersion. The base change Y xx U is thus the scheme-theoretic image of
Y 2 Y xx U - U, which is already a closed immersion. Thus Y x XU =Y, so Y - Y is the
base change of U — X, thus an open immersion. O

2.5.8. Complements. Next, we relate closed immersions and open immersions (c¢f. §1.5.2).
For this, we need the notion of “complements” of a subsheaf.

Let C be a site such that the image of the Yoneda embedding C°® — PShv(C), ¢ ~
Hom(-,¢) is contained in Shv(€). Recall (c¢f. Proposition 1.2.7) that this is indeed the case
for the site Sch®? of affine schemes equipped with standard open covers.

Let Y - X be a morphism in Shv(€). Denote by X \Y the subfunctor of X, where a
section x € X(¢) (c € €) belongs to (X N Y)(c) if Y xx Hom(+,¢) is isomorphic to the empty
sheaf @. We call X \'Y the complement of Y in X.

Caution: (X \Y)(c) can be very different from X(c) \ Y(c).

Lemma 2.5.9. Let Y - X be a morphism in Shv(C). Then X \Y is a sheaf.

Proof. Let us begin the proof with some preliminary observations.
Claim: given a cover ¢; - ¢ (i €I), the induced morphism in Shv(C):
| JHom(-,¢;) > Hom(-, ) (2.30)
i€l
is an epimorphism. Indeed, it suffices to show that for every morphism d — ¢, one can find
a cover d; - d (j € J) such that each d; - ¢ factors through some ¢; (¢f. Remark 1.3.18).
For this, we may take the cover d; — d (i € I) given by d; := ¢; x. d.

Claim: given an epimorphism @ — Z for any Z € Shv(C), Z is isomorphic to @. Indeed, the
morphism @ — Z is a monomorphism, because @ - @ xz @ is an isomorphism as one checks
for PShv(C) and uses the fact that sheafification commutes with finite limits (¢f. Corollary
1.3.21). Thus @ — Z is both a monomorphism and an epimorphism, hence an isomorphism
(¢f. Remark 1.3.18).

With the above two claims established, let us prove that X \Y is a sheaf. Since it is a
subfunctor of X, we only need to prove that given a cover ¢; — ¢ (i € I) such that the fiber
product Y xx Hom(+, ¢;) 2 @ for each i € I, there holds Y xx Hom(, ¢) 2 @. To prove this, we
consider the epimorphism (2.30). The hypothesis and universality of colimits (c¢f. Lemma
1.4.2) implies that

Y xx (|_|Hom(:, ¢;)) = @.
i€l
However, Y xx Hom(-, ¢) receives an epimorphism from the left-hand-side, because epimor-
phisms are stable under base change (¢f. Lemma 1.4.8). The second claim then implies that
Y xx Hom(:, ¢) is isomorphic to @. O

Remark 2.5.10. The formation of complements commutes with base change. More pre-
cisely, given morphisms Y - X and X’ - X in Shv(€) and setting Y’ :=Y xx X', we have a
Cartesian diagram in Shv(C):

X'\NY — X

L

X\NY — X



SCHEME THEORY 1 41

Indeed, this is because for any ¢ € € equipped with a morphism Hom(, ¢) - X’ (i.e. a section
of X" at ¢), we have an isomorphism of sheaves:

Y’ xx: Hom(-,¢) = Y xx Hom(, ¢).

Proposition 2.5.11. The complement X \Z of a closed immersion i:7Z — X of schemes is
an open immersion.'?

Proof. By Lemma 2.5.9, X\Z is a Zariski sheaf. To prove that the monomorphism X\7Z — X
is an open immersion, we may reduce to the case where X = Spec(A) is affine and ¢ is the
closed immersion defined by the ideal a ¢ A. We claim that the collection of standard opens
Spec(Ay) = Spec(A) (f € a) covers X \ Z.

Indeed, each Spec(A ) - Spec(A) factors through X\Z because A ;®4 A/a = 0. Moreover,
any field-valued point Spec(K) — X\ Z, viewed as a ring map A — K, satisfies K®a A/a 20,
so the image of some f € a in K is nonzero, and the map A — K must factor through Ay. O

Example 2.5.12. For any A € Ring and f € A, the morphism Spec(A/f) — Spec(A) is a
closed immersion. Its complement is the standard open Spec(Af) - Spec(A). Indeed, given
any R-point of Spec(A), the condition Spec(R) xgpec(a) Spec(A/f) = @ is equivalent to that
R/fR =0, or that f is a unit in R. In particular, this shows that every standard open is an
open immersion.

For any set I, we have the closed immersion 0 : Spec(Z) — AL corresponding to the ideal
(x;) i of Z[z;];e1. We call this closed immersion the origin of the affine space AIZ.

Remark 2.5.13. An open immersion can be the complement of many distinct closed im-
mersions. For example, the open immersion Ay \ 0 - A is the complement of the closed
immersions Spec(Z[z]/x™) = Spec(Z[z]) = A}, for any integer n > 1.

2.5.14. Separatedness. A morphism f:Y — X of schemes is called separated if the diagonal
Ar:Y - Y xx Y is a closed immersion.

A scheme X is called separated if the structural morphism X — Spec(Z) is separated.
Note that affiness of the diagonal A : X — X x X implies that U xx V is affine for any affine
schemes U, V mapping to X (¢f. the proof of Lemma 1.7.8).

Lemma 2.5.15. Separatedness of morphisms in Sch is local on the target.

Proof. This follows from the corresponding property of closed immersions (¢f. Lemma 2.5.3)
as in the proof of Lemma 1.7.7. O

Corollary 2.5.16. Affine morphisms of schemes are separated.

Proof. Since separatedness is local on the target (c¢f. Lemma 2.5.15), it suffices to prove that
affine morphisms with affine targets are separated. This amounts to the assertion that for
any ring map A — B, the multiplication map B ® o B — B is surjective. 0

Remark 2.5.17. In the category Top of topological spaces, A : T — T x T is closed if and
only if T is Hausdorff. Thus one may view separatedness as an analogue of the Hausdorff
condition for schemes.

For example, the scheme X := X;j Uy X2 obtained by gluing X; := X5 := A} along the
same open immersion U := A, ~ 0 - A} (cf. Example 1.6.3) is not separated. Indeed, write
j1: X1 = X, jo : X9 > X for the natural morphisms. Then the base change of A: X - X x X
along (j1,j2) : Ay - X x X is the morphism Aj \ 0 - A}, which is not a closed immersion.

L2Wwe will prove the converse later on: Any open immersion f : U — X of schemes is the complement
of a closed immersion. Caution: The complement of an open immersion of schemes may not be a closed
immersion. In fact, it may not even be a scheme.
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3. CONSTRUCTIONS

Generally speaking, there are two ways of constructing interesting schemes:

(1) writing down a functor of points and proving that it is a scheme;
(2) taking an existing scheme equipped with some auxiliary data (e.g. a group action,
a closed subscheme, etc.) and construct a new scheme from them.

We shall use the first approach to construct the projective space Py. Then we discuss
quotients by group actions. (This is a delicate topic in general, but we shall confine ourselves
to some special cases where the Zariski site is sufficient.) Notably, we will realize P}, as the
quotient of A%” \ 0 by the scaling action of G, := GL1, thus also constructing Py following
the second approach above.

This second construction of P, generalizes to the so-called “Proj” construction. We shall
use it to construct the “blow-up” of a scheme along a closed subscheme. We discuss the
notions of effective Cartier divisors and more generally, regular closed immersions.

Finally, we explain the construction of a quasi-coherent sheaf canonically associated to
a morphism of schemes, called the sheaf of “differential forms”. We explain the notion of
smoothness and how to perform differential calculus on schemes using infinitesimals.

3.1. The projective space.

3.1.1. Let X be a scheme. Recall the notion of vector bundles (¢f. §2.1.13). A morphism of
vector bundles ¢ : V1 — Vj is called a subbundle if it is injective as a morphism of QCoh(X)
and the quotient Vo/V; is also a vector bundle. If V; is of rank one, we also call it a line
subbundle of V.

Subbundles can be pulled back: Given a morphism of schemes f:Y — X and a subbundle
V1 — V5 over X, we obtain a subbundle f*V; — f*V5. Indeed, this is because the short
exact sequence in QCoh(X):

0—>’\71—>Vg—>\72/\71—>0
remains exact after applying f*, thanks to the fact that Vo/V; is locally free.

Remark 3.1.2. The pullback of an injective morphism of vector bundles may fail to be
injective. For example, let X = AL =~ Spec(Z[z]) and consider the injective morphism of
(free, rank-1) Z[x]-modules:
202) > Z[z], foaf. (3.1)
The pullback of (3.1) to the origin is the zero map on Z.
3.1.3. Fix an integer n > 0. Define the presheaf:
P : Ring = (Sch™™)°P — Set

to be the functor assigning to Spec(R) the set of rank-1 subbundles of R®("*1) | and assiging
to a morphism of affine schemes f: Spec(R') - Spec(R) the pullback map f*.

For any ring R, we also write P} := P} x Spec(R) and call it the n-dimensional projective
space over R.

Proposition 3.1.4. The presheaf Py, is a scheme.

3.1.5. In order to prove that Py is a scheme, we need to know that given a morphism of
vector bundles, the condition of being an isomorphism is “open on the base”.
Here is the precise formulation.

Lemma 3.1.6. Let X be a scheme and ¢ : V1 = Vs be a morphism of vector bundles. The
subfunctor U c X, whose R-points (for R € Ring) are morphisms x : Spec(R) - X such that
¥ x* My - "My is an isomorphism, is an open immersion.
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FIGURE 1. In differential geometry, the n-dimensional complex projective
space is defined to be the set of 1-dimensional subspaces of C®(™*1)  We
are realizing the same idea here: We want an R-point of P} to be a family
of such parametrized by Spec(R), and this is exactly the data encoded by
the line subbundle £ of R®(m+1),

Proof. Since the property of being an open immersion is local on the target (cf. Corollary
1.5.11), we reduce to the case X = Spec(A) and ¢ : A®™ - A®"2 is a morphism of finite free
A-modules. If r; # 79, then U = @ is an open subscheme of Spec(A).

If ry = ro =7, then U represents the functor whose R-points (for R € Ring) are homomor-
phisms A — R such that the induced map ¢gr : R®" — R®" is invertible, i.e. det(pRr) is a
unit in R. This functor is represented by the localization of A at det(¢p). O

Remark 3.1.7 (Vanishing loci). Let X be a scheme and £ be a line bundle over X. Given a
global section s € T'(X, £), we can use Lemma 3.1.6 to define the non-vanishing locus Xszo,
i.e. the open subscheme of X over which s: Ox — £ is an isomorphism.

Note that we can also define the vanishing locus X4-g, i.e. the closed subscheme X,_ of
X where an R-point = of X belongs to X,-g if £*s = 0. The fact that X, - X is a closed
immersion can be verified locally over X, where we may trivialize £ and reduce to Example
2.5.12. The same argument yields an isomorphism of open subschemes of X:

Xasn = X\ Xocp.
3.1.8. We now return to the proof that Py is a scheme.

Proof of Proposition 3.1.4. The fact that P is a sheaf follows from descent of quasi-coherent
sheaves (c¢f. Proposition 2.2.2) and the fact that being finite locally free can be checked over
a standard open cover. It remains to construct an open cover of P, by affine schemes.

For each i (0 <i<n), let U; c Py denote the subfunctor where an R-point of Py, belongs
to U; if the inclusion £ - R®(™*1D is an isomorphism onto the ith summand:

L — R@(n+1)

|- (3.2)
N

Then U; - P is an open immersion by Lemma 3.1.6.
We claim that U, is an affine scheme. In fact, we shall construct an isomorphism U; — A7.
Indeed, for every R € Ring, submodules of R®(™*1) making the composed arrow in diagram
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(3.2) an isomorphism are in bijection with morphisms R - R®(™*1) which are identity on
the ith summand. The latter are in bijection with tuples a; (0 <j <n, j #14) of elements of
R, i.e. R-points of A% = Spec(Z[xo, -, Ti, -y Tn])- O

3.1.9. Homogeneous coordinates. Let O]p;(l) denote the line bundle over Py whose value
at any R-point £ (R € Ring) is the line bundle £¥ € Modg.'®> We also write O(1) := Opy (1)
to ease the notation and set O(d) := O(1)®¢ for any integer d.

Dualizing the inclusion £ — R®(™*1D yields a surjection R®(™*1) - LY of R-modules.
Restriction to each coordinate yields a morphism R — £Y (0 < ¢ <n). These morphisms are
functorial in R, so they define global sections:

X;eI'(Pz,0(1)), 0<i<n. (3.3)

We call the sections (3.3) the homogeneous coordinates on Py. The intuitive meaning is that
they are the (n + 1) coordinate functions on the line £.

Remark 3.1.10. In terms of the homogeneous coordinates (3.3), the proof of Proposition
3.1.4 yields the following information. For each 0 < ¢ < n, it constructs an isomorphism:

If we write A% = Spec(Z[xg, -, T, -, pn]), then (3.4) carries each x; (j #14) to the global
section X;'X; € I'((P%)x,20,0), which is well-defined as X; : O - O(1) is an isomorphism

over (P)x,z0. We view (3.4) as the “standard affine charts” of P7.

3.1.11. Global generation. Let X be a scheme.
Given a morphism f : X — 7, we obtain a line bundle Q := f*O(1) over X equipped with
global sections s; := f*X; of Q (0 <4< n). The induced morphism in QCoh(X):

(50,7 8n) : O;’;("”) -~ Q (3.5)

is surjective, as it pulls back to the surjection R®(™*1) - £V over any R-point of X.
Conversely, given a line bundle Q over X and global sections s; of Q (0 <7 < n), we say that

805+, Sn globally generate Q if the induced map (3.5) is surjective. Such data (Q, sg,, $n)
induce a morphism f : X - P sending every R-point x of X to the dual of the pullback of
(3.5) to Spec(R), which yields a line subbundle £ := Q¥ of R®("+1),
Lemma 3.1.12. Let X be a scheme. Let Q be a line bundle over X and sg,--, s, € ['(X,Q)
globally generate Q. The following are equivalent:

(1) the induced morphism f:X —P% is a closed immersion;

(2) for each 0 <i<n, the nonvanishing locus Xs, .o is affine and the induced ring map:

Z[£Ov"3@v"'7$n] _>F(Xs,;¢0ao)v Zj ’—’3;153‘
18 surjective.

Proof. By Lemma 2.5.3, f is a closed immersion if and only if its base change to each

(P%)x,+0 is a closed immersion. Since the formation of nonvanishing loci is compatible with
base change, we have:

X0 = X xpz (PZ)x,20-
Condition (2) is a restatement that X, .0 = (P )x,<0 is a closed immersion for each 0 <i<n
(¢f. Remark 3.1.10). O

13Note the dualization!
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Example 3.1.13 (Segre embedding). Given integers m,n > 0, we consider the line bundle
over P7' x [P, given by the external tensor product:
0(1)=0(1) = p;0(1) @ p30(1), (3.6)

where pi,p2 are the projections of P’ x P, onto its two factors.
The line bundle (3.6) is globally generated by sections X;Y; for homogeneous coordinates
X; over P and Y; over P, (0<i<m, 0<j<n). We argue that the induced morphism:

Py xPy Py, r:=(m+1)(n+1)-1,
is a closed immersion using Lemma 3.1.12.

Indeed, for each i, j, the nonvanishing locus of X;Y; is identified with (IPy')x, 0% (P%)v,+0
which is affine. Its ring of functions is the polynomial ring in generators (X;) !X and
(Y;)7'Y; (3" # 4, j° # j), which receives a surjection from the polynomial ring in Z;
((i',5") # (4,5)) sending each Z; ;s to (X;Y;) XY, . For example, we find X;'X;, with the
choice i’ # i, j' = j and Y;'Y; with i’ =i, j" # j.

3.1.14. We shall now calculate the global section of O(d) over P for any ring R.

Note that by taking tensor product and sums of the homogeneous coordinates (3.3), any
homogeneous polynomial P(Xy, -, X,,) € R[Xo, -+, X;,] of degree d defines a section:

Denote by R[Xp, -, X, ]a the R-module of homogeneous polynomials of degree d in the
variables Xg, -+, X,,. The sections (3.7) induce a map of R-modules:

R[Xo, Xy ]a = T(Pg, 0(d)). (3.8)
Proposition 3.1.15. The map (3.8) is an isomorphism for any n >0 and d € Z.
Proof. We shall describe O(d) by its descent data along the cover:
AL =2 (PR)x,20 > PR (0<i<n).

Indeed, the restriction O(d)|y, of the line bundle O(d) to U, := (PR )x,+0 is trivialized by
the section X¢: O —» O(d). For each 0 <1, <n, the identity on O(d)|y,, corresponds to the
isomorphism of the trivial line bundle over U;; = U; xpp Uj:

Pij : OU7‘,|U7‘,j i) OUj |U,,j7 f g f : (X;1X2)d
We now identify each U; with A}, = Spec(R[xzg, -, Z;, -, zn]) by sending z; to the global
section X;'X; over U; (j #i). By the description of the descent data of O(d), an element of
(PR, 0(d)) consists of polynomials:
Fi € RIX; Ko, -, X 1K, XX, with £+ (X71X,)" = ;.

We can compare f; and f; by viewing them as elements of R[Xo, -+, X, ]x,x,. This proves
that deg(f;) < d for each ¢ and all f;’s are determined by fy, which corresponds to the
homogeneous polynomial fj - Xg of degree d. O

Example 3.1.16 (Hypersurfaces). Fix a field k. For any integer d > 0, we call a closed
subscheme X of P} a degree-d hypersurface if it is the vanishing locus of some nonzero
element f e HY(P?,0(d)). Degree-1 hypersurfaces are also called hyperplanes.

Note that two nonzero elements f1, f € H*(P?, O(d)) define the same hypersurface if and
only if they differ by multiplication by some A € k£~ 0. Indeed, by working on each chart
(PY)x,+0, this reduces to the statement that two nonzero elements of k[xzo, -, %, -, &n]
generate the same ideal if and only if they are scalar multiples of one another (by unique
factorization).
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3.2. Torsors.

3.2.1. In this subsection, we shall make sense of the following two statements (both natural
from the point of view of differential geometry):

(1) the category of rank-r vector bundles with isomorphisms on a scheme X is equivalent
to the category of “GL,.-principal bundles”;

(2) the projective space Py is the “quotient” of the affine space without origin by the
scaling action of G,, := GLy:

PE 5 (AR 0)/Gn.

To do so, we need to the notion of “torsors”. These are general concepts which make
sense on any site, so we shall explain them in this generality.

3.2.2. Denote by Grp the category of groups.

Let € be a site. A sheaf of groups on € is a functor C°P — Grp satisfying the sheaf axiom,
cf. §1.3.3. (Since the forgetful functor Grp — Set preserves limits, this condition is equivalent
to the underlying Set-valued presheaf being a sheaf.).

It is also helpful to think of sheaves of groups on € as group objects in Shv(C), i.e. G €
Shv(@) equipped with maps G x G — G and * — G satisfying the group axioms.

Remark 3.2.3. Since the sheafification functor PShv(€) — Shv(€) commutes with finite
limits (¢f. Corollary 1.3.21), the sheafification of a presheaf of groups yields a sheaf of groups.
In particular, given a morphism f: H — G of sheaves of groups, we can define its image
f(H) c G via sheafification of the presheaf image, and this yields a subsheaf of groups of G.
Consequently, the notion of exact sequences makes sense for sheaves of groups.

3.2.4. Given a sheaf of groups G and a (Set-valued) sheaf X on €, a G-action on X consists
of a morphism in Shv(C):
XxG->X, (z,9)~x-g (3.9)

satisfying z-e=x and (z-¢1)-92 =2 (g1 - g2), where g1, ga (respectively, x) are elements of
G(c) (respectively, X(c)) at any c € C, and e € G(c) is the unit.
Note that the action map (3.9) induces a map in Shv(€):

XxG->XxX, (x,9)~ (z,2-g). (3.10)
We say that the G-action on X is:
(1) free if (3.10) is a monomorphism;
(2) simply transitive if (3.10) is an isomorphism.
Remark 3.2.5. We have defined a right G-action. One can also define a left G-action, but
the two notions are equivalent: The category of X € Shv(C) equipped with a left G-action

is equivalent to that of X € Shv(€) equipped with a right G-action, compatibly with the
forgetful functors to Shv(C).

3.2.6. A G-torsor on C is an object X € Shv(€) equipped with a G-action such that:
(1) the G-action on X is simply transitive;
(2) for any c € C, there exists a cover ¢; — ¢ (i € I) such that X(¢;) + @ for all ¢ € L.
(Elements of X(c) are typically called sections of X over c € C.)
A morphism of G-torsors is a morphism f : Y — X of sheaves which is G-equivariant,
i.e. f(y-g)=f(y)-gforany yeY(c), g€ G(c), ce €. Thus, any morphism of G-torsors is
automatically an isomorphism, so G-torsors on € form a groupoid.
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Example 3.2.7. The sheaf of groups G, equipped with the G-action defined by multiplica-
tion from the right, is a G-torsor. It is called the trivial G-torsor.

Note that a G-torsor X is trivial (i.e. isomorphic to the trivial G-torsor) if and only if
I'(€,X) is nonempty. Indeed, any z € I'(C,X) exhibits an isomorphism G = X, g ~ x - g of
G-torsors. We shall also say that x trivializes the G-torsor X.

Remark 3.2.8. For any X € Shv(C), G restricts to a sheaf of groups on the site C/x.

We shall call a G-torsor on €/x a G-torsor over X. It may be regarded as an object
Y € Shv(C) equipped with a structure morphism Y — X admitting local sections and a
G-action inducing an isomorphism over X:

YxG>YxxY, (y.9)~ (v.y-9)

Given a morphism f : X’ - X in Shv(€) and a G-torsor Y — X, the pullback f*Y := Y xx X'
is naturally a G-torsor over X’. The association from X € Shv(C€) to the groupoid of G-torsors
satisfies descent along epimorphisms, by Proposition 1.4.13.

3.2.9. Given a morphism f : H — G of sheaves of groups on € and an H-torsor Y, we obtain
a G-torsor Y x G as sheafification of the presheaf assigning to ¢ € € equivalence classes of
pairs (y,9) (y € Y(c¢), g € G(c)) subject to the equivalence relation:

(y-h,g) = (y,h-g), for any h e H(c).

The G-action on Y x® G is defined by multiplication from the right on the G-factor.
We call Y x® G the G-torsor induced by Y along the morphism f. We shall also call it
change of structure groups.

Remark 3.2.10. If G is a sheaf of abelian groups on €, then the groupoid of G-torsors on
C inherits a symmetric monoidal structure. The monoidal product is given by

X1 ® Xy = (Xy x Xp) x9*¢ @G,

i.e. the G-torsor induced from the G x G-torsor X; x Xy along the map GxG — G, (g1,92) ~
9192. (This is a group homomorphism because G is abelian.) The monoidal unit is given by
the trivial G-torsor.

3.2.11. Quotients. Quotients of free group actions fall under the paradigm of §1.4.3.
Namely, consider a site €, sheaf of groups G on €, and an object X € Shv(C) equipped
with a G-action. If the action is free, then (3.10) defines an equivalence relation:

R:=XxGcXxX.

In this case, we shall write the quotient as X/G € Shv(C) (instead of X/R.)

Here is how quotients and torsors are related: The morphism X — X/G realizes X as a
G-torsor over X/G (c¢f. Remark 3.2.8). Indeed, the G-action on X is as given. It is simply
transitive (over X/G) by the Cartesian diagram (1.18) in Shv(€), which reads as follows in
our situation:

XxG— X

|

X — X/G

The fact that X - X/G admits local sections follows from the fact that it is an epimorphism
in Shv(C) (cf. Remark 1.3.18).
From this description, we obtain the following characterization of X/G.
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Lemma 3.2.12. Let C be a site, G be a sheaf of groups on €, and X € Shv(@) be equipped
with a free G-action. Then for every Y € Shv(C), the following groupoids are canonically
equivalent:
(1) the (discrete) groupoid of morphisms Y — X/G;
(2) the groupoid of pairs (P, [), where P is a G-torsor on'Y and f: P - X is a G-
equivariant morphism.

Proof. The functor (1) - (2) sends Y — X/G to P := Y xx,q X, i.e. the base change of the
G-torsor X > X/G to Y, and f: P — X the projection onto the second factor.

The inverse functor (2) — (1) is constructed as follows. Given (P, f), the morphism
P > Y is an epimorphism in Shv(€), so Y is identified with the quotient of the equivalence
relation P xy P ¢ P x P (¢f. Lemma 1.4.6). We obtain the morphism Y — X/G by passing
to the quotients of the following morphism of equivalence relations:

P sy P L) X w0 X

| !

Pxp L x i x

We omit verifying that the two functors are mutual inverses. 0

Remark 3.2.13. Here is a direct proof that the groupoid of pairs (P, f) in Lemma 3.2.12(2)
is discrete: Any automorphism o : P = P with f = f -« must be the identity, as a(z)=z-g
implies that f(x) = (f-a)(z) = f(x)-g, so g = e by freeness of the G-action.

3.2.14. Torsors on schemes. Let us now return to scheme theory.

We consider the site € := Sch™ of affine schemes where covers are given by standard
Zariski covers. Sheaves on this site are the Zariski sheaves introduced in §1.2. For a sheaf
of groups G and X € Shv, we may consider the category of G-torsors over X. If we wish to
emphasize the role played by standard Zariski covers, we shall say “Zariski G-torsors” over
X rather than simply “G-torsors”.

3.2.15. Group schemes. A group object of Sch is called a group scheme. Equivalently, a
group scheme is a Grp-valued presheaf Ring — Grp whose underlying Set-valued presheaf is a
scheme. A group scheme is an affine group scheme if the underlying scheme is affine. Thus,
an affine group scheme is a group object of Sch?ff,

For an affine group scheme G = Spec(R), we may write the unit Spec(Z) - G and the
multiplication morphisms G x G — G in terms of the ring R and obtain the co-unit and
co-multiplication morphisms in Ring:

e:R—-Z, p:R-Ro®R,

satisfying the duals of the unit, associativity, and inverse axioms. A ring R equipped with
such structures is called a (commutative) Hopf algebra.

Thus, we have a tautological anti-equivalence between the category of affine group schemes
and the category of Hopf algebras.

Example 3.2.16. For r € Z(, consider the presheaf GL, whose R-points (R € Ring) is the
group of invertible r-by-r matrices with coefficients in R. We claim that GL, is an affine
group scheme.

Indeed, the presheaf M,. whose R-points is the set of all r-by-r matrices is represented by
A%z. There is a morphism det : M,. - AL carrying an r-by-r matrix to its determinant, and



SCHEME THEORY 1 49

a Cartesian square:
GL, — M,

[ |

ALN0 — Ay

where 0 : Spec(Z) — Alz is the closed subscheme corresponding to the origin. Thus, GL, is
an affine scheme and may be viewed as a sheaf of groups on Sch?ft,
The affine group scheme GL,. is called the general linear group of rank r. The special

case G, := GLy is also called the multiplicative group.

Lemma 3.2.17. Let G be an affine group scheme. Let P be a Zariski G-torsor over X € Shv.
If X is a scheme, then so is P.

Proof. Note that P is Zariski sheaf by definition. It remains to construct an open cover of
P by affine schemes.

Let f; : X; > X (i € I) be an open cover by affine schemes such that each (f;)*P is trivial.
Such a cover exists by the Zariski local triviality of P. Hence we have a Cartesian square:

I_liGIXiXG — P

|

LiaX; — X

where each X; x G is an affine scheme (since both X; and G are) and X; x G - P (i €1) is
an open cover. O

3.2.18. Given any scheme X, we construct a functor from the category Bun,(X) of rank-r
vector bundles with isomorphisms to the category Torsar,, (X) of GL,-torsors on X:

Bun,(X) - Torsgr, (X). (3.11)
Namely, it sends M € Bun,(X) to the presheaf Jsom(0$",M) - X whose value at an
R-point z of X (R € Ring) is the set of isomorphisms R®" — M in Modg:
Isom(OF", M)(R) := {R®" 5 M in Modg}.
This is a sheaf by descent of QCoh. The sheaf Jsom(0$", M) is acted on by GL,, for any
g € GL,(R) carries an isomorphism y : R®" — M to the composition y-g. This action is

clearly simply transitive. The structure morphism Jsom (0%, M) - X admits local sections
because M is locally free of rank r.

Proposition 3.2.19. The functor (3.11) is an equivalence of groupoids.

Proof. We shall construct the inverse of (3.11) using descent of QCoh along epimorphisms
in Shv (¢f. Proposition 2.2.2).

First, observe that given a GL,-torsor f :Y — X, the pullback functor f* defines an
equivalence:

QCoh(X) S QCoh(Y/X),

where we used the existence of local sections to see that f is an epimorphism in Shv. Note
that M € QCoh(X) is a rank-r vector bundle if and only if f*M is a rank-r vector bundle,
since the property of being locally free is Zariski local.

Under the isomorphism Y x GL, > Y xx Y, (y,9) = (y,y-g), the two projections maps
p1,p2 from Y xx Y to Y correspond to the projection and the action maps p,a from Y x GL,
to Y. Thus, descent data along Y — X can be expressed as pairs (N, ¢) where:
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(1) NeQCoh(Y); and

(2) :p*N 5 @*N is an isomorphism in QCoh(Y xGL,.) satisfying the cocycle condition.
We can make the cocycle condition explicit: for each R-point (y,g) of Y x GL,. (R € Ring),
write @y,q 0 YN 5 (y-g)*N for the pullback of ¢. Then the cocycle condition asserts the

equality @y g,9. = Pygi.g0 - Py,g: fOr every R-point (y,g1,g2) of Y x GL, x GL,..
Let us construct the functor inverse to (3.11):

Torsgr, (X) — Bun,.(X). (3.12)

Namely, it sends Y to the descent datum (0%", ¢) along Y — X, where ¢ is the isomorphism
p* 0% 5 a*O%" given by the automorphism g : R®” = R®" at any R-point (y, g) of Y x GL,
(R € Ring). This descent datum yields a quasi-coherent Ox-module M, which is a rank-r
vector bundle because O%" is. g

Example 3.2.20 (The Picard group). For r = 1, both sides of (3.11) have natural symmetric
monoidal structures. Indeed, Bun;(X) has a symmetric monoidal structure given by tensor
product of line bundles, and Torsg, , (X) has the symmetric monoidal structure constructed
in Remark 3.2.10. The equivalence (3.11) respects these symmetric monoidal structures.
The abelian group of their isomorphism calsses is called the Picard group of X:
Pic(X) := Bun; (X)/ = Torsg, (X)/ = .

m

3.2.21. We now address the second problem of this subsection: Express the projective space
as a quotient of the affine space without origin.
For n € Zq, we shall define a morphism:

Arzwl <0
lw (3.13)
Py

Given an R-point of AZ™ corresponding to elements Xg,-+, X, € R, we consider the
following morphism in Modg:

R - R®D 1 (X, X,). (3.14)

Note that the R-point factors through AZ*' \ 0 if and only if (3.14) admits a retract.
Indeed, the first condition is equivalent to that Xg,---, X,, generates R as an ideal, which is
equivalent to the existence of fi,---, f,, € R such that the map Re(+1) L R, sending the ith
basis to f;, provides a retract of (3.14). In this case, the image of (3.14) is a line subbundle,
i.e. an R-point of Py.

The association from X, -, X,, to the image of the induced map (3.14) is functorial in
R € Ring. This concludes the construction of (3.13).

3.2.22. Next, we observe that G,, acts on AZ*' \ 0, where an R-point A € G,,(R) = R*
carries (Xo, -+, Xp) to (Xg- A, -, Xy - A).

Clearly, this action does not change the image of the induced map (3.14), so we have an
induced morphism in Shv:

(A7 0)/G,, - Py. (3.15)

Proposition 3.2.23. The morphism (3.15) is an isomorphism.
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Proof. The assertion is equivalent to that (3.13) is a G,,-torsor. For simple transitivity,
this means that any two injections R — R®("*1) in Modg whose images are the same direct
summand of R®("*1) differ by multiplication by element of R*; this is clear. To construct
local sections of (3.13), it suffices to observe that any line subbundle £ ¢ R®(™*1) is free on
a standard Zariski cover of Spec(R); this follows by definition. O

Remark 3.2.24. For any scheme S, (3.15) induces an isomorphism:
(AG™N0)/G, > PE.
Indeed, this is because the formation of quotients is universal (c¢f. Lemma 1.4.2).

3.2.25. Torsors under quasi-coherent sheaves. As the last topic of this subsection, we shall
study torsors under quasi-coherent sheaves on schemes.

Let X be a scheme. Then any M € QCoh(X) has an underlying sheaf of abelian groups
on (Sch*™) /x (where covers are given by standard Zariski covers). In particular, we may
consider the groupoid Torsy(X) of M-torsors over X.

For any M, N € QCoh(X), we consider the groupoid Ext! (N, M) of short exact sequences:

0-M-E->N-0, (3.16)

where a morphism from 0 > M - & >N > 0to 0 >M - & - N - 0 is an isomorphism
&5 €&’ in QCoh(X) which induces the identity maps on M and N.
There is a functor:
Ext’(Ox, M) - Torsy(X), (3.17)

which sends a short exact sequence 0 - M — & LA Ox — 0 to the torsor of its splittings—the
sheaf which assigns to Spec(R) — X (R € Ring) the set of R-linear maps s : R — €[gpec(r)
such that p-s =idg; it is acted on simply transitively by M|gpec(r) via addition. The local
triviality follows from the fact that R is a projective R-module.

Proposition 3.2.26. The functor (3.17) is an equivalence of groupoids.

Proof. We first prove that (3.17) is fully faithful. Given objects 0 > M - & > Ox - 0
and 0 > M - & - Ox - 0 of Ext'(Ox,M), the set of morphisms between them is acted
on simply transitively by Hom(Ox, M) = I'(X,M). The map on Hom-sets defined by the
functor (3.17) is I'(X, M)-equivariant, thus bijective.

To prove that (3.17) is essentially surjective, we let P be any M-torsor over X. By local
triviality, we find an open cover X; — X (i € I) over which P, := P xx X; is the trivial M-
torsor. Thus, P may be described by the descent data f;; € M;;, for M;; := I'(X; n X;, M)
(7,7 € I). We construct a short exact sequence using descent of QCoh:

0->M-E&->0x -0, (3.18)
by setting it to be the split extension M; @ Ox, over X; (with M; := T'(X;, M)), glued using
the following isomorphism over X;; := X; N Xj:

OﬁMij *)MUGBOXU — OXU — 0
. _ . fid 0
J/ld l%j lld Yij = fij id
0— Mij — Mij @ Oxij — Oxij — 0
Then the image of (3.18) under the functor (3.17) is isomorphic to P. O

Corollary 3.2.27. Let X be a scheme and M € QCoh(X). If X is affine, then any M-torsor
over X s trivial.
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Proof. By Proposition 3.2.26, it suffices to prove that given a ring A and M € Mody, any
extension of A by M splits. This holds because A is projective as an A-module. O

Remark 3.2.28. When the structure sheaf of Spec(Z) is viewed as a sheaf of abelian groups
on Schaﬁ, we also denote it by G, and call it the “additive group”. Of course, the underlying
scheme of G, is A = Spec(Z[z]). The equivalence (3.17) specializes to:

Extl(OX, 0x) 5 Torsg,, (X).
In other words, G,-torsors over any scheme X are equivalent to extensions of Ox by itself.
3.3. The “Proj” construction.

3.3.1. Let X = Spec(A) be an affine scheme and G = Spec(R) be an affine group scheme.
The datum of a G-action on X can be rewritten in ring-theoretic terms as follows.

The identity and multiplication morphisms on G correspond to morphisms of rings € :
R - Z and i : R - R®R. The action morphism X x G - X corresponds to a morphism of
rings p: A > A®R, called co-action, and the unit and cocycle conditions translate into the
following commutative diagrams:

A -2y A®R A—" S A®R

. lidA@e lp lidA&u
ida ®id
A

AR5 A9R®R

3.3.2. Recall that a Z-graded ring is a monoid in the category of Z-graded abelian groups.
More explicitly, it is a Z-graded abelian group A = @4z Ay equipped with a multiplication
map AQ® A - A carrying Ay ® Ay into Agyq and a multiplicative unit 1 € Ag.

Let A be a ring. We claim that the following data are equivalent:

(1) a Gy,-action on Spec(A);
(2) a structure of a Z-graded ring A = @gez Ag.

Indeed, given a G,,-action on Spec(A), the co-action morphism is amap p: A - A[z,271].
We set Ay := p~t(Az?) to obtain a Z-graded ring structure on A. Conversely, given a Z-
graded ring structure A = @g4ez Ag, we define p: A - A[x,271] to be the map sending a € A
to Y yez aqr? € A[z, 7], where aq € Ag is the degree-d component of a.

3.3.3. Given a Zsyp-graded ring A = @459 Ag, the quotient map A - Ay is compatible with
the grading, so it defines a G,,-equivariant morphism:

0:Spec(Ag) — Spec(A),

where G, acts trivially on Spec(Ay).

Let f be an element of Ayq := @451 Ag. Then the open immersion Spec(Af) — Spec(A)
factors through Spec(A) \ 0. If f is furthermore homogenous, then Ay inherits a Z-grading
such that A — Ay is a morphism of Z-graded rings. In this case, we obtain a G,,-equivariant
open immersion:

Spec(Ay) - Spec(A) 0.

Lemma 3.3.4. Let A be a Zsg-graded ring. Suppose that A is generated by A, as an
Ap-algebra. Then for any f € Ay, there is a canonical Gy, -equivariant isomorphism:

Spec(Af) > Spec((Af)o) x Gy,

where (Ay)o is the degree-0 component of Ay and G, acts on the right-hand-side by multi-
plication on the G,,-factor.
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Proof. In ring-theoretic terms, the assertion means that there is a canonical isomorphism of
Z-graded rings:
Ag = (Ap)o[z,a™'],

where x is of degree 1. Let us construct this isomorphism.

Since f € (Ay); is invertible, multiplication by f? defines an isomorphism of (Aj)o-
modules (A;)g = (Aj)q for every d € Z.

We first apply this observation to d = 1: by assumption, A is generated by (A); and f~*
over (Ay)o. Since every element of (Ay); is an (Ajf)o-multiple of f, Ay is in fact generated
by f and f~! as an (Af)o-algebra. This defines a map of Z-graded (A ;)g-algebras:

(Af)()[.’l?7$_1:|—>Af7 ,Ti—>f
To see that it is bijective on each component, we apply the above observation again. O

Proposition 3.3.5. Let A be a Zsg-graded ring. Suppose that A is generated by A1 as an
Ag-algebra. Then:

(1) Gy, acts freely on Spec(A) N 0;

(2) the following object of Shv is a scheme:

Proj(A) := (Spec(A) ~ 0)/Gyy,.

Proof. We begin with a general observation: Given a scheme X equipped with the action of
a group scheme G, if X admits a G-stable open cover X; - X (i € I) such that the G-action
on X; is free, then the G-action on X is free. Indeed, we need to prove that the morphism:

XXG_}XXX7 (x7g)’_>('r7wg)

is a monomorphism. This can be checked after base change along X; x X - X x X for each
i€l (¢f. Lemma 1.4.8). The fact that X; is G-stable means that the base change factors as:

XixG—>X,-><Xi—>Xi><X,

where the first morphism is a monomorphism since the G-action on X; is free, and the second
morphism is a monomorphism since it is an open immersion.
Since A is generated by A; as an Ag-algebra, the collection of G,,-equivariant maps:

Spec(As) - Spec(A) N0, feAy

forms an open cover. Moreoever, by Lemma 3.3.4, each Spec(Ay) is G,,-equivariantly

isomorphic to Spec((A¢)o) x G,,. In particular, G,, acts freely on Spec(Ay). This implies

that G, acts freely on Spec(A) \ 0, using the observation above. Statement (1) is proved.
To prove statement (2), we note that the induced morphisms:

Spec((Af)o) = Spec(Af)/Gp, — (Spec(A) N 0)/Gy,  f e Ay
form an open cover, where we used Corollary 1.5.11 for descent of open immersions and

Lemma 3.3.4 for the first isomorphism. This provides the Zariski sheaf (Spec(A) \ 0)/G,,
with an open cover by affine schemes. O

3.3.6. The “Proj” construction is compatible with base change in Ay. More precisely, given
a Zso-graded ring A which is generated by A; as an Ag-algebra and a morphism of rings
Ay - By, we may form B := A®xa, Bgp. Then B is a Zyp-graded ring with B; := Ay ®4, Bo
and is generated by By as a By-algebra.

Moreover, we have an isomorphism:

PI‘OJ(B) i PI‘OJ(A) ><Spec(Ao) SpeC(BO)'
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Indeed, this follows from the fact that complements and quotients are both compatible with
base change.

3.3.7. Let S be a scheme and A = @yez., Aq be a quasi-coherent Z,p-graded Og-algebra
which is generated by A; as an Ap-algebra. By the functoriality of Proj noted in §3.3.6, we
obtain a scheme:
Projg(A) := (Specg(A) N 0)/Gy,

whose base change to any affine scheme s: Spec(R) — S is Proj(s*A), where s*A is viewed
as a Zsg-graded R-algebra.

The G,,-torsor Specg(A) 0 over Projg(A) corresponds to a line bundle, which we denote
by Oprojg(a)(=1). For each d € Z, its (~d)th tensor power is denoted by Opyoj,(a)(d)-

Example 3.3.8. Let S be a scheme and M € QCoh(S). Then Symg (M) has the structure
of a Zso-graded Og-algebras with degree-d component Sym%S (M). In this case, we write:

P(M) := Projg(Symy, M).

If M is isomorphic to O"*! for some 7 € Zg, then P(O2"*!) is isomorphic to P§ (cf. Propo-
sition 3.2.23) and the line bundle OP(o§T+1)(1) defined above coincides with Opz (1), the
pullback of Opy (1) defined in §3.1.9.

More generally, if M is a vector bundle, then Specg(Sym M) is isomorphic to the total
space V(M) of MY (c¢f. Remark 2.4.7). In other words, P(M) parametrizes line subbundles
of MV, i.e. rank-1 quotients of M.

3.3.9. The following result generalizes the comparison between the two descriptions of the
projective space.

Proposition 3.3.10. Let S be a scheme and A = @gez,, Aa be a quasi-coherent Zq-graded
Og-algebra generated by A1 as an Ag-algebra. Given a morphism of schemes f: X — S, the
following (discrete) groupoids are canonically equivalent:
(1) the (discrete) groupoid of morphisms X — Projg(A) over S;
(2) the groupoid of line bundles Q over X equipped with a morphism of quasi-coherent
Z-graded Ox-algebras:
A - @,
d>0
such that f*A, - Q is surjective.

Proof. By pulling back A along f, we may assume that A is a quasi-coherent Z,q-graded
Ox-algebra and f =idx.

A morphism X — Projy (A) over X is equivalent to a G,,-torsor X - X together with a
Gm-equivariant morphism X — Specy (A) ~ 0 over X (¢f. Lemma 3.2.12).

Let Q be the dual of the line bundle associated to X, so X is isomorphic as a scheme over
X to V(QY) N 0 5 Specy (Buez Q7). Hence a G,y,-equivariant morphism X — Specy (A) \ 0
over X is equivalent to a morphism of quasi-coherent Z-graded Ox-algebras:

A—@a® (3.19)
deZ

whose base change along A — A( vanishes.

Since A is Zso-graded, the morphism (3.19) is equivalent to a morphism into @45 Q®<.
In other words, G,,-equivariant morphisms V(Q") \ 0 - Specx (A) extend uniquely to Gy;,-
equivariant morphisms V(Q") — Specx (A).
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It remains to prove that (@gez 9%¢) ® 4 Ao vanishes if and only if the map A; — Q is
surjective. The “<” direction is clear. To prove the “=" direction, note that since Q is a
finite Ox-module, it suffices to show that the fiber of the map A; - Q at any field-valued
point of X is nonzero (Nakayama). Upon base change, we may assume that X is the spectrum
of a field. If A; — Q vanishes, the fact that A is generated by A; over Ag implies that (3.19)
factors through Ag, but then its base change along A - Ay must not vanish. O

Remark 3.3.11. Under the equivalent of Proposition 3.3.10, the line bundle Q defined by
a morphism X — Projg(A) over S is the pullback of Op,gj,(a)(1)-

3.3.12. Let f: X — S be a quasi-compact, quasi-separated morphism of schemes. Let Q be
a line bundle over X.

We say that Q is f-very ample if the canonical morphism f*f,Q — Q is surjective and
the morphism X — P(f,Q) induced from the equivalence of Proposition 3.3.10 is a locally
closed immersion.

3.3.13. Let f: X - S be a quasi-compact, quasi-separated morphism of schemes. Let
A = @gez., Aa be a quasi-coherent Zsg-graded Og-algebra such that A is generated by A
as an Ag-algebra.

Suppose that f factors through a closed immersion i : X — Projg(A) over S. In this case,
we can realize X itself as Projg(B) for a quasi-coherent Zso-graded Og-algebra B = @gez., Ba
such that B is generated by B; as a By-algebra.

Construction. The morphism i corresponds to a map f*A - @0 Q®? of Zso-graded Ox-
algebras under Proposition 3.3.10. Applying adjunction, we obtain a map A — @gs0 f+(2%%)
of Zso-graded Og-algebras. Let B be the image of this morphism:

A > Bc@ f.(Q%).
d=0
Then B has the structure of a Zsp-graded Og-algebra. Since A is generated by A; as an
Ag-algebra, B is also generated by Bq as a By-algebra.
Taking relative spectra, we have the following G,,-equivariant morphisms over S:

V(QY) > Specx(gBO 0®%) - Specg(B) = Specg(A). (3.20)

By construction, Specg(B) is the scheme-theoretic image of the morphism V(Q") — Specg(A)
(cf. §2.5.6), so its formation commutes with pullbacks by open immersions. The base change
of (3.20) to Specg(A) \ 0 yields the G,,-equivariant morphism:

V(Q") N 0 — Specg(B) \ 0 — Specg(A) \ 0, (3.21)

where Specg(B)\0 is the scheme-theoretic image of the composition. However, this composi-
tion is a closed immersion, since it is identified with the base change of ¢ along Specg(A)\0 —
Projg(A). This implies that the first morphism in (3.21) is an isomorphism. So we obtain
isomorphisms of schemes over S:

X = (V(9') N 0)/Gum = (Specs(B) » 0)/Gn,
where the last term is by definition Projg(B). O

Remark 3.3.14. In particular, the construction of §3.3.13 shows that the “Proj” construc-
tion exhausts all closed subschemes of IPg, n € Zsg.
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3.4. Around the Rees algebra.

3.4.1. Let X be a scheme. A closed subscheme D — X is called an effective Cartier divisor
if its corresponding ideal sheaf J is a line bundle.

Note that this is equivalent to the condition that X admits an open cover Spec(A;) - X
(i € I) such that D, := D xx Spec(A;) is defined by the ideal (f;) ¢ A; generated by a non-
zero-divisor f; € A;. Indeed, this follows from the fact that an ideal a c A of a ring A is free
of rank-1 if and only if a = (f) for a non-zero-divisor f € A.

3.4.2. Given a scheme X and an effective Cartier divisor D with ideal sheaf J, we obtain a
morphism of line bundles J - Ox. Dualizing, we find a morphism of line bundles:

Ox = Ox(D) =771,

Thus, Ox(D) may be regarded as a line bundle over X equipped with a global section
lD € F(X, Ox(D))

Given a line bundle £ over X, a section f € ['(X, L) is called regular if the induced map
f:0x - £ in QCoh(X) is injective. The section 1p associated to an effective Cartier divisor
is regular since it is locally given by multiplication by a non-zero-divisor.

Lemma 3.4.3. Let X be a scheme. The association D —» (Ox(D),1p) defines an equivalence
between the following (discrete) groupoids:

(1) the (discrete) groupoid of effective Cartier divisors on X;
(2) the groupoid of pairs (L, f) where £ is a line bundle over X and f e T'(X,L) is a
reqular section.

Proof. The inverse (2) = (1) assigns to a pair (£, f) the closed subscheme corresponding
to J:= LY, realized as an ideal sheaf via the dual of f. O

Remark 3.4.4. The effective Cartier divisor D associated to the pair (£, f) under Lemma
3.4.3 is isomorphic to the vanishing locus X ;- defined in Remark 3.1.7.

3.4.5. Given a scheme X and effective Cartier divisors D, Dy with ideal sheaves J1, Jo, we
define D1 + Do to be the closed subscheme of X associated to the ideal sheaf J;J5 c Ox.

Using flatness of either J; or Jo over Ox, we see that the natural map J; ® oy Jo = Ox
is injective, so J1Js is identified wtih J; ® o J2. In particular, Dy + Dy is also an effective
Cartier divisor on X.

The sum operation thus defined turns the set Div, (X) of effective Cartier divisors on X
into a monoid. The unit is the effective Cartier divisor @ — X. The above identification of
ideal sheaves shows that we have a map of monoids:

Div,(X) - Pi¢(X), D~ 0x(D),
where Pic(X) is the group of isomorphism classes of line bundles over X (c¢f. Example 3.2.20).

3.4.6. We shall now describe a procedure which replaces every closed subscheme by an
effective Cartier divisor. This procedure is called “blow up”.

Let X be a scheme and Z — X be a closed immersion. Consider the category of schemes
Y over X such that Z xx Y — Y is an effective Cartier divisor. The terminal object of this
category is called the blow-up of X along Z.

On the other hand, write J for the ideal sheaf corresponding to Z. We may form a quasi-
coherent Zso-graded Ox-algebra @50 9%, called the Rees algebra of J. By construction, it is
generated by the degree-1 component J over the degree-0 component J° = Ox.

Proposition 3.4.7. Let X be a scheme and Z — X be a closed immersion corresponding to

the ideal sheafJ. Then:
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(1) the blow up Blz X of X along Z is represented by the following scheme over X:

Blz X > Projx (@D I9);
d>0

(2) writing E := Bly X xx Z, we have a canonical isomorphism of schemes over Z:
E 5 Proj, (@D 7¢/7%+).
d=0
(The closed subscheme E of Bly X is called the exceptional divisor.)

3.4.8. We shall prove Proposition 3.4.7 by relating the Rees algebra to another construction,
called “deformation to the normal cone”. Namely, we consider the quasi-coherent Z-graded
Ox-algebra @ 4.z % where we set J¢ := Ox for all d < 0. This algebra contains the Rees
algebra as a Zyg-graded subalgebra.

The relative spectrum Specy (@Bgs0I?) contains the zero section i : X — Specy (D g0 I?)
defined by the ideal @451 J%. The pullback of i to Specy(@gezI¢) is the following G,,-
equivariant closed immersion:

i:7Zx A" - Specx (D19, (3.22)

deZ
where A~ indicates a copy of A} on which G, acts by a,2 = a™'z for every R-point (a,z)
of G,, x A~ (R € Ring). Indeed, the closed immersion i corresponds to the quotient map
®uezI? = Daco Ox /7.
The induced morphism on complements is a G,,-equivariant isomorphism:
Specy (D I%) ~ (Z x A"7) = Specx (D I) \ X.
deZ d=0

Indeed, by the open cover constructed in the proof of Proposition 3.3.5, it suffices to show
that the inclusion @gs07I?¢ - @gez I? becomes an isomorphism upon localizing at any f € J
lying in degree 1. This holds because the cokernel @4._1 J¢ consists of f-torsion elements.

3.4.9. Moreover, the Z-graded Ox-algebra @ ez J¢ has a canonical section t given by 1 € Ox
placed in degree —1. This section corresponds to a G,,-equivariant morphism:

t: Specy (@ I%) - Al (3.23)
deZ

Its composite with (3.22) is the projection Z x A~ - A~ onto the second factor.
The fiber of (3.23) at 0 is isomorphic to Cz/x = Specy (Baso I?/I**!), called the normal

cone of Z. The fiber of (3.23) at A~ 0 is isomorphic to Specy (Bgez Ox) — X x (A1 0).
The morphism (3.23) is called the deformation to the normal cone because it realizes a
degeneration of the closed immersion Z — X to the closed immersion Z — Cy/x.

3.4.10. The following diagram summarizes the relations among the relevant schemes:

7 ——— Cgx ¢ Cgx\Z —Gm Projz (@®gs0I4/7191) — Z

I [
Z x A" 5 Specy (Baez I%) & Specy (BasoI?) ~ X N Projx (@gs0JI?) — X
Ik
Ab-
(3.24)
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. .
0 A

FIGURE 2. The deformation to the normal cone associated to a closed im-
mersion Z — X. The total space of the deformation is Specy(@®gez Ox),
which contains Z x AL~ as a closed subscheme. The generic fiber over A~
is the closed immersion Z — X. The special fiber at 0 is the closed immer-
sion Z — Cz/x.

Here, j is the complement of ¢, and the squares are Cartesian. The morphisms labeled by
“Gy,” are G,,-torsors.

Proof of Proposition 3.4.7. To prove (1), we define Bly X := Projyx (@gs0 %) and prove that
it satisfies the universal property of the blow-up of X at Z. First, we need to prove that:
E := Blz X xx Z = Proj, (@ 7%/7%*1)
d=0

is an effective Cartier divisor. This isomorphism would then yield (2). By the Cartesian
squares in (3.24), this reduces to showing that 0 : Cz;x — Specx (@gez J9) is an effective
Cartier divisor. This holds because the section ¢ of @gez I is a non-zero-divisor. (Multipli-
cation by ¢ is the operation of shifting the grading by one unit, hence injective.)

To prove that Bly X satisfies the universal property of the blow-up, we let f:Y — X
be any morphism of schemes such that f1Z := Y xx Z is an effective Cartier divisor in Y.
Let Jf-17 denote the ideal sheaf associated to f~1Z. By definition, it is a line bundle and
we have a surjective morphism f*J - J;-17 in QCoh(Y) over Oy. This morphism extends
uniquely to a morphism of quasi-coherent Zsg-graded Oy-algebras:

(@I > D(I5-12)%"
d=0 d=0
By Proposition 3.3.10, this corresponds to a morphism Y — Blz X of schemes over X. This
is the unique morphism Y — Blyz X of schemes over X since any morphism is determined by
its restriction off an effective Cartier divisor. O

Remark 3.4.11. Since the fiber of (3.23) over AY~ \ 0 is G,,-equivariantly isomorphic to
X x (A7 N 0), we obtain an isomorphism:

Bl X\E 5 (X\2Z)x (AM N 0)/G,, > X\ Z.

Remark 3.4.12. From (3.24), we see that the line bundle O(E) associated to the effective
Cartier divisor E — Blz X is canonically isomorphic to Op), x(-1). (Caution: This sign is
opposite to the hyperplane divisor in P7, which corresponds to Op%(l).)

Indeed, Specy (@gs0I?) \ X is the G,,-torsor associated to the line bundle Opy,x(~1).
The composite ¢ - j, whose vanishing locus is Cy /x N\ Z, is a Gy,-equivariant map:

t-j:Specx(PIH N X » AL,
d=0
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By inverting the G,,-action, it corresponds to a G,,-equivariant morphism from the G,,-
torsor associated to Opy, x(1) to A}, i.e. a section of Opy, x(-1).

3.4.13. Let X be a scheme and Z — X be a closed immersion. Let X’ - X be a morphism
of schemes. We form Z' := Z xx X'. Let Blz X (respectively Blz X') be the blow-up of X
(respectively X’) along Z (respectively Z'), so we have a commutative diagram:

Bly X — Blz X

| | (3.25)
X — X
by the universal property defining Bly X. The scheme Blyz X’ is called the strict transform
(or proper transform) of X" in the blow-up Blz X. It is most commonly applied when X’ - X

is a closed immersion which nontrivial intersection with Z.
Emphatically, (3.25) is not a Cartesian square. Rather, we have an induced morphism:

Blz/ X, g X, XX BIZ X. (326)

Since the exceptial divisor E ¢ Blz X is locally defined by a principal ideal, its preimage
E’ := X' xx E is also locally defined by a principal ideal. However, E’ may not be an effective
Cartier divisor in X’ xx Blz X, i.e. the defining ideal may not be generated by a non-zero-
divisor.

Lemma 3.4.14 (Blow-up closure lemma). The morphism (3.26) is the scheme-theoretic
image of the open immersion (cf. §2.5.6):

(X’ XX Blz X) N El d X, XX Blz X. (327)

Proof. Denote by W the scheme-theoretic image of (3.27). Let f:Y — X’ be a morphism
of schemes such that f~1Z’:= Z' xx, Y is an effective Cartier divisor on Y. We need to show
that there is a unique morphism from Y to the closed subscheme W.

By the universal property defining Bly X, there is a unique morphism Y — X’ xx Blz X.
It remains to prove that the latter factors through W.

Since Jgr is locally principal, this reduces to the following statement: Given a ring A and
a € A, any morphism A — B for which the image of a is a non-zero-divisor factors through
the image of A — A[%], but the latter is precisely the quotient of A by the ideal of elements
annihilated by a power of a. O

3.4.15. We shall now describe a class of closed immersions for which the blow-up is partic-
ularly simple. These can be seen as a generalization of effective Cartier divisors.

Recall that given a ring A, a sequence of elements fi,---, f, € A is called regular if for
each 1 <i<n-1, f;41 is a non-zero-divisor in A/(f1,-, fi).

On the other hand, given f1,--, f, € A, we may form the Koszul complex, which is the
following complex of free A-modules situated in cohomological degrees [-n,0]:

Acaeny £ 2 A aemy L p (3.28)

where d™*(e;, A-nei,) = XF_ (1) f; e, A Aé; A--Aej, for 1 <k <n and the canonical
basis eq, -, e, of A®™.

If f1,--, fn is a regular sequence, then (3.28) is a free resolution of A/(f1,--, fn): This
follows by induction on n and expressing (3.28) as the tensor product of the complexes
fi + A > A concentrated in cohomological degrees [-1,0]. The converse holds if A is a
Noetherian local ring and f,--, f, belong to the maximal ideal (cf. [Stal8, 09CC]).
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In particular, when f1, -, f,, is a regular sequence, the ideal a := (f1,-, f,) is the cokernel
of the map:

2
d_2 : /\(A@n) - AEBn, € Nej > fie]‘ - fjei. (329)
By base change to A/a, we see that a/a” is a free A/a-module of rank n.

Lemma 3.4.16. Let A be a ring and f1,--, fn, € A be a regular sequence. Write a :=
(f1,-, fn)- Then the canonical map of Zso-graded A-algebras is an isomorphism:

Sym, (a) > gBOad. (3.30)

Proof. See [Bou07, §9, §§7, Théoreme 1]. O

Remark 3.4.17. In the context of Lemma 3.4.16, we obtain an isomorphism of Zg-graded
A/a-algebras upon base change to A/a:
Symy jq(a/a”) = @ a/a®.
d=0

3.4.18. Let X be a scheme. A closed immersion Z — X is called regular (or local complete
intersection) if there is an open cover Spec(A;) — X (i € I) such that for each 4 € I, the closed
subscheme Z; := Z xx Spec(A;) is defined by an ideal in A; generated by a regular sequence.

Let J denote the ideal sheaf of a regular closed immersion ¢ : Z - X. From the ring-
theoretic statements of §3.4.15, we find:

(1) the conormal sheaf i*J (isomorphic to J/9%) is a vector bundle over Z;
(2) we have canonical isomorphisms (¢f. Lemma 3.4.16, Remark 3.4.17):

Syme, (9) > @J%,  Symg, (3/9%) > @I7/3%*L.
d>0 d>0

In particular, the blow-up of X along Z is identified with Projx (Sym, J) and the normal
cone Cy/x is identified with the total space of the normal bundle Ny x := (/7).

Example 3.4.19. Let us calculate the blow-up Blg AZ of AZ at the origin 0, defined by the
ideal a:= (z,y) in A := Z[x,y]. Since a is generated by the regular sequence z,y, the Rees
algebra is identified with the symmetric algebra (3.30):

@ Cld i> SymA(a) i) SymA(Aeﬂ) ®SymA(/\2(A€B2)) A7 (3.31)
d>0
where the second isomorphism uses the fact that a is the cokernel of the differential d=2 :
A%(A®?) —» A®2 in the Koszul complex. Denote the generators of A®? by X,Y. The
differential d~2 maps the generator X A'Y to Y — yX. Thus, the Rees algebra (3.31) is:
Ba’ > AIX, Y)/(Y - yX),  deg(X) = deg(Y) - 1.
d>0
In other words, BlgAZ is the closed subscheme of AZ x Py = P} defined by the section
zY —yX of OP}% (1), where X,Y are the homogeneous coordinates on P} .

The exceptional divisor E - Bly A% is the fiber at 0 of the projection p : Bly AZ — AZ.
We can describe it on the open affine cover Up, Uy of Blg AZ defined by X # 0 and Y # 0,
with: v <

U = Spec(Z[x, i])’ U; = Spec(Z[y, §])
The closed subscheme E n Uy - Uy is defined by the ideal (z) and the closed subscheme
EnU; —» Uy is defined by the ideal (y).
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Example 3.4.20. Let us calculate the strict transform X of the cuspidal curve X — AQZ
under the blow-up p: :&% := Blg AZ — A% of Example 3.4.19. Here, X is the closed subscheme
of AZ defined by the ideal (y? - 23) of Z[z,y].

We shall do so using the blow-up closure lemma (c¢f. Lemma 3.4.14). Namely, X is the
scheme-theoretic image of p™ !X\ E - p~1X.

Over the open affine subscheme Uy, the closed subscheme p~'1X n Uy is defined by:

- ~ Y Y
P~ XnUp = Spec(Z[z, £1/(w- 5)* - 7).

The ideal of a-power torsion elements is generated by (Y/X)2? —z. Hence X n Uy is the
spectrum of Spec(Z[z,Y/X]/(Y/X)? - x). It intersects the exceptional divisor at a “double
point”, i.e. a subscheme isomorphic to Spec(Z[e]/e?).

Over the open affine subscheme Uy, the closed subscheme p~'X n Uy is defined by:

pX AUz S Spec(@ly, /07 - (v %)

The ideal of y-power torsion elements is generated by 1 -y - (X/Y)3. Hence X n Uy is the
spectrum of Spec(Z[y, X/Y]/(1-y-(X/Y)3)). It does not intersect the exceptional divisor.

X

g o=

X

FiGURE 3. The blow-up of a cuspidal curve X embedded in A% (Example
3.4.20). The strict transform X is tangential to the exceptional divisor E.

3.5. Differential calculus.

3.5.1. Let R be a ring and M be an R-module. Consider the R-module R @ M equipped
with the ring structure (f1,€1) - (f2,€2) = (f1f2, fi€2 + faer) for f1, fo € R and €1,e2 € M. In
particular, M is an ideal of R @ M satisfying M? = 0.

We have ring maps R > R@ M, f+~ (f,0) and ReM - R, (f,€¢) » f. They correspond
to morphisms of affine schemes:

Spec(R) iR Spec(R @ M) & Spec(R). (3.32)

The affine scheme Spec(R & M), equipped with structural morphisms ¢ and p, is called
the split square-zero extension of Spec(R) by M: we think of i as defining the extension
and p as the splitting. Its formation is functorial in the pair M, in that given a morphism
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M; - My in Modg, we have a morphism Spec(R & M) — Spec(R @ M;) compatible with
the structural morphisms.

3.5.2. Let A be a ring and B be an A-algebra. An A-linear derivation on B consists of
N € Modg equipped with a morphism d: B — N satisfying the following conditions:
(1) d(ab) = ad(b) for any a € A, beB;
(2) d(bibs) =b1d(bs) + bad(by) for any by,bs € B (the Leibniz rule).
Let Qp/a, d: B - /5 denote the universal A-linear derivation on B, so g4 is generated
by symbols d(b), b € B, subject to the relations (1) & (2) above. Elements of the B-module
Qp/a are called Kdhler differentials on B relative to A.

Lemma 3.5.3. Let A be a ring and B be an A-algebra. Denote by f : Spec(B) — Spec(A)
the induced morphism of affine schemes. For any R-point y of Spec(B) (R € Ring) and
M e Modg, the following sets are in canonical bijection:

(1) R-linear maps /s ®8 R - M;

(2) morphisms § : Spec(R @ M) — Spec(B) making the following diagram commute:

Spec(R) —2— Spec(B)

l / lf (3.33)

Spec(Re M) — (y)pSpec(A)
where i and p are as in (3.32).

Proof. We view y as a morphism of A-algebras y: B — R. The datum of § rendering (3.34)
commutative is equivalent to a morphism of A-algebras § : B - R @ M which reduces to
y modulo M. Note that the morphism § can be written as (y,d), where d : B > M is a
morphism in Moda which satisfies:

d(b1b2) = y(b1)d(b2) + y(b2)d(b1), b1,bs €B.

This is equivalent to a B-linear map {dg;5 — M, where M is viewed as a B-module viay. [

Remark 3.5.4. Under the bijection of Lemma 3.5.3, the abelian group structure on the set
of R-linear maps {2g/5 ®3 R - M corresponds to an abelian group structure on the set of g
making (3.33) commute.

This abelian group structure can be described intrinsically as follows. The zero element
corresponds to the morphism y-p. The sum is given by pre-composition with the morphism:

Spec(R @& M) — Spec(Ro M & M)
= Spec(R @ M) Ugpec(r) SPec(R @ M),

where the first morphism is induced from the map M & M — M, (e1,€2) = €1 + €2, and the
push-out is taken in the category of affine schemes.

3.5.5. Let f:Y — X be a morphism of schemes.

For any R-point y of Y (R € Ring), we denote by y*(2; the R-module co-representing
the functor assigning to M € Modgr the set of morphisms ¢ : Spec(R @ M) — Y making the
following diagram commute:

Spec(R) —2—= Y

/ f (3.34)

Spec(R eoM) — fwwy
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By Lemma 3.5.3 and descent of QCoh, the R-module y*Q; exists. It enjoys the following
functoriality: Given a morphism ¢ : Spec(R’) — Spec(R), there is a canonical isomorphism
©*(y Q) = (y')*Qy, where y' ==y - .

Thus, we may define Q; € QCoh(Y) to be the object whose value at any R-point y € Y
(R € Ring) is the R-module y*$y, subject to the above functoriality in R. The object Q1 is
called the sheaf of differential forms on Y relative to X. We shall also denote it by Qy/x,
or simply Qv if the base scheme X is clear from the context.

If f:Spec(B) — Spec(A) is a morphism of affine schemes, then Qy/x may be identified
with the B-module Qp/, (Lemma 3.5.3).

Remark 3.5.6. The formation of the sheaf of differential forms is compatible with base
change. More precisely, let f : Y — X be a morphism of schemes. Given a morphism of
schemes X’ — X, we write f':Y':=Y xx X" > X’ for the base change of f. Then there is a
canonical isomorphism:

Qf|Yl i) Qfl
This follows immediately from the definition of {1;.

3.5.7. Let S be a scheme and f : Y - X be a morphism of schemes over S. We write
Qy = Qy/s and Qx := Qx/g. Then there is a canonical exact sequence in QCoh(Y):

f*QX d QY g Qf d 0, (335)

where the first map df is called the differential of f.

The differential df is defined as follows: given an R-point y of Y (R € Ring) and M € Modg,
a morphism y*Qy — M induces a morphism y* f*Qx — M by composing the corresponding
lift §: Spec(R® M) - Y over S with f.

To identify the cokernel of df, we note that the lift ¢ : Spec(R & M) - Y over S corre-
sponding to a morphism y*Qy — M renders the lower triangle in (3.34) commutative if and
only if f-g is the zero lift of f -y, i.e. the induced morphism y* f*Qx — M vanishes.

Example 3.5.8. Let R be a ring. For each n € Zy, we write Qan := QAH/ Spec(R)- Lhen
QAE is the free R[z1, -+, 2, ]-module on generators dxy, -, dx,, where each dz; is the image
of z; € R[x1,-, ] under the universal R-linear derivation.

For m,n € Z5 and a morphism f : A} - A}, corresponding to fi,--, fm € R[z1,-, 2y ],
the differential df is the R[z1, -,z ]-linear map:

i=1 i=1 0x;

df : @R[.’I}l,,xn]dy] - @R[Z‘l, "',$n]d$i, dy] ng Z f] dl‘i.
j=1

Moreover, (3.35) identifies €2y as the cokernel of df. This gives us a way to calculate
Ox = Qx/spec(r) for any affine scheme X = Spec(A), where A is a finitely presented R-
algebra. Namely, we choose a presentation A = R[x1, -, 2,]/(f1,*, fm), and the base change
property (Remark 3.5.6) implies that 2x is the A-module generated by dz; (1 <4 < n) subject
to the relations Y.;-, (0f;/0x;)dx; = 0 for each 1< j <m.

3.5.9. Next, we shall relate the sheaf of differential forms to the conormal sheaf associated
to a closed immersion. Let us begin with the case of affine schemes.

Let A be a ring and a ¢ A be an ideal with B := A/a. Then the conormal sheaf is the
B-module a ® B = a/a®. If A is moreover an R-algebra (R € Ring), then the universal
R-linear derivation d induces an B-linear map:

a®s B > Qpr ®a B. (3.36)



64 YIFEI ZHAO

Indeed, the restriction of d: A - Qg to a defines an A-linear map a - Q5 /g ® B because
of the Leibniz rule, and we obtain (3.36) by adjunction.

Furthermore, (3.36) is surjective onto the kernel of the differential Q5 /g ®A B — Qp/g. To
see this, it suffices to observe that an R-linear derivation d: A - N, for N € Modg, factors
through an R-linear derivation B — N if and only if it annihilates a.

These observations globalize: Given a scheme S and a closed immersion Y — X of schemes
over S, we have an exact sequence in QCoh(Y):

NY/X d QX|Y - QY - O (337)
Here, Ny/x :=J®p, Oy is the conormal sheaf of Y, with J being the ideal sheaf.

Remark 3.5.10 (Exact sequence of conormal sheaves). Let A be a ring and and acbc A
be two ideals, with B := A/a and C := A/b. Then we have b := b/a c B the induced ideal.
Tensoring to C yields an exact sequence:

a®AC—>be®yC—begC -0, (3.38)

where the first term is identified with (a ® 4 B) ®p C, i.e. the base change of the conormal
sheaf of A - B to C.

The short exact sequence (3.38) globalizes: Given closed immersions Z - Y — X of
schemes corresponding to ideal sheaves Jy ¢ Jz ¢ Ox, we have an exact sequence in QCoh(Z):

Ny/xlz = Nzjx = Ngyy = 0. (3.39)

3.5.11. Module of imperfection. Given a ring map R — A, we may choose a free R-algebra
R[2;]ier together with a surjection R[;];er = A. In other words, we factor the morphism X :=
Spec(A) — Spec(R) as the composition of a closed immersion X — Ah and the projection to
Spec(R). The morphism (3.36) specializes to the following morphism in QCoh(X) = Mod,:

Note that the cokernel of (3.40) is identified with Q4 /g, ¢f. §3.5.9. We define H™'La/g to
be the kernel of (3.40). It a priori depends on the choice of the surjection R[z;];e1 = A. This
is however not the case: Different choices induce canonically isomorphic A-module H™1L 5 /R>
see [Stal8, 00S1] for details. We call H’lLA/R the module of imperfection of the ring map
R - A. We also denote it by H™'Ly when the base ring R is clear from the context.

The formation of H™'Ly g is local on Spec(A). More precisely, the formation of the
two-term complex (3.40) is compatible with localization at any f € A in the following sense.
Writing X := Spec(A ), we have a closed immersion X; — Ai{'{l} where the last coordinate
is defined by f~' € Ay. Then we may form the corresponding two-term complex:

d: NX;‘/A;‘:I{I} nd QA{;U} |Xf . (341)

Now, (3.41) is canonically the sum of the localization of (3.40) at f € A with the two-term
complex id: Ay 5 Ay, see [Stal8, 08JZ] for details. In particular, this implies that H‘lLAf/R
is canonically isomorphic to the localization of H™!L A/R at f € At

Remark 3.5.12. If R — A is surjective with kernel a, then H‘lLA/R is isomorphic to the

conormal sheaf a ®g A of the closed immersion Spec(A) — Spec(R). Indeed, this follows
from the definition using the closed immersion Spec(A) - A% = Spec(R).

T his observation allows us to form the quasi-coherent sheaf HlLx /s € QCoh(X) for every morphism
of schemes X — S using descent of QCoh, but we will not use it.
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3.5.13. We shall use extend the short exact sequence (3.35) to the left.
The following assertion does so in the case of ring morphisms, extending (3.35) by two
steps. It is sufficient for our purpose but is not the best formulation of this phenomenon.'?

Proposition 3.5.14 (The Jacobi-Zariski sequence). Let R be a ring and A - B be a
morphism of R-algebras. There exists an exact sequence of B-modules:

HilLB/RﬁHilLB/A%QA/R ®AB_’QB/R_’QB/A_>O- (342)

Proof. Choose closed immersions Spec(A) - Ak and Spec(B) - A%, so we have a commu-
tative diagram of affine schemes:

Y := Spec(B) «— A} — ALY

~N

X = Spec(A) — AL

N

Spec(R)

where the square is Cartesian.
Since the formation of conormal sheaves commutes with base change, we obtain a map
of exact sequences (using Remark 3.5.10 for the top row):

NX/A{JY — Ny/A{{J — Ny/Ai — 0

J# oo Lo

00— QAIR|Y — QA{;J‘Y — QA.IJJY — 0
The exact sequence (3.42) now follows from the snake lemma. 0

3.5.15. Let S be a scheme. We say that a morphism X — S of schemes is formally smooth
(or that X is formally smooth over S) if for every affine scheme Spec(B) over S with an
ideal b c B satisfying b? = 0, every morphism Spec(B/b) - X over S extend to a morphism
Spec(B) - X over S.

This condition can be expressed by saying that a dotted morphism exists in the following
diagram, rendering both triangles commutative:

Spec(B/b) — X

o = l (3.43)

Spec(B) — S

Closed immersions of the form Spec(B/b) — Spec(B) with b? = 0 are called square-zero
extensions. The split square-zero extensions (cf. §3.5.1) are precisely the square-zero exten-
sions equipped with a retract Spec(B) — Spec(B/b).

Clearly, for any R € Ring and I € Set, the morphism Ak — Spec(R) is formally smooth.

Lemma 3.5.16. Let R - A be a ring map. The following are equivalent:
(1) the morphism Spec(A) — Spec(R) is formally smooth;
(2) H_lLA/R =0 and Qu /g is a projective A-module.

15The relevant theory is that of the “cotangent complex” Ly,x of an arbitrary morphism Y — X of
schemes. Here we are only studying its cohomology groups in degrees H™! and H in an ad hoc manner.
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Proof. Let us factor X := Spec(A) — Spec(R) by a closed immersion X — AL followed by the
projection AL — Spec(R). Denote by X(?) - AL the first-order infinitesimal neighborhood
of X, i.e. if X is defined by the ideal a ¢ R[;]ie1, then X(?) := Spec(A®?)) is defined by a?.
In particular, X - X®) is a square-zero extension of schemes over Spec(R).

Claim: (1) is equivalent to the condition that X — X admits a retract. Indeed, if
X is formally smooth over Spec(R), then the identity on X extends to a retract X(?) — X.
Conversely, given a retract X(?) - X and a square-zero extension Spec(B/b) - Spec(B) over
Spec(R) equipped with a morphism Spec(B/b) — AL, an extension Spec(B) — AL exists
by the formal smoothness of A{{ over Spec(R). Since b? = 0, it factors through X Tts
composition with the retract X(*) - X provides the desired extension Spec(B) - X.

Next, we shall use the closed immersion X — A% to present H™'L A/r and Q4R as the
kernel and cokernel of the morphism of A-modules:

d: Nyypr = D [x-
We note that this complex can be computed after replacing AL by X®).

N d
Nxjar, — Q1 [x

N d
NX/X(z) — QX<2) |X

Indeed, the left vertical isomorphism is clear. The right vertical morphism is an isomorphism
because the morphism NX(Q)/AIR - QA}JX@) vanishes upon base change to X (Leibniz rule)
and we use the exact sequence (3.37).

It remains to prove that X — X admits a retract if and only if:

d: NX/X(Q) g Qx(z) |X (344)

admits a retract. Indeed, a retract X3 5 X exhibits X(?) as the split square-zero extension
associated to Ny xe viewed as an A-module, so a retract of (3.44) is supplied by the
morphism Qx @ |x = NX/X@) classifying the identity on X2, Conversely, if (3.44) admits a
retract, then we have an isomorphism in Mod,:

Qxenlx = Nxjxe @ Qx. (3.45)

Since A®) - A is surjective with kernel NX/X@), we can lift any f € A to an element f e A®)

uniquely characterized by the equality df = (0,df) under the isomorphism (3.45). This
supplies a retract of X - X2, O

Remark 3.5.17. We may strengthen the notion of formal smoothness as follows. Let S be
a scheme, we say that a morphism X — S of schemes is formally étale if every solid diagram
(3.43) of schemes over S admits a unique extension Spec(B) - X over S.

Then the proof of Lemma 3.5.16 establishes the following variant: a morphism Spec(A) —
Spec(R) of affine schemes is formally étale if and only if H™'Lo/g = Qa/r = 0.

In particular, a morphism X — S of schemes is formally étale if and only if it is formally
smooth and Qx/g = 0.

3.5.18. Given a formally smooth morphism X — S and a square-zero extension Spec(Bg) —
Spec(B) of affine schemes over S equipped with a morphism Spec(Bg) - X over S, how to
describe the set of all extensions Spec(B) - X over S?
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FIGURE 4. In the proof of Lemma 3.5.16, we see that X := Spec(A) —
Spec(R) is formally smooth if and only if for every closed immersion of
X into an affine space A{v the first-order infinitesimal neighborhood X(?)
admits a retract onto X.

Denote by b the kernel of B — By, so b% = 0 and b acquires a By-module structure. Claim:
the set of all such extensions is acted on simply transitively by the abelian group:

HomBo (QX/S|Spec(B0)a b)
Indeed, by base change along Spec(B) — S, we may assume that S is affine. By covering X

with open affine subschemes and using descent of QCoh, we reduce to the case X = Spec(A)
is affine. The result now follows from the identification of affine schemes:

Spec(B) Uspec(s,) Spec(B) = Spec(Bab),
and the defining property of Qx/g.

Lemma 3.5.19 (Formal smoothness is a local property). Let f : X — S be a morphism
of schemes. Given open affine covers Spec(A;) - X, Spec(R;) = S (i € 1) such that the
restriction of f to each Spec(A;) factors through Spec(R;) and the induced map Spec(A;) —
Spec(R;) is formally smooth, then f is formally smooth.

Proof. Given a square-zero extension Spec(Bg) — Spec(B) of affine schemes over S equipped
with a morphism Spec(Bg) — X over S, we need to prove that an extension Spec(B) - X
over S exists.

Let us consider the sheaf on the standard Zariski site of Spec(Bg) assigning to each
standard open Spec((Bg)y) = Spec(By) (g € B) the set of extensions Spec(B,) — X over
S. By the hypothesis and §3.5.18, this sheaf is a torsor under the quasi-coherent sheaf
Homp, (2x/slspec(By); ). We conclude because By is affine and Homgp, (Qx/slspec(By)s b) is
quasi-coherent (Corollary 3.2.27).

3.5.20. Finally, we gather some consequences of formal smoothness.

Corollary 3.5.21. Let S be a scheme. Let f:Y — X be a morphism of schemes over S.
(1) If f is formally smooth, then (3.35) is exact on the left, giving a short exact sequence:
0 - Qxly = Qy = Qy/x = 0;

(2) If the structural morphism Y — S is formally smooth, then (3.37) is exact on the
left, giving a short exact sequence:

0> Ny/x = Oxly = Qy > 0. (3.46)
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Proof. Both statements reduce to the case where S, X, Y are all affine schemes. Then they
follow from Lemma 3.5.16 and the Jacobi-Zariski sequence (Proposition 3.5.14). O

3.6. Smoothness.

3.6.1. Let f:X — S be a morphism of schemes. We say that f is:

(1) smooth if it is formally smooth (¢f. 3.5.15) and locally of finite presentation (cf. Lemma
1.8.11);
(2) étale if it is formally étale (c¢f. Remark 3.5.17) and locally of finite presentation.

In particular, a morphism f : X — S of schemes is étale if and only if it is smooth and
{2x/s = 0. The analogue of Lemma 3.5.19 holds for the properties of being smooth and being
étale. In other words, they are local properties of f.

It is also clear that smoothness (respectively, étale-ness) is stable under composition and
base change.

If f: X - S is a smooth morphism, then Qx/g is a vector bundle (Lemma 3.5.16, Example
3.5.8). In this case, we say that f is smooth of relative dimension r (r € Zso) if Qx/g has
rank r. Thus, an étale morphism is precisely a smooth morphism of relative dimension 0.

It is clear that open immersions are étale. The morphism A7, — Spec(Z) (for n € Zy) is
smooth of relative dimension n.

3.6.2. A morphism of rings R — A is called standard smooth if there exists a presentation
A 2 R[z1, - z0]/(f1,, fm) (With m < n € Zyg) such that (0f;/0x;)1<i,j<m, viewed as an
m-by-m matrix with coefficients in A, is invertible.

Note that when R — A is standard smooth, we can factor Spec(A) — Spec(R) as
Spec(A) - AL™™ — Spec(R) where the second morphism is the projection and the first
morphism is standard smooth with a presentation A = R'[x1,--, 2 ]/(f1,*, fm) such that
(0f;/0xi)1<i j<m is an invertible m-by-m matrix; here, R" := R[@y11, -, Tn .

Proposition 3.6.3 (Jacobian criterion for smoothness). Let f : X — S be a morphism of
schemes. The following are equivalent:

(1) f is smooth;

(2) there exist open affine covers Spec(A;) — X, Spec(R;) = S (i € 1) such that the
restriction of f to each Spec(A;) factors through Spec(R;) and the induced map
R; = A; is standard smooth.

Proof. (2) = (1). Since smoothness is a local property, it suffices to prove that given a
standard smooth morphism R — A of rings, the induced morphism Spec(A) — Spec(R)
is smooth. It is clearly of finite presentation. To check that it is formally smooth, we
may assume A = R[z1,-, Zm]/(f1,, fm) where (0f;/0%;)1<i jem is an invertible m-by-m
matrix, via the factorization in §3.6.2. Then we consider the lifting problem for a square-zero
extension Spec(B/b) — Spec(B) over Spec(R):

Spec(B/b) — Spec(A)

Spec(B) — Spec(R)

The morphism Spec(B/b) - A amounts to the choice of elements by, -, by, € B/b such
that f;(b1,+,bm) = 0 for each j. We want to construct their lifts by, -, b, € B such that
fj(b1,-+, b)) = 0 for each j. First, we find arbitrary lifts b1,---, by, € B, so each f;(b1,-,bp)
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is some element of b. Then we want to find “adjustments” ¢; € b (1 <4 <m) so that:

m af
Fi(bs + 1, b+ ) = Fy 1, bn) + 30 5
i=1 04
vanishes for each j. This is possible because (0f;/0x;)(b1, -, bm)1<i,j<m is invertible.
(1) = (2). It suffices to prove that given a ring morphism R - A whose induced morphism
X :=Spec(A) — Spec(R) is smooth, there exists a standard open cover Spec(A;) - X (i €I)
such that each R — A; is standard smooth. Since R — A is of finite presentation, we
may choose a presentation A = R[x1,-,2,]/(f1, ", fm). In particular, we have a closed
immersion X — AR and the associated two-term complex:

X (3.47)

(b, b )€

d . NX/AE - QA;{

cf. §3.5.11. By Lemma 3.5.16, (3.47) is injective and its cokernel 5/ is finite projective,
so we have a short exact sequence of vector bundles over X:

0 Nxap > Qaplx = Qa/r 0. (3.48)

By localizing on X and the compatibility between (3.47) with localization indicated in
§3.5.11, we may assume that each term in (3.48) is a finite free A-module.

Let g1, 9r € a := (f1,-, fm) be elements whose images in NX/A; ¥ a®p Afa form a
basis. The inclusion of ideals (g1,::+,g,) © a becomes an isomorphism upon localizing at
some a € 1 +a (Nakayama’s lemma). Thus we have isomorphisms:

A i Aa i (R[xlv"'axn]/(gly"'ag'r‘))a i R[xla "’7xn+1:|/(glv"'ag7'+1)a

with gr+1 == a- 2,41 — 1. In this presentation, JV\IX/NFLL is freely generated by the elements
91, gr+1- (Here, we again used the compatibility between (3.47) with localization in-
dicated in §3.5.11). In other words, by changing the presentation, we may assume A 2
Rlz1, - xn]/(f1,, fm) and JV\IX/ATI; is freely generated by f1,---, frn. The complex (3.47) is
thus the following complex of free A-modules:

DAdf; > DAdz;, dfi= Y 2fj
j=1 i=1 )

i=1 7

dz;. (3.49)

In particular, we have m < n.

Next, we consider the standard opens of X defined by the m-by-m minors of the matrix
(3.49). They form an open cover of X because (3.49) is a summand. Claim: these standard
opens are the spectra of standard smooth R-algebras. Without loss of generality, we consider
the standard open Spec(A;) — X where b is the determinant of the first m-by-m minor. Thus
we have a presentation:

Ab i> R[.Tl, CImy Yy T+l x’ﬂ]/(fl) R fm+1)
where fy,.1:=b-y— 1, which realizes A} as a standard smooth R-algebra. O

Corollary 3.6.4. Let f: X — S be a smooth morphism of schemes of relative dimension r.
Then there exists an open cover X; = X (i €1) and a factorization of the induced morphism
fi : Xi - S as:

where ﬁ s €tale and p is the projection map.
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Proof. Since open immersions are étale, it suffices to prove this when f is the morphism
induced from a standard smooth ring morphism R — A (Proposition 3.6.3). In this case, it
follows from the factorization indicated in §3.6.2. g

3.6.5. Let f: X — S be a smooth morphism. We define the canonical line bundle on X
(relative to S) to be wx/s = det({2x/g). This is the line bundle A" Qx/g if f is smooth of
relative dimension r. We also write wx if the base scheme S is clear from the context.

Given a closed immersion Y - X of smooth schemes over S, we have an isomorphism of
line bundles:

wx/sly - wy/s ® det(Ny/x). (3.50)
Indeed, this follows from Corollary 3.5.21(2) by taking determinants.

Example 3.6.6 (Euler sequence). For any n € Zyq, the projective space Py is smooth over
Spec(Z). Indeed, this follows from the smoothness of A} — Spec(Z) and the fact that Py,
admits an open cover by (n+1) copies of A% (c¢f. the proof of Proposition 3.1.4). The sheaf
of differential forms (lpp fits into a short exact sequence:

0 Qpy % @ Opy (1) 2 Opy 0, (3.51)

i=0
called the Euler sequence. Here, (3 is the sum of maps X; : OP%(—l) - O[P%, where X; is the
ith homogeneous coordinate of Py (0 <¢ <n). Over the chart of P}, where X; is invertible,
the morphism « carries the basis element d(X;/X;) (j # ¢) to the section with 1/X; placed

at the jth coordinate and —X;/X? placed at the ith coordinate.®
It follows from (3.51) that wpy is identified with Opy (-1 - 1), by taking determinants.

Example 3.6.7 (Smooth hypersurfaces). Let R be a ring and consider the projective space
PR over Spec(R). Let f be a section of Opz (d) such that its vanishing locus i : X — Py is
smooth over Spec(R). (For explicit f, smoothness of X can be checked using the Jacobian
criterion.) Then we have an isomorphism:

wx = Opn (d-n-1)|x. (3.52)
Indeed, we have a short exact sequence:
0 0z (-d) L 0 > i.0x 0.

Comparing with (2.29), we find that the ideal sheaf defining the closed subscheme X of P}
is isomorphic to Opn (~d). Thus, the conormal sheaf of X is isomorphic to Opy (~d)[x. The
isomorphism (3.50) then reads as follows:

O]pﬁ(—n - 1)|X 5 wx ® O]pﬁ(—d)b(,

where we used the Euler sequence to identify wpn with Opn (-n - 1) (cf. Example 3.6.6).
This yields the isomorphism (3.52).

Example 3.6.8 (Hodge classes of line bundles). Let R be a ring and X be a smooth scheme
over Spec(R). Let £ be a line bundle over X. We shall attach to £ an Qx-torsor.

16Note that the pullback of (3.51) along = : AZT1 N0 - PZ is identified with the short exact sequence:
n
0— ﬂ*Qp% — Q)QA%“\O - Q= 0.

obtained in Corollary 3.5.21(1).
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Namely, we consider the sheaf of abelian groups on (Schaff) /x underlying Qx: it assigns to
Spec(A) — X the abelian group 4 /g. Recall the sheaf of abelian groups G,, on (Schaﬂ)/x
which assigns to Spec(A) - X the abelian group A* of units in A. Consider the morphism
of sheaves:

dlog:G,, - Qx, f~ fdf.
Note that a line bundle £ over X is equivalent to a G,,-torsor (Proposition 3.2.19), so we
may change the structure group along dlog to obtain an Qx-torsor. The isomorphism class
of this Qx-torsor is called the Hodge class of L.

4. POINTS OF SCHEMES

In this section, we introduce the underlying topological space |X| of a scheme X and
discuss several notions associated to them. The topological space |X] is a strange beast. Its
role is very different from, say, the underlying topological space of a differentiable manifold.
For example, it is (quasi-)compact for the complex plane X = A and is practically never
Hausdorff. For X a projective, smooth curve over C (the algebro-geometric model for a
compact Riemann surface), |X]| also has no idea how many “holes” X has.

However, |X| keeps track of a different host of information about X, such as its “algebraic
cycles” and the closure relations among them.

4.1. The topological space |X|.

4.1.1. Let X be a scheme.

We define an equivalence relation on the set of field-valued points of X: Two morphisms
Spec(K;) — X, Spec(Ks) — X are equivalent if there is another field K;5 containing Ky, Ko
such that the diagram below commutes:

Spec(Klg) — Spec(Kl)

l |

Spec(Ky) —— X

To see that this relation is transitive, we observe that given morphism of spectra of fields
Spec(L1) — Spec(K) < Spec(Ls), the tensor product L; ®k Ls is not the zero ring, so there
is a morphism L; ®k Ly — L for some field L.

We define |X]| to be the set of equivalence classes of field-valued points of X. The set |X]
is called the underlying set of the scheme X. Elements of |X| are called points of X (to be
distinguished from R-points for R € Ring.)

Remark 4.1.2. If X = Spec(A) is an affine scheme, then |X] is in bijection with the set of
prime ideals of A via the map sending a field-valued point Spec K — X to the kernel of the
corresponding ring map A - K.

The inverse of this map sends a prime ideal p to the class of the field-valued point
A - k(p), where k(p) := Ap/pA, is the residue field of the localization A,.

4.1.3. Given a morphism f:Y — X of schemes, we obtain a morphism of sets |f|: [Y| - |X]

sending the class of a field-valued point of Y to the class of its image. Thus, the association
X ~ |X| defines a functor:

Sch — Set, X~ [X]. (4.1)

If f is a monomorphism (respectively, epimorphism) of Zariski sheaves, then |f] is injective
(respectively, surjective).
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Remark 4.1.4. Given morphisms of schemes X; - X « X, the natural map:
|X1 Xx X2| —> |X1| X|X‘ |X2| (42)

is surjective but not injective in general. For an example of non-injectivity, take X := Speck
for a field k and X; = Xo = A}. The fiber product X; ®x X2 & A7 = Spec k[z,y] has points
defined by prime ideals (0) and (2 - y) which have the same images in |A}| x |A}|.

However, if X; — X is a monomorphism, then (4.2) is injective (hence bijective): This
is because X; xx Xo — Xy is also a monomorphism (¢f. Lemma 1.4.8), so the composition
Xy xx Xa| = [X1] xx| [Xo| = [Xo| is already injective.

4.1.5. Let X be a scheme and z € |X|. Consider the filtered colimit of rings:

Ox, = colim R,
z€| Spec R|
indexed by open affine subschemes SpecR — X whose underlying set contains x. The ring
Ox z is called the local ring of X at x.

By construction, there is a morphism Spec(Ox ) — X which factors through every open
affine subscheme of X whose underlying set contains x. If we fix such an open affine sub-
scheme Spec A — X, then x corresponds to a prime ideal p of A and Ox , is identified with
the localization A,. In particular, Ox ; is a local ring in the sense of commutative algebra:
It has a unique maximal ideal which we denote by mx ,.

Let x(x) denote the residue field of Ox ., which we refer to simply as the residue field of
z. Denote by éX,z the completion of Ox , along mx , and call it the completed local ring of
X at z. In summary, every point x of X gives rise to morphisms of schemes:

Spec(k(z)) - Spec((f)x,z) — Spec(0x ) = X.

Proposition 4.1.6. Let X be a scheme. There is a topology on |X| such that a subset of |X|
is open if and only if it is the image of |f| for some open immersion f:U — X.

Proof. Let us call a subset of |X| open if it is the image of |f| for some open immersion
f:U—>X. Since id: X - X and @ — X are open immersions, open subsets of |X| include the
empty set and |X|.

Given a finite collection of open immersions f; : U; — X (i = 1,---,n), we obtain an open
immersion f:U; xx Uy xx -+ xx U, = X, whose image is N}, [U;|, where each [U;| is viewed
as a subset of |X|.

Given an arbitrary collection of open immersions f; : U; - X (i € I), we let U denote
the sheaf image of the induced morphism | |;i; U; - X, i.e. the sheafification of the presheaf
image. We thus obtain morphisms of Zariski sheaves:

| U, - U->X, (4.3)
i€l
where the first morphism is an epimorphism and the second one is a monomorphism. The
formation of (4.3) is furthermore compatible with base change in X.

We claim that U is a scheme and the natural morphism U — X is an open immersion.
This will be enough, since |U| equals U;er [U;| as a subset of |X|. To prove that U is a scheme,
it suffices to prove that each U; — U is an open immersion, because U; - U (i € I) will then
be an open cover of U by schemes. However, since U - X is a monomorphism and each
U; - X is an open immersion, so is the morphism U; - U (¢f. Remark 1.5.4). To prove
that U — X is an open immersion, we reduce to the case where X = Spec A is affine, where
it follows from the definition of open immersions. O
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Remark 4.1.7. In fact, the poset of open immersions into X is identified with the poset of
open subsets of [X|. Indeed, given two open immersions U — X « V such that |U| = [V| c [X],
we argue that U 2V as open subschemes of X.

By taking the fiber product U xx V, this reduces to the following assertion: Any open
immersion U — X which induces a surjection [U| - |X]| is an isomorphism. This reduces to
the case where X is affine, where the assertion is clear.

4.1.8. Let us now upgrade (4.1) to a functor:
Sch - Top, X~ [X], (4.4)

by equipping the set |X| with the topology defined by Proposition 4.1.6.

Given a morphism of schemes f : Y — X, the induced map |f] : [Y] = |X]| is indeed
continuous because given an open immersion U — X, the base change f1U := Uxx Y
satisfies |f~1U| = U] as subsets of |Y| (¢f. Remark 4.1.4).

We call |X]| the underlying topological space of the scheme X.

Corollary 4.1.9. A scheme X is quasi-compact if and only if |X| is quasi-compact.r”

Proof. This follows from Proposition 4.1.6. O

4.1.10. Recall that a topological space T is connected if it is not the union of two disjoint
closed subsets.

A topological space T is irreducible if T # @ and whenever T = T; u T for two closed
subsets T1, Ty ¢ T, we have T = Ty or T = Ty. This is equivalent to saying that T + &
and every two nonempty open subsets of T have nonempty intersection. A maximal closed
irreducible subset of T is called an irreducible component.

Clearly, being irreducible is stronger than being connected. If a topological space T is
irreducible, then so is any of its nonempty open subsets.

Lemma 4.1.11. Let T c T/ be a dense subset of a topological space. Then T is irreducible
if and only if T' is irreducible.

Proof. Suppose that T is irreducible. Any two nonempty open subsets Uy, Uy c¢ T’ satisfy
U;nT+@, UsnT # @ because T is dense in T’, so (U3 nUy)N'T is nonempty. In particular,
U; n Uy is nonempty, so T’ is irreducible.

Suppose that T’ is irreducible. Any two nonempty open subset V1, Vy c T can be written
as Vi = Uy nT, Va = Uy nT for nonempty open subsets U;,Uy ¢ T/. Then U; n U, is
nonempty. But because T is dense in T, Vi n' Vo = (U; nUy) nT is also nonempty, so T is
irreducible. O

4.1.12. Let T be a topological space. A point x € T is called closed if {2} is closed.

It follows from Lemma 4.1.11 that the closure of any singleton {z}, for z € T, is irreducible.
If a closed irreducible subset Z c T is of the form {z} for some z € T, then z is called a
generic point of Z. The topological space T is called sober if every irreducible closed subset
of T has a unique generic point.

If ye m, we say that y is a specialization of x, or that x is a generalization of y. This
relationship is sometimes denoted by x ~ y. Note that if T is sober, then specialization
defines a partial order on the points of T.

17A topological space is called quasi-compact if every open cover admits a finite subcover. This notion
is sometimes called “compact”.
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The Krull dimension dim(T) € Z u {oo} of T is the supremum of the length n of a chain
of irreducible closed subsets of T:

Zo$71 %G Ln.
Lemma 4.1.13. Let X be a scheme. Then |X| is sober.

Proof. We first prove this for X = Spec(A) an affine scheme. In this case, the association
p — V(p) defines a bijection between primes of A and irreducible closed subsets of | Spec(A)|.
Furthermore, p is the unique generic point of V(p).

For any scheme X, let Z c |X| be an irreducible closed subset. Let Spec(A) — X be an open
immersion such that Zn|Spec(A)| is nonempty. Since Z is irreducible, so is Zn|Spec(A)| as
it is a nonempty open subset. The affine case shows that we can find a point z € | Spec(A)|
such that Z n|Spec(A)]| coincides with the closure of {z} in |Spec(A)|. Claim: Z coincides
with {z}. Indeed, Z = {z} U (Z ~ |Spec(A)]|), but Z # Z ~ |Spec(A)|, so Z = {z}. We have
now found a generic point of Z.

Suppose that Z has two generic points x,y € |X|. Since y € {}, any open subset of [X|
containing y must also contain x. Thus we may choose an open affine subscheme containing
both and the uniqueness in the affine case shows z = y. 0

Remark 4.1.14. Let X be a scheme. For every point x € |X|, we have a canonical morphism
Spec(0x o) = X constructed in §4.1.5. The image of | Spec(Ox )| in |X]| consists precisely
of generalizations of .

4.1.15. Let X be a scheme. We say:
(1) X is connected (respectively, irreducible) if |X| is;
(2) the Krull dimension dim(X) is the Krull dimension of |X|:

dim(X) := dim(|X]).

Note that by Lemma 4.1.13, dim(X) coincides with the supremum of the length n of a
chain of specializations x,, ~ x,,_1 ~ -+ ~ g of distinct points. In particular, for an affine
scheme X = Spec(A), dim(X) equals the Krull dimension dim(A) of the ring A.

By taking the local ring at x¢ for all such chains, we also see that dim(X) also equals the
supremum of dim(Ox ;) over all z € |X].

Remark 4.1.16. Let X be a scheme. For z € |X], the number dim(Ox ) € Z u {oo} should
be thought of as the codimension of the point z, so we also write it as codim(z).

If X = Spec(A) and x corresponds to a prime p, then dim(Ox ) is called height of p in
commutative algebra. In summary, we have equalities by definition:

ht(p) := codim(x) := dim(Ox ¢ ).

Let us also write X("™) for the set of codimension-n points of X (n > 0). By Lemma 4.1.13,
X is in bijection with the irreducible components of |X|. Elements of X(*) are also called
the generic points of the scheme X.

Example 4.1.17 (Effective Cartier divisors have codimension 1). Let X be a locally Noe-
therian scheme and Z — X be a nonempty effective Cartier divisor. Let £ be the generic
point of any irreducible component of |Z|. Then ¢ is a codimension-1 point of X.

Indeed, this translates to the following ring-theoretic statement: If A is a ring and p is a
minimal prime containing a non-zero-divisor a € A, then ht(p) = 1. Indeed, we have ht(p) < 1
by Krull’s Hauptidealsatz (cf. [Stal8, 00KV]), but ht(p) > 1 because every minimal prime
consists of zero-divisors (Proof: Every element in a minimal prime p ¢ A becomes nilpotent

in Ap).
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4.1.18. Finally, we classify all locally Noetherian schemes (c¢f. Lemma 1.8.4) of Krull di-
mension 0.

Recall that given a local ring R, the following conditions are equivalent:'®

(1) R is Artinian, i.e. ideals of R satisfy the descending chain condition;
(2) R is Noetherian and dim(R) = 0;
(3) R has finite length as an object of Modg.

Indeed, (3) implies both Artinian and Noetherian properties; it also implies dim(R) = 0
as the maximal ideal m c R is nilpotent, i.e. m” = 0 for some n € Z (Nakayama), so it is
contained in any prime. Hence (3) = (1) & (2). On the other hand, (1) = (3) again by
nilpotence of m. To see (2) = (1), note that m coincides with the radical of R, but because
it is finitely generated, it is nilpotent.

4.1.19. A scheme X is called Noetherian if it is locally Noetherian and quasi-compact.

Lemma 4.1.20. Let X be a Noetherian scheme. Then |X| has finitely many irreducible
components.

Proof. For convenience, we call a topological space T Noetherian if its closed subsets sat-
isfy the descending chain condition. Thus, if A is a Noetherian ring, then |Spec(A)] is a
Noetherian topological space.

Claim: a Noetherian topological space T has finitely many irreducible components. As-
sume otherwise, we consider the set Z of closed subsets of T which are mot the union of
finitely many irreducible subsets. Then Z # @&, so the descending chain condition produces
a minimal element Z € Z. This Z cannot be irreducible, so Z = Zy U Zy for closed subsets
71,79 # 7. Then both Z; and Zs are unions of finitely many irreducible subsets, so the same
holds for Z; contradiction.

Claim: if a topological space T is a finite union of Noetherian subspaces T; (¢ € I), then T
is Noetherian. Indeed, any chain of closed subsets of T which stablizes in each T; stabilizes
in T, because I is finite.

Finally, we note that |X| can be expressed as a finite union of |X;| (¢ € I), where each
X; = Spec(R;) - X is an open immersion with R; Noetherian. Hence |X| is a Noetherian
topological space, so it has finitely many irreducible components. O

Proposition 4.1.21. Let X be a locally Noetherian scheme with dim(X) =0. Then X is a
disjoint union of spectra of local Artinian rings.

Proof. Tt suffices to prove that |X| has the discrete topology. Indeed, then every x € |X] is
open, so the unique open immersion U — X with |U| = {2} must agree with Spec(Ox ,). The
open cover of X they define yields an isomorphism in Sch:

|| Spec(0x..) = X.
zelX]

On the other hand, each Ox , is Noetherian and of dimension 0, hence Artinian.

To prove that |X| has the discrete topology, it suffices to treat the case X = Spec(A)
is affine. We may further assume that A is reduced because |Spec(A)| is homeomorphic
to |Spec(A/\/0)|. Since A is Noetherian, it has finitely many minimal primes by Lemma

18These conditions are also equivalent for any R € Ring not necessarily local, but this is partly subsumed
by Proposition 4.1.21 below, so we will not recall it here. (See [Stal8, 00KH, 00JB] for references.)
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4.1.20.'? Since dim(A) = 0, these minimal primes are all maximal. Let us denote them by m;
(i € T). Because M;egm; = /0 = (0), the Chinese remainder theorem yields an isomorphism:
A S [TA/m
i€l
In particular, the topological space | Spec(A)| is discrete. O

4.2. Normalization.

4.2.1. Proposition 4.1.21 tells us that locally Noetherian schemes of dimension 0 are simply
discrete collections of fat points. In dimension 1, we do not have such a simple description.
Indeed, Noetherian schemes of dimension 1 are supposed to model compact Riemann surfaces
as well as integers in a number field, both of which are rich mathematical objects.

In this subsection, we will make some baby steps towards understanding locally Noether-
ian schemes of dimension 1. Namely, we will show that they can be “desingularized”.

4.2.2. Given a nonzero ring R, we can attach to it a sequence of modifications:

R->Riea—~ [] R/p—> [I [®/p)=R.. (4.5)
p minimal p minimal

The first step is the quotient of R by its nilradical /0, giving a reduced ring Ryeq = R/V0.
The second step is the quotient of R at its minimal primes, so each R/p is a domain. The
third step replaces each R/p by its normalization (R/p),, i.e. the integral closure in its field
of fractions, so each (R/p), is a normal domain.

The process (4.5) can be seen as making the ring R increasingly “regular”. At the opposite
end, we have the notion of a “regular” ring.

Recall that a local ring R, with maximal ideal m and residue field &, is regular if it is
Noetherian and dim(R) equals the dimension of m/m? as a r-vector space:

dim(R) = dim, (m/m?).
(By Nakayama lemma, this implies that m can be generated by dim(R) elements.)

4.2.3. The key feature of dimension-1 Noetherian local rings is that the notions of normality
and regularity coincide. They also turn out to be equivalent to a third notion: a “discrete
valuation ring”.

Recall that a discrete valuation ring is a principal ideal domain R with exactly one non-
zero maximal ideal m. Upon choosing a generator 7 € m, we can define a map out of its field
of fractions f.f.(R), called order of vanishing:

ord : f.f.(R) > Z U {00}, (4.6)
sending un™ (u € R*) to the integer n and 0 € R to co.
Proposition 4.2.4. Let R be a local ring with maximal ideal m and residue field k. Then

the following statements are equivalent:

(1) R is a Noetherian normal domain and dim(R) = 1;
(2) R is regular and dim(R) = 1;

(8) R is a discrete valuation ring.
Proof. This is [Stal8, 00PD]. O

19Here is an alternative, ring-theoretic, proof of this fact. First, one shows that any finite A-module
M has an associated prime (e.g. a maximal element among the annihilators of elements of M). Using the
ascending chain condition, we find a finite filtration 0 = ag € a1 ¢ -+ ¢ 4, = A where each a;/a;_; is isomorphic
to A/p; for some prime p; (1 <i<n). Any prime p of A contains one of the p;’s because Ay # 0.
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Remark 4.2.5. Let R be a discrete valuation ring with maximal ideal m. Then |Spec(R)]
has two points: a special point x corresponding to the prime m and a generic point 7
corresponding to the prime (0) (¢f. Remark 4.1.16). They are related by a specialization
1 ~ x. The function (4.6), as its name suggests, returns the “order of vanishing” of f € f.f.(R)
at the special point =, where negative values indicate “poles”.

For example, consider R := K[z](,) where K is a field. Its field of fractions is identified
with the field K(z) and ord(f) is precisely the order of vanishing of f € K(x) at the origin.

Example 4.2.6 (Nodal curve). Let K be a field and consider the subring A c K[x] consisting
of elements f € K[z] such that f(0) = f(1). Note that A is a finitely generated K-algebra
because any f € K[x] is of the form (22 —2) g+ A for some g € K[z] and X € K, so A is
generated by 22 — 2 and 23 — 22 as a K-algebra.

Claim: K[z] is the normalization of A.

Indeed, K[z] c K(z) is integrally closed, so it suffices to show that any element of K[z] is
integral over A. In fact, it suffices to show that x is integral over A, but this holds because
2% —x e A. (This also implies that A — K[z] is finite, since it is of finite type.)

Note that a := (2% - ) is a maximal ideal of A. Indeed, we first observe that it is the
intersection ()N A: This is because any f € A which is divisible by 2 must also be divisible
by 2 — 1. Hence a is a prime ideal of A. It is maximal because A c K[z] is integral, so it
satisfies the going-up property. Let us write 0 for the corresponding closed point of Spec A.
Its residue field is K since the residue field of (x) c K[z] is K.

Consider the short exact sequence of finite A-modules:

0-A->K[z]>K-0, (4.7)

where the second map sends f to f(0) - f(1). Localizing at the element 22 -z € A, the last
term vanishes, so we obtain an isomorphism of affine schemes:

A ~{0,1} - Spec A\ 0.

On the other hand, if we complete (4.7) along the ideal a, we obtain a short exact se-
quence (using the exactness of completion of finite modules over Noetherian rings, cf. [Stal8,
00MA)):

0 Aq > K[[z]] xK[[y]] - K - 0.

where the second map sends (f,g) to f(0) - g(0). This shows that A, is isomorphic to the
completion of K[z, y]/(zy) along (z,y), i.e. formally locally at 0, Spec A looks like the union
of the two coordinate axes in A%. Such singularities are called nodes.

4.2.7. Let X be a scheme.

We say that X is normal (respectively, regular) if for every z € |X|, the local ring Ox , is
a normal domain (respectively, a regular local ring). In particular, normality and regularity
are local properties (cf. §1.8.2).

We say that X is integral if X # @ and for every nonempty open immersion Spec(R) - X
(i.e. Spec(R) # @), the ring R is a domain. Note that integrality is not a local property:
The disjoint union of two integral schemes is not integral.

Lemma 4.2.8. A scheme X is integral and normal if and only if for every nonempty open
immersion Spec(R) - X, the ring R is a normal domain.

Proof. This is equivalent to the assertion that an integral domain R is a normal domain if
and only if Ry is a normal domain for every prime p of R.

To prove the “=" direction, we note a more general fact. Namely, given a morphism
R — B in Ring and a multiplicatively closed subset S c R, if R - A c B is the integral closure
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Q2

FIGURE 5. The morphism v : Aj; - Spec(A) of affine schemes induced by
the subring A c K[z] (¢f. Example 4.2.6) is the normalization of a node.
Geometrically, we think of Spec(A) as obtained from Aj; = Spec(K[z]) by
“pinching” the K-points 0 and 1.

of R in B, then S'R - S7'A c S™!B is the integral closure of S™'R in S™'B. The proof of
this fact is by “clearing the denominators” (see [Stal8, 0307] for details).

The desired statement follows from applying this observation to B := f.f.(R), the field of
fractions of R, and S:=R \ p.

To prove the “«<=” direction, we note that being a domain, R equals the intersection:

R =R, c ££.(R).
p

Indeed, for any f € N, Ry, consider the ideal a c R consisting of elements a € R such that
af € R. The for every prime p, there exists a € a, a ¢ p. Hence a = R.

The desired statement follows, because the intersection of integrally closed subrings of
f.£.(R) is integrally closed. 0

4.2.9. Let X be a scheme. Let T c |X]| be a closed subset. Then the partial order of closed
immersions Z — X such that |Z| - |X| has image T has an initial object.

We construct the initial object Z — X by specifying its ideal sheaf Jz: for every open
immersion Spec(R) — X, T n|Spec(R)| is a closed subset of | Spec(R)], so it corresponds to
a radical ideal a ¢ R, and we set I'(Spec(R), Jz) := a. By Corollary 2.2.5, it remains to prove
that for an open immersion Spec(R;) - Spec(R), we have:

I'(Spec(R),Jz) ®r Ry = T'(Spec(Ry),Tz).

This follows because ay c Ry is the radical ideal corresponding to T n|Spec(Ry)|.

Note that the inital object Z — X has the property that Z is reduced. We call it the
induced reduced subscheme of the closed subset T c [X].

In particular, we may apply this construction to the set |X| itself to obtain a closed
subscheme X,eq — X. By construction, for every open immersion Spec(R) — X, we have a
Cartesian square:

Spec(Rred) = Xied

L

Spec(R) — X
So every morphism f:Y — X in Sch, with Y reduced, factors through X,.q.

Proposition 4.2.10. A scheme X is integral if and only if it is irreducible and reduced.



SCHEME THEORY 1 79

Proof. Suppose that X is irreducible and reduced. Then for every open immersion Spec(R) —
X with Spec(R) # @, Spec(R) is irreducible and R is reduced. Hence R is an integral domain.

Suppose that X is integral. In particular, X is reduced. It remains to prove that X is irre-
ducible. By our hypothesis, for every nonempty open immersion Spec(R) — X, Spec(R) is ir-
reducible. We need to prove that any two nonempty open immersions Spec(R1 ), Spec(Ra) —
X has a nonempty intersection. Suppose that Spec(R;) nSpec(Rs) 2 @, then we obtain an
open immersion:

Spec(Ry x Rz) = Spec(Ry) U Spec(Ry) - X.
But our hypothesis implies that Spec(R; x Rg) is irreducible; contradiction. O

4.2.11. Let X be an integral scheme. Then X is irreducible (¢f. Proposition 4.2.10), so it
has a unique generic point 7 € X(?) (¢f. Lemma 4.1.13). Define the function field of X to be:

£.£(X) = Ox.-

This is indeed a field, because Ox ,, is reduced and dim(Ox,n) =0. In particular, Ox , is
identified with the residue field x(n).

Note that given any open immersion Spec(R) — X, the map Spec(Ox,) - X factors
through Spec(R) and its image in |Spec(R)| is the prime (0). Hence, {.f.(X) is identified
with the field of fractions of R. We may thus view R as a subring:

R c £.£.(X).

4.2.12. Next, we construct normalizations. We shall do this in a more general setting,
which amounts to globalizing the construction of integral closures for all morphisms in Ring.
Let f:Y — X be an affine morphism of schemes. Recall that f corresponds to some
quasi-coherent sheaf of Ox-algebras B (cf. Corollary 2.4.13).
Let us define a quasi-coherent sheaf of Ox-subalgebras A c B, i.e. a morphism A - B in
CAlg(QCoh(X)) which is injective on the underlying objects of QCoh(X). Indeed, for every
open immersion Spec(R) - X, we define:

R - I'(Spec(R), A) c I'(Spec(R), B)
to be the integral closure of R in T'(Spec(R),B). To define an object of QCoh(X), we need
to show that the natural map:
I'(Spec(R), A) ®r Ry — T'(Spec(Ry), A)

is an isomorphism for every f € R (¢f. Corollary 2.2.5), but this has been observed in the
proof of Lemma 4.2.8.

We call the affine morphism Specy (A) — X the relative normalization of X in Y. The
morphism f:Y — X factors canonically through Specx (A).

4.2.13. Let X be an integral scheme. We define the normalization of X to be the relative
normalization of X in Spec(f.f.(X)), so we have a commutative diagram:

Spec(££(X)) L X

R

X

where 7 is the generic point of |X|, thought of as a morphism from its residue field f.f.(X) to
X. By construction, X is also an integral scheme and v induces an isomorphism on function
fields f.f.(X) > £.£.(X). By Lemma 4.2.8, X is normal.
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4.2.14. By construction, normalization is only functorial with respect to morphisms f :
Y — X of integral schemes carrying the generic point of |Y]| to the generic point of |X|. (One
cannot expect it to be functorial with respect to all morphisms. Consider, for example, the
inclusion of the nodal point in a nodal curve, ¢f. Example 4.2.6.)

More generally, a morphism f :Y — X in Sch is called dominant if |f|: [Y| = |X| has
dense image. For integral schemes, this coincides with the condition above.

Lemma 4.2.15. Let f:Y — X be a morphism of integral schemes. Then the following are
equivalent:

(1) f is dominant;

(2) |f| maps the generic point of |Y| to the generic point of |X]|.

Proof. Let z (respectively, y) denote the generic point of |X| (respectively, [Y]). Since {«} is

dense in [X|, we have (2) = (1). To prove (1) = (2), we assume that f is dominant. Then

the image of Y| = {y} under |f] is contained in {f(y)}. But if f(y) # z, then {f(y)} would
be a proper closed subset of |X], hence not dense. O

Remark 4.2.16. In summary, we have globalized the construction (4.5) to schemes. Namely,
to each scheme X, we may attach the following sequence of morphisms:
Ll X,~ | Xy~ Xeea = X (4.8)
WEX(O) 7]€X(0)

Here, X, is the induced reduced subscheme of X (hence of X,.q) defined by the closed subset
{n} c |X|. Thus, each X,, is integral and each X, is integral and normal. Note that by
construction, the morphisms in (4.8) induce bijections on generic points.

Furthermore, when X is locally Noetherian and dim(X) = 1, each of the schemes X,, is
regular by Proposition 4.2.4.

Remark 4.2.17. Let X be a locally Noetherian scheme. Then maps from spectra of discrete
valuation rings to X control all specializations in |X| in the following way.

Claim: For any specialization y ~ x in |X|, there is a discrete valuation ring R equipped
with a morphism of schemes:

Spec(R) = X, (4.9)

sending the generic point to y and the special point to x.

Indeed, let us equip Y := {y} with the induced reduced subscheme structure and view x
as a point of [Y|. Then the local ring A := Oy , is a Noetherian local domain whose maximal
ideal corresponds to x. It suffices to find a discrete valuation ring R with a morphism:

SpecR — Spec A (4.10)

which induces an isomorphism of fraction fields and sends the closed point to x.

To construct the morphism (4.10), we consider the blow-up Bl, Spec A of Spec A along
the closed point x (c¢f. Proposition 3.4.7). Let £ be the generic point of any irreducible
component of the exceptional divisor E in Bl, Spec A. Then the local ring B of Bl, Spec A
at £ is a Noetherian local ring of Krull dimension 1 (¢f. Example 4.1.17). Taking R to be
the normalization of B suffices.

4.2.18. Valuation rings. To control specializations on an arbitrary scheme, we need a non-
Noetherian version of discrete valuation rings.

Let A, B be local domains contained in a field K. We say that B dominates A if A c B
and mg N A =my. Here, my (respectively mp) is the maximal ideal of A (respectively B).
(Note that (4.10) is an example of a domination relation.)
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A local domain A is a valuation ring if it is maximal among local domains contained in
its fraction field f.f.(A).

Given a valuation ring A, the special point of | Spec(A)] is the maximal ideal my. Clearly,
it is a specialization of the generic point, corresponding to the prime ideal (0).

Remark 4.2.19. By definition, a field is a valuation ring. Furthermore, any discrete val-
uation ring is a valuation ring. In fact, a valuation ring is Noetherian if and only if it is a
field or a discrete valuation ring [Stal8, 00II].

Lemma 4.2.20. Let A be a local domain contained in o field K. Then there exists a
valuation ring B c K with fraction field K dominating A.

Proof. We shall apply Zorn’s lemma to the set of local domains in K which dominate A,
ordered by the dominance relation. Indeed, given any chain A; (i € I) of local domains in K
dominating A, their union U;g A; is also a local domain in K dominating A. Thus this set
has a maximal element B c K. To fininsh the proof, we need to prove that f.f.(B) = K.
Suppose that f.f.(B) ¢ K. Take t € K \ ff(B). If ¢t is transcendental over B, then
B[t](¢,mp) € K is a local domain dominating B. (Here, mp stands for the maximal ideal of
B.) If t is algebraic over B, then for some f € B, ft € K is integral over B, so the subring
B’ of K generated by B and ft is finite over B. The finite extension B c B’ then defines a
surjective morphism Spec(B’) - Spec(B) (Nakayama), so mp lifts to a prime ideal p of B’
and (B"), dominates B. O

4.2.21. Let X be a scheme and y ~ x be a specialization in |X|. Let us construct a morphism
for some valuation ring R:

f:Spec(R) = X, (4.11)
such that |f| carries the generic point to y and the special point to .
Indeed, we equip Y := {y} with the induced reduced subscheme structure and apply

Lemma 4.2.20 to the local domain A := Oy, contained in its fraction field K := k(y). By
construction, the fraction field of R is identified with x(y).

4.3. Chevalley’s theorem.

4.3.1. Given a morphism of schemes f :Y — X, what does the image of |f| look like? In
general, it can be arbitrary: for any subset T of |X|, taking Y to be the disjoint union of
points in T yields a morphism f:Y — X such that |f| has image T.

After one imposes some finiteness conditions on f, however, the answer becomes much
more interesting. In this subsection, we will prove Chevalley’s theorem (c¢f. Theorem 4.3.8),
which characterizes the images of morphisms of finite presentation.

4.3.2. Let T be a topological space. We say that T is spectral if:

(1) T is sober (cf. §4.1.12);

(2) T is quasi-compact;

(3) the intersection of two quasi-compact open subsets of T is quasi-compact;
(4) T admits a basis consisting of quasi-compact open subsets.

Lemma 4.3.3. Let X be a quasi-compact, quasi-separated scheme. Then |X| is spectral.

Proof. Sobriety (1) follows from Lemma 4.1.13. Quasi-compactness (2) follows from Corol-
lary 4.1.9. The intersection property (3) is equivalent to quasi-separatedness. To find a basis
of quasi-compact open subsets (4), we may take the collection of open subsets |U| c |X| with
U an affine scheme.
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Remark 4.3.4. Hochster [Hoc69, Theorem 6] proved that every spectral topological space
is of the form |Spec(A)| for some A € Ring.

4.3.5. Let T be a spectral topological space.

A subset Z of T is called constructible if it belongs to the Boolean algebra generated
by quasi-compact open subsets, i.e. the smallest subset of the power set of T closed under
binary intersection, binary union, and complement.?°

Note that Z is constructible if and only if it is of the form U;e; (U; NV;) (@ €I finite) where
U;,V; c T are quasi-compact open subsets. (The key step is showing that sets of this form
are closed under binary intersection, and this makes use of axiom (3).)

Here is the nice thing about constructible sets: Checking their closedness (respectively,
openness) amounts to checking their closure under specializations (respectively, generaliza-
tions).

Lemma 4.3.6. Let X be a quasi-compact, quasi-separated scheme. Let 7 c |X| be a con-
structible subset. Then:

(1) Z is closed if and only if it is closed under specialization;
(2) Z is open if and only if it is closed under generalization.

Proof. 2! (2) follows from (1) by taking complements, so we will only prove (1). The “="
direction is clear, so we prove the “<” direction. Since closedness can be checked on an
open cover, we may assume that X = Spec(A) is affine.

Write Z = Ut (U; NV;) (i €1 finite). Claim: Z is the image of an affine scheme. Indeed,
by taking a disjoint union, it suffices to show that U \ V is the image of an affine scheme,
for any quasi-compact opens U,V c |Spec(A)|. Writing U as a finite union of images of
standard opens Spec(A;) — Spec(A) (j € J), we see that each closed subset |Spec(A;)|\V
is the image of an affine scheme, so the same holds for U\ V.

It remains to prove that given a morphism of affine schemes f : Spec(B) - Spec(A), the
image of |f]| is closed if it is closed under specialization. Take a point p € |Spec(A)| off the
image of |f|. Then the image of |Spec(A,)| - |Spec(A)] is also off the image of |f|. Hence:

coLimB ®a A, > B®y A, 50.
agp

This is a filtered colimit, so 1 € B vanishes in B®a A, for some a ¢ p, showing that | Spec(A,)]
is an open neighborhood of p off the image of |f|. O

Remark 4.3.7. The proof of Lemma 4.3.6 establishes the following fact: If f:Y — X is
a quasi-compact morphism of schemes, then the image of |f| is closed if it is closed under
specialization.

Indeed, by taking an affine cover of X, we reduce to the case where X = Spec(A) is affine.
Then by taking a finite affine cover Y; - Y (5 € J) and replacing Y by the disjoint union
Ljes Y, we reduce to the case where Y = Spec(B) is affine. Then the assertion established
in the proof of Lemma 4.3.6.

Theorem 4.3.8 (Chevalley). Let f:Y — X be a morphism in Sch. Suppose that:

20we only define “constructible subsets” in a spectral topological space. For purposes of scheme theory,
not much generality is lost: For any scheme X, a subset Z c |X] is “locally constructible” (as defined in
[Stal8, 005G] via retro-compactness) if and only if Z n|U| is constructible for any open affine subscheme
U - X [Stal8, 054C]. Of course, |U]| is spectral.

21Tpe proof given here is ring-theoretic. See [Stal8, 0903] for a topological proof which applies directly
to any spectral topological space (using compactness of the “constructible topology”). By Remark 4.3.4,
these concern the same class of topological spaces.
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(1) f is of finite presentation;
(2) X is quasi-compact and quasi-separated (so |X| and |Y| are both spectral).
Then |f]:|Y] = [X| preserves constructible subsets.

Remark 4.3.9. Let X be a quasi-compact, quasi-separated scheme. In the proof of Lemma
4.3.6, we have expressed any constructible subset of |X| as the image of | f|, for some morphism
f:Y = X of finite presentation. Hence, Theorem 4.3.8 characterizes precisely the subsets of
|X| which can arise as the image of such morphisms.

4.3.10. Let us reduce Theorem 4.3.8 to two (very) special cases. Indeed, let Z c |Y]| be
a constructible subset. To check that |f|(Z) c |X]| is constructible, we may do so for its
intersection with |Spec(A)| for any open immersion Spec(A) ¢ X. Thus we may assume
that X = Spec(A) is affine. Moreover, by covering Y with open affine subschemes, we also
reduce to the case where Y = Spec(B) is affine.

Now, the morphism f factors as Spec(B) — A} 2 Spec(A), where i is a finitely presented
closed immersion, i.e. defined by a finitely generated ideal. Thus, by factoring ¢ and p, we
reduce to the following cases:

(1) the closed immersion 7 : Spec(A/a) - Spec(A) for some a € A;
(2) the projection p: A} — Spec(A).
In other words, Theorem 4.3.8 follows from Lemma 4.3.11 and Lemma 4.3.12 below.

Lemma 4.3.11. Let A be a ring with f € A. Then the closed embedding i : |Spec(A/f)| —
| Spec(A)| preserves constructible subsets.

Proof. Let U, V be quasi-compact open subsets of | Spec(A/f)|. We need to show that U\V
is a constructible subset of | Spec(A).

Observe that U (respectively, V) is the intersection of a quasi-compact open subset Uc
|Spec(A)| (respectively, V c |Spec(A)|) with |Spec(A/f)|. (The complement of U is defined
by a finitely generated ideal in A/f; lift the generators to A and use them to define the
complement of U.) Then UxV = (U~ V) n|Spec(A/f)| is constructible. O

Lemma 4.3.12. Let A be a ring. Then the projection map p: |AL| - |Spec(A)| preserves
constructible subsets.

Proof. Let U, V be quasi-compact open subsets of [A}|. We need to show that the image of
p(UNV) is constructible. Writing U as a finite union of standard opens in A}, we reduce to
the case where U = D(f), the complement of the closed subscheme of A} defined by a single
element f € A[T]. Let us write V as complement to the closed subscheme of A} defined by
g1, gn € A[T] (n € Zxp), so we have:

U~V =D(f)n|Spec(A[z]/(g1, gn))l-
We shall arrange g1,-+, g, so that:

deg(g1) < -+ < deg(gn)-

Let us reduce the result for g1,-+, g, to one for gi,--- gr, € A[T] (m € Zyo) where either
m<n, or m=n and all deg(g}) < deg(g;) where the inequality is strict for some i.

Indeed, we let a € A be the leading coefficient of g;. The constructibility of p(U \ V) can
be verified after pulling back along | Spec(A/a)|u|Spec(A,)| = | Spec(A)|. The base change
to Spec(A/a) makes ¢g; vanish, so we reduce the number n. The base change to Spec(A,)
makes a invertible, so we may replace go by:

92 rpdeg(g2)-deg(91) g

93= g2~
aj



84 YIFEI ZHAO

to reduce the degree of go without affecting the ideal (g1,-, gn)-

This process terminates in two ways: either n =0, or n = 1 and the leading coefficient of
g := g1 is invertible. Let us now treat these two cases.

Suppose that n = 0. We want to show that p(D(f)) is constructible. Let us write
f=rmT™+-+1rg withr; € A (0<i<m). Claim:

p(MD(f))= U D(ri).
1<i<sm

Indeed, a point = € | Spec(A)| falls outside p(D(f)) if and only if the base change below

is empty:

Al

o ND(f) — D(f) < A

| J

Spec(k(xz)) — Spec(A)

(We use the same notation D(f) for the open subscheme of A} defined by D(f) c [A}].)
This happens if and only if f is nilpotent in x(x)[T], i.e. all r; vanish in x(z)[T].

Suppose that n = 1 and the leading coefficient of g € A[T] is invertible. Write Z :=
Spec(A[T]/g) for the subscheme of Al defined by g. We want to show that p(D(f) n|Z|)
is constructible. In this case, A[T]/g is a finite free A-module. Multiplication by f defines
an A-linear endomorphism of A[T]/g, so it has a characteristic polynomial P(f) = T™ +
P T™ L+t g with 7, € A (0<i<m—1). Claim:

pMDH)nlzh= U D(ri).
1<i<m-1

Indeed, a point x € | Spec(A)] falls outside the left-hand-side if and only if the base change

below is empty:

Z,{(z)mD(f) — ZnD(f) c Z

| |

Spec(k(z)) — Spec(A)

where Z,; () = Zxgpec(a) Spec(k(x)). This happens if and only if f is nilpotent in x(x)[T]/g,
if and only if P(f) = T™ in x(x)[T], i.e. all r; vanish in x(x)[T]. O

Corollary 4.3.13 (Zariski’s lemma). Let K c L be a field extension such that L is a finite
type K-algebra. Then L is a finite extension of K.

Proof. We begin with an observation: The subset {n} c |[Ak|, where 7 is the generic point,
is not constructible. Indeed, this is because any open subset of |[AL| is the complement of
finitely many closed points, but |Aj| has infinitely many closed points.

Let K c L be a field extension with a surjective ring map ¢ : K[z1,-, 2, ] — L. It suffices
to prove that each p(a;) € L (1 <i < n) is algebraic over K. Applying Chevalley’s theorem
(cf. Theorem 4.3.8) to the projection map A% — Al onto the ith factor, we see that the
intersection of ker(¢) nKJ[z;] is a maximal ideal of K[z;], so it contains a nonzero element
f € K[z;]. This shows that ¢(z;) is a zero of the polynomial f. O

Corollary 4.3.14 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field and A
be a finite type k-algebra. If A 0, then Spec A has a k-point.

Proof. By Corollary 4.3.13, every closed point of | Spec A| has residue field k. O
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Corollary 4.3.15. Let f:Y — X be a morphism of schemes. Suppose that f is flat and
locally of finite presentation. Then |f| sends open subsets of [Y| to open subsets of |X]|.

Proof. Since open immersions are flat and locally of finite presentation, it suffices to prove
that the image of |f| is open. This allows us to replace X by an affine scheme Spec A. Since
image commutes with union, we may also replace Y be an affine scheme SpecB.

We now appeal to the fact that a flat ring map A — B satisfies the going-down property
(cf. [Stal8, 00HS]), i.e. the image of |Spec B| — |Spec A| is closed under generalization. By
Chevalley’s Theorem (c¢f. Theorem 4.3.8) and Lemma 4.3.6, it must be open. O

4.4. Properness.

4.4.1. In this subsection, we introduce the notion of “properness” for a morphism of schemes.
It is the algebro-geometric analogue of a compact manifold.

We shall prove that “properness” can be detected by morphisms out of valuation rings,
cf. §4.2.18. Then we use this criterion to prove that the projective space is “proper”.

4.4.2. Let f:Y - X be a morphism of schemes.

We say that f is closed if the induced map on topological spaces |f|:|Y| = |X]| is closed,
i.e. the image of a closed subset is closed. We say that f is universally closed if for any
morphism of schemes X’ — X, its base change f': Y’ :=Y xx X' - X' is closed.

We say that f is proper if it is of finite type, separated, and universally closed. In
particular, proper morphisms are quasi-compact and quasi-separated. Clearly, a composition
of proper morphisms is still proper.

We also have the following implications:

closed immersions = proper = separated.

Remark 4.4.3. The property of being proper is stable under base change and Zariski
local on the target. Indeed, these statements hold for “being locally of finite type”, quasi-
compactness and quasi-separatedness, and universal closedness.

4.4.4. Given a morphism f:Y — X of schemes, we may consider commutative diagrams
(depicted with the solid arrows):

Spec(K) — Y

| lf (4.12)

Spec(R) — X

where R is a valuation ring with fraction field K, and the left vertical morphism in (4.12) is
induced from the inclusion R c K.

The morphism f is said to satisfy the existence part (respectively, uniqueness part) of the
valuative criterion if for every commutative diagram (4.12), there exists (respectively, exists
at most one) a morphism Spec(R) - Y rendering both triangles commute. (The morphism
Spec(R) - Y is depicted by the dotted arrow in (4.12).)

Proposition 4.4.5 (Valuative criterion of universal closedness). Let f:Y — X be a quasi-
compact morphism of schemes. Then the following are equivalent:
(1) f is universally closed;

(2) f satisfies the existence part of the valuative criterion.

Proof. (1) = (2). Suppose that f is universally closed. To construct a lift in a commutative
diagram (4.12), we may replace X by Spec(R) upon taking a base change. Let y € [Y] be the
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image of |Spec(K)|. Since |f| carries {y} to a closed subset of |Spec(R)|, there exists some
x € {y} whose image is the special point of | Spec(R)|. Thus the inclusion R c K factors as
R c Oy, c K, where Oy, dominates R. This implies that R = Oy, as subrings of K.

(2) = (1). Since the existence part of the valuative criterion is stable under base change,
it suffices to prove that (2) implies that f is closed. By equipping a closed subset of [Y|
with the induced reduced subscheme structure, we reduce to proving that the image of
|f] is closed. By Remark 4.3.7, it suffices to prove that the image of |f| is stable under
specialization. Namely, given any specialization 2’ ~ 2 in |X]| and y’ € [Y| mapping to z’, we
need to find y € |Y| mapping to x.

Equip X’ := {2’} with the induced reduced closed subscheme structure and consider the
local domain Ox- , with fraction field x(z"). The fact that ¥’ maps to &’ gives rise to an
inclusion Ox ; ¢ k(z') € k(y"). Apply Lemma 4.2.20 to A := Ox/, and K := k(y"), we find
a valuation ring R with fraction field K dominating Ox: .. Applying the valuative criterion
to the diagram:

Spec(K) = Spec(n(y'ﬂ)“)ﬁ_j Y

Spec(R) 5 Spec(Ox/ ) — X
we find y € |Y| as the image of the closed point of | Spec(R)| under the dotted arrow. O

4.4.6. Recall that a morphism f:Y — X in Sch is a locally closed immersion if it can be
factored as f = j-¢, where ¢ is a closed immersion and j is an open immersion, cf. §2.5.1.
Note that given a locally closed immersion f, the following are equivalent:

(1) fis a closed immersion;
(2) f is universally closed;
(3) f is closed.

The implications (1) = (2) = (3) are clear. To prove (3) = (1), we factor fas Y - U % X
and setting V := |X]| \ |Y]| equipped with the open subscheme structure, we find that U,V
form an open cover of X over which f restricts to a closed immersion. Since being a closed
immersion is a Zariski local property, this implies that f is a closed immersion.

Lemma 4.4.7. Let f: Y — X be a morphism of schemes. Then its diagonal Ay:Y — YxxY
s a locally closed immersion.

Proof. Take open affine covers Spec(B;) - Y (i € I), Spec(A;) - X (i € I) such that f
restricts to morphisms f; : Spec(B;) - Spec(A;) for each i € L.

Then each Spec(B; ®a, B;) — Y xxY is an open immersion, and Ay factors through their
union U, viewed as an open subscheme of Y xx Y. Furthermore, over each Spec(B; ®a,B;) c
U, Ay is given by the spectrum of the multiplication map B; ®4, B; - B;, which is surjective.
Thus, the factorization:

Af Y->U->Y Xx Y

exhibits Ay as a locally closed immersion. O

Proposition 4.4.8 (Valuative criterion of separatedness). Let f : Y — X be a quasi-
separated morphism of schemes. Then the following are equivalent:

(1) f is separated;

(2) [ salisfies the uniqueness part of the valuative criterion.
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Proof. The hypothesis means that Ay :Y — Y xx Y is quasi-compact. On the other hand, it
is a locally closed immersion (cf. Lemma 4.4.7), so the property of being a closed immersion
is equivalent to universal closedness. According to Proposition 4.4.5, the following are then
equivalent:

(1) Ay is a closed immersion (i.e. f is separated);

(2) Ay satisfies the existence part of the valuative criterion.

Finally, note that the existence part of the valuative criterion for Ay is equivalent to the

uniqueness part of the valuative criterion for f. O

Proposition 4.4.9 (Valuative criterion of properness). Let f:Y — X be a morphism in
Sch, assumed quasi-separated and of finite type. Then the following are equivalent:

(1) f is proper;
(2) f satisfies both the existence and uniqueness parts of the valuative criterion.

Proof. Since f is of finite type, it is in particular quasi-compact. Combining Proposition
4.4.5 and Proposition 4.4.8, we see that the following are equivalent for f:

(1) f is universally closed and separated;
(2) f satisfies both the existence and uniqueness parts of the valuative criterion.

With the given conditions on f, (1) is equivalent to the properness of f. O

4.4.10. As an immediate consequence of the valuative criteria, we prove the following per-
manence property of separated and proper morphisms.

Lemma 4.4.11. Given a diagram in Sch:

vy Ly x

b

the following statements hold:

(1) if [ is separated, then so is f';
(2) if [ is proper and g is separated, then f' is proper.

Proof. For (1), we know from Lemma 1.7.10(1) that f’ is quasi-separated. To prove that f”
is separated, it suffices to prove that f’ satisfies the uniqueness part of the valuative criterion
(¢f. Proposition 4.4.8), but this follows from the same property of f.

For (2), we know from (1) that f’ is separated. We also know from Lemma 1.7.10 that f’
is quasi-compact. Furthermore, by Lemma 1.8.13, f” is also of finite type. It thus remains
to prove that f' satisfies the existence part of the valuative criterion (¢f. Proposition 4.4.9),
but this follows from the valuative criteria applied to f and g. 0

Example 4.4.12. The valulative criterion of properness implies the existence and unique-
ness of “limit points” in the following sense. Given a proper morphism f:Y — X and a
regular Noetherian scheme S of Krull dimension 1 with a closed point s € |S], a lift in the
following diagram exists uniquely:

S\x{s} =Y

l * lf (4.13)

S ——+ X
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Indeed, the local ring Og , is a discrete valuation ring, so the morphism Spec Og s\ {s} - Y
induced from (4.13) extends uniquely to a morphism SpecOg s - Y of schemes over X by
the valuative criterion (cf. Proposition 4.4.9). Since f is locally of finite presentation, the
morphism SpecOg s = Y extends to some open affine subscheme SpecR of S containing s
(¢f. Proposition 1.8.16). The situation is summarized in the diagram below:

SpecOg s N {s} — SpecR~{s} = S~\{s} =Y

! | |

SpecOg y — SpecR ——— S — X

Replacing SpecR by a smaller open affine subscheme, we may assume that the extension
SpecR — Y coincides with the given morphism S\ {s} - Y over SpecR~ {s}. Thus the two
glue to the desired morphism S - Y in (4.13).

4.4.13. In the remainder of this subsection, we study the relation between properness and
closed immersions into projective spaces.

Theorem 4.4.14. For each n >0, the morphism Py, — SpecZ is proper.

Proof. The fact that P — SpecZ is separated can be checked directly using the standard
open cover by affine space (c¢f. Proposition 3.1.4): For any 0 < 4,5 < n, the intersection
U; nU; is affine and the morphism U; nU; - U; x U; is a closed immersion.

It remains to prove that Py, — Spec Z is universally closed. By Proposition 4.4.5, it suffices
to observe that given a valuation ring R with fraction field K, any 1-dimensional K-subspace
of K®"*1 extends to a line subbundle of R®"*! over SpecR. By applying an automorphism
of K®*1 we may assume that the 1-dimensional K-subspace is Ke;, where e; is the first
basis vector. This subspace extends to Re;. d

4.4.15. Let f:X — S be a morphism of schemes.

If f factors as X — Pg 4s (n € Zso) where ¢ is a closed immersion and p denotes the
base change of Py — Spec(Z) to S, then f is proper.

Conversely, if f is proper and S is Noetherian, then we can dominate X by a closed
subscheme of a projective space over S, as the following theorem shows (in conjunction with
Lemma 4.4.11).

Theorem 4.4.16 (Chow’s lemma). Let S be a Noetherian affine scheme and f:X — S be
a separated morphism of finite type. Then there exists a commutative diagram in Sch:

Y — P2

fr ;
X%i

satisfying the following properties:
(1) p is the base change of Py, — Spec(Z) to S for some n € Zyg;
(2) v is a locally closed immersion;
(8) 7 is proper and there exists a dense open subscheme U c X such that the induced
map 7y : Y xx U - U is an isomorphism.

4.4.17. In the proof of Theorem 4.4.16, we shall repeatedly use the fact that given a quasi-
compact locally closed immersion f:Y — X with scheme theoretic image Y, the morphism
Y - Y is an open immersion (¢f. Lemma 2.5.7) and [Y]| is the closure of |Y| c [X|. Indeed,
the proof of Lemma 4.3.6 shows that any point of [Y] is a specialization of a point of |Y].
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Proof of Theorem 4.4.16. We first reduce to the case where X is irreducible. Indeed, |X| has
finitely many irreducible components |Z;| (i € I) by the Noetherian hypothesis (¢f. Lemma
4.1.20). We equip each |Z;| with the structure of a closed subscheme Z; - X as follows: Take
the open subset Z; := IX|\Ujxi1Z;], equip it with the induced open subscheme structure, and
set Z; to be the scheme-theoretic image of Z — X. Then Z; has underlying topological space
|Z;|, and | ey Z; — X is proper and restricts to an isomorphism over | | Z;. The problem
for X is thus reduced to the problem for each Z;.

Let us now assume that X is irreducible, with an affine open cover X; - X (j € J finite).
For each j € J, we choose a locally closed immersion X; ]P’gj for some n; € Zo and let ij
denote its scheme-theoretic image. Then X; is a closed subscheme of ng and [T;e; X, is a
closed subscheme of some Pg by the Segre embedding (c¢f. Example 3.1.13).

Consider the locally closed immersion:

U= XS I1X - [1X, (4.14)
jeJ jeJ jeJ
where U is a dense open subscheme of X because X is irreducible. Let Y denote the scheme-
theoretic image of the morphism (4.14), so Y is a closed subscheme of [];¢; X;, hence of Pg.
Define open subschemes Y; c Y by the Cartesian square:

Yj ——

Y
| b
Xj —_— Xj

where 7; is the projection onto the jth factor. We then obtain a collection of morphisms
indexed by j € J:

Set Y := Ujes Y; as an open subscheme of Y. We claim that the collection (4.15) glues
into a morphism of schemes:
m:Y - X.

By the sheaf property, it suffices to prove that 7Tj|anYj, = 7Tj/|anYj, for j,7" € J. Note that
each Y, contains U as an open dense subscheme and the restriction of (4.15) to U coincides
with the open immersion U = X. Since X — S is separated, 7Tj|ijYj, and 7Tj'|ijYj, coincide
on a closed subscheme of Y; n'Y;: containing U, which must be Y; nY itself.

Note that we have a locally closed immersion ¢: Y < Y < PS by construction. It remains
to prove that 7 is proper and induced an isomorphism over U — X. Both statements will
follow once we identify its base change 77*X; — X, with the projection m; : Y; - X, i.e. the
open subschemes Y; and 7r’1Xj of Y coincide. We have a commutative diagram:

Yj — 7T71Xj — Y (—>L ]P)g

~N1F

Xj‘—>X*>S

Since Y — S is separated, so is 7: Y - X (cf. Lemma 4.4.11). This implies that 7'X; - X;
is separated. On the other hand, 7; is proper, so the open immersion Y; — 7T_1Xj is
also proper (cf. Lemma 4.4.11). Since 7 !X, contains the dense open subscheme U, it is
irreducible, so we conclude that Y; 7r’1Xj. O
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Remark 4.4.18. The statement of Theorem 4.4.16 holds when S is any Noetherian scheme
(i.e. not necessarily affine). Change in the proof: To construct the locally closed immersion
X, = Pg’ for each affine open subscheme X; of X, we invoke [Stal8, 01VS].
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