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Abstract. Given an oriented 2-manifold M, a locally constant sheaf of lattices Λ over

M, and a pointed morphism q ∶ B2Λ→ B4C×, we define an EM-category Repq(Ť) which

we call the “quantum torus” at level q. We explain why this terminology is deserved and
calculate the factorization homology of Repq(Ť). When M arises from a global complex

curve, we confirm (a version of) a conjecture of Ben-Zvi and Nadler for tori.
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Introduction

Given a reductive group G and a “level” q ∈ C×, one obtains the category Repq(Ǧ) of
representations of the quantum group. It can be regarded as a braided monoidal deformation
of the category Rep(Ǧ) of representations of the Langlands dual group Ǧ.

Morever, the category Repq(Ǧ) admits a ribbon structure, which allows one to “spread”

Repq(Ǧ) onto an oriented 2-manifold M, thus defining an EM-category. It is then possible
to extract a global invariant

∫
M

Repq(Ǧ),

Date: November 22, 2025.

1



2 LIN CHEN AND YIFEI ZHAO

called its “factorization homology”, which plays a prominent role in the Betti quantum
geometric Langlands program. We refer the reader to [BZBJ18, BZN18] for details.

The consideration above makes us suspect that Repq(Ǧ) starts life naturally as an EM-
category. Indeed, in the context of the quantum geometric Langlands program, the level q
is not expected to be a complex number in general, but a (suitably categorified) degree-4
reduced cohomology class of BG. Unless G is simply connected, a level of this kind can vary
along M, so we do not expect Repq(Ǧ) to come from a single ribbon category.

In this note, we confirm this suspicion for quantum tori: We give a direct definition of
Repq(Ť) as an EM-category, which accommodates the general notion of levels as well as
nonsplit tori. From a classical perspective, one can say that this note explains how quantum
tori behave in family.

Contents of this note. Our definition of the “quantum torus” Repq(Ť) takes as input a
triple (M,Λ, q), where

(1) M is an oriented 2-manifold (with underlying ∞-groupoid Sing M);
(2) Λ is a functor from Sing M to the category of finite free Z-modules;

(3) q ∶ B2Λ → B4C× is a morphism in the ∞-category Fun(Sing M,Spc∗), where Spc∗
denotes the ∞-category of pointed ∞-groupoids.

Given the triple (M,Λ, q), we shall define Repq(Ť) as an EM-algebra in the ∞-category
DGCat of DG categories in §2.2.

Our definition is conceptually simple, but not quite explicit. To argue that we have given
a reasonable definition, we shall show that Repq(Ť) has the expected behavior of a quantum

torus: It is completely determined by its heart Repq(Ť)♡, which is a family of “twisted”
braided monoidal categories over M whose local invariants can be expressed explicitly in
terms of those of q (cf. Proposition 2.4.5, Proposition 2.4.9).

As for global invariants, we shall compute the factorization homology of Repq(Ť). In
Theorem 3.1.3, we shall construct a canonical equivalence in DGCat:

∫
M

Repq(Ť) ≃ LSq(Γc(M,B2Λ)), (0.1)

where the right-hand-side denotes the DG category of “q-twisted” local systems over the
∞-groupoid Γc(M,B2Λ) of compactly supported sections.

In fact, our definition of Repq(Ť) turns (0.1) into an immediate corollary of nonabelian
Poincaré duality, due to Salvatore, Segal, and Lurie (cf. [Sal01, Seg10, Lur17]).

When M is the underlying oriented 2-manifold of a global complex curve X and Λ is
defined by the (locally constant) sheaf of cocharacters of an X-torus T, the equivalence
(0.1) implies a version of [BZN18, Conjecture 4.27], the quantum Betti geometric Langlands
conjecture for tori (cf. Corollary 3.2.8).

Acknowledgements. We thank Dennis Gaitsgory, Sam Raskin, and Nick Rozenblyum for
teaching us about the geometric Langlands program.

In addition, Y.Z. thanks Thomas Nikolaus, Phil Pützstück, and Maxim Ramzi for pa-
tiently answering his topology questions, and JiWoong Park for helpful conversations.

1. Preparation

In this section, we recall the notions of EM-algebras and factorization homology, and
gather all of their properties that we shall use later. These properties are comprehensively
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established in [Lur17, §5.5] and, from an alternative point of view, in [AF15]. We also recall
the formalism of local systems of [GKRV22].

Needless to say, this section contains no originality.

1.1. Factorization homology.

1.1.1. Fix an integer n ≥ 0.
Denote by Mfdn the topological category of n-dimensional topological manifolds admitting

finite “good covers” (cf. [AF15, Definition 2.1]).
We shall suppress the operation of taking homotopy coherent nerves from our notation,

and regard Mfdn as an ∞-category.
Thus, the mapping space between M1,M2 ∈ Mfdn is the ∞-groupoid Sing Emb(M1,M2),

where Emb(M1,M2) is the set of embeddings M1 → M2, endowed with the compact-open
topology, and Sing denotes the functor of singular chains.

1.1.2. Denote by BTop(n) the full subcategory of Mfdn consisting of objects homeomorphic
to the Euclidean space Rn.

The Kister–Mazur theorem shows that Top(n) ∶= Sing Emb(Rn,Rn) is a grouplike monoid.
In particular, BTop(n) may be identified with the classifying space of Top(n).

Given M ∈Mfdn, we have a forgetful functor

BTop(n)/M → BTop(n). (1.1)

Remark 1.1.3. The slice ∞-category BTop(n)/M is a Kan complex equivalent to Sing M
(cf. [Lur17, Remark 5.4.5.2]), so (1.1) determines a morphism of ∞-groupoids

τM ∶ Sing M→ BTop(n).

By [AF15, Corollary 2.13], this morphism classifies the tangent microbundle of M.

1.1.4 The ∞-operad E⊗M. Recall that BTop(n) is the underlying ∞-category of an ∞-operad
BTop(n)⊗ (cf. [Lur17, Definition 5.4.2.1]).

Moreover, each ∞-category C functorially determines an ∞-operad C⊔ (cf. [Lur17, §2.4.3])
and we have a natural morphism BTop(n)⊗ → BTop(n)⊔ (cf. [Lur17, Remark 5.4.2.7]).

For each M ∈Mfdn, the ∞-operad E⊗M is defined as the fiber product

E⊗M ∶= BTop(n)⊗ ×BTop(n)⊔ (BTop(n)/M)
⊔.

Remark 1.1.5. Let us give an informal description of E⊗M.
By definition, the underlying ∞-category of E⊗M is BTop(n)/M. Given objects x ∶ U →M

and xj ∶ Uj → M (j = 1,⋯,m) of BTop(n)/M, an m-ary operation from {xj}j=1,⋯,m to {x}

in E⊗M consists of an embedding U1 ⊔ ⋯ ⊔ Um → U together with an identification of the
composite

Uj → U1 ⊔⋯ ⊔Um → U
x
Ð→M

with xj as morphisms in Mfdn, for each j = 1,⋯,m.

1.1.6. We fix M ∈Mfdn in the remainder of this section.
Let O be a symmetric monoidal ∞-category. We shall refer to E⊗M-algebras in O simply

as EM-algebras. They form an ∞-category AlgEM
(O).

Since the ∞-category underlying E⊗M is BTop(n)/M, or equivalently Sing M (cf. Remark
1.1.3), we have a forgetful functor

AlgEM
(O) → Fun(Sing M,O). (1.2)
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Given A ∈ AlgEM
(O) and x ∈ Sing M, we write Ax ∈ O for the image of x under the functor

underlying A and refer to it as the fiber of A at x.

1.1.7 Factorization homology. When O is sifted-complete, we shall construct a functor

∫
M
∶ AlgEM

(O) → O, (1.3)

whose value at A ∈ AlgEM
(O) is called the factorization homology of A over M.

Denote by Diskn the full subcategory of Mfdn consisting of objects homeomorphic to
S ×Rn for some finite set S.

The construction of (1.3) relies on a functor of ∞-categories

Diskn/M → E⊗M, (1.4)

which we shall define presently.1

1.1.8 Construction of (1.4). It suffices to construct functors

Diskn/M → BTop(n)⊗, (1.5)

Diskn/M → (BTop(n)/M)
⊔, (1.6)

and identify their compositions with the functors to BTop(n)⊔.
We follow the notation of [Lur17, §2.1.1] and write Fin∗ for the category of pointed finite

sets. We express any S ∈ Fin∗ as S○⊔{∗}, where ∗ is the distinguished element. Observe that
Diskn/M admits a natural functor to Fin∗, sending U→M to the pointed finite set π0U⊔{∗}.
The functors (1.5) and (1.6), which we shall construct, intertwine this functor to Fin∗ with
the structural functors of the ∞-operads BTop(n)⊗ and (BTop(n)/M)⊔.

The functor (1.5) is defined as the composition of the forgetful functor Diskn/M → Diskn
with the faithful embedding of topological categories2

Diskn → BTop(n)⊗. (1.7)

The functor (1.6) is adjoint to a functor

Diskn/M ×Fin∗ Γ∗ → BTop(n)/M, (1.8)

where Γ∗ denotes the category of pairs (S, i), with S ∈ Fin∗ and i ∈ S○ (cf. [Lur17, Con-
struction 2.4.3.1]). The functor (1.8) sends (U → M, i) to the restriction of U → M to the
connected component of U corresponding to i.

To identify the compositions of (1.5) and (1.6) with the natural functors to BTop(n)⊔,
we observe that the composition of (1.8) with the forgetful functor to BTop(n) factors as in
the following commutative diagram

Diskn/M ×Fin∗ Γ∗ BTop(n)/M

Diskn ×Fin∗ Γ∗ BTop(n)

Here, the bottom horizontal arrow is defined by evaluation at i. By construction, it is adjoint
to the composition of (1.7) with the functor BTop(n)⊗ → BTop(n)⊔.

1The functor (1.4) appears implicitly in the proof of [Lur17, Theorem 5.5.2.5], but we could not locate
its definition in op.cit..

2The topological category defining BTop(n)⊗ is denoted by tE⊗
BTop(n) in [Lur17, Definition 5.4.2.1] and

(1.7) identifies Diskn with its faithful subcategory consisting of all objects and active morphisms.
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1.1.9 Construction of (1.3). The functor (1.3) is the composition of the restriction along
(1.4) with the functor of taking colimits over Diskn/M. In other words, we have

∫
M
A ∶= colim

U∈Diskn/M
A(U).

The fact that this colimit exists (assuming that O is sifted-complete) is because the ∞-
category Diskn/M is sifted (cf. [Lur17, Proposition 5.5.2.15]).

Remark 1.1.10. By [Lur17, Proposition 5.5.2.17(2)], (1.3) is functorial in O: Given sifted-
complete symmetric monoidal ∞-categories O1, O2 and a symmetric monoidal functor O1 →

O2 commuting with sifted colimits, we have a commutative square

AlgEM
(O1) O1

AlgEM
(O2) O2

∫M

∫M

Remark 1.1.11. We shall endow the ∞-category AlgEM
(O) with the symmetric monoidal

structure defined by pointwise tensor product (cf. [Lur17, Example 3.2.4.4]).
Suppose that O is sifted-complete. Then the functor of factorization homology (1.3) is

symmetric monoidal by [Lur17, Theorem 5.5.3.2].

1.1.12. Let O be a sifted-complete symmetric monoidal ∞-category. We shall prove that
(1.3) commutes with the relative tensor product.

Namely, given an associative algebra A in AlgEM
(O) and right (respectively, left) A-

module B1 (respectively, B2), we may form the relative tensor product as geometric real-
ization of the Bar complex (cf. [Lur17, Definition 4.4.2.10])

B1 ⊗A B2 ∶= colim BarA(B1,B2)●.

Lemma 1.1.13. There is a natural isomorphism

∫
M
B1 ⊗A B2 ≃ ∫

M
B1 ⊗∫M A ∫

M
B2. (1.9)

Proof. Since (1.3) is symmetric monoidal (cf. Remark 1.1.11), it suffices to show that (1.3)
commutes with sifted colimits. By construction, it suffices to show that the functor of
pre-composition with (1.4)

AlgEM
(O) → Fun(Diskn/M,O)

commutes with sifted colimits.
Since colimits in Fun(Diskn/M,O) are formed pointwise, this assertion follows from [Lur17,

Proposition 3.2.3.1]. �

1.1.14. Finally, we recall the computation of factorization homology of (families of) com-
mutative algebras.

Let O be a symmetric monoidal ∞-category. Write CAlg(O) for the ∞-category of com-
mutative algebras in O. The pointwise tensor structure on CAlg(O) coincides with the
co-Cartesian symmetric monoidal structure (cf. [Lur17, Proposition 3.2.4.7]).

Since the underlying ∞-category of E⊗M is identified with Sing M (cf. Remark 1.1.3), we
have a canonical equivalence of ∞-categories (cf. [Lur17, Proposition 2.4.3.9])

Fun(Sing M,CAlg(O)) ≃ AlgEM
(CAlg(O)). (1.10)
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Given a functor A ∶ Sing M→ CAlg(O), we shall denote its image under (1.10) by AM.

Lemma 1.1.15. Suppose that O is cocomplete. Given a functor A ∶ Sing M → CAlg(O),
there is a canonical isomorphism in CAlg(O):

∫
M
AM ≃ colimA. (1.11)

Proof. This is a reformulation of (the proof of) [Lur17, Theorem 5.5.3.8]. �

1.2. Nonabelian Poincaré duality.

1.2.1. Denote by Spc the ∞-category of ∞-groupoids, endowed with the Cartesian symmet-
ric monoidal structure. Denote by Spc∗ the ∞-category of pointed ∞-groupoids.

By unstraightening, each functor X ∶ Sing M → Spc∗ may be regarded as a Kan fibration
over Sing M, endowed with a neutral section. For any ∞-groupoid Y over Sing M, we write
Γ(Y,X) for the pointed space Maps/Sing M(Y,X).

Given a functor X ∶ Sing M → Spc∗ and an open subset U ⊂ M, we have the ∞-groupoid
of compactly supported sections of X over U:

Γc(U,X) ∶= colim
K⊂U

Γ(Sing M,X) ×Γ(Sing M∖K,X) ∗, (1.12)

where the colimit is taken over the poset of compact subsets K of U. The expression (1.12)
depends (covariantly) functorially on U and on X.

1.2.2. By [Lur17, Definition 5.5.6.2, Remark 5.5.6.3], there is a functor of ∞-categories

ΩM ∶ Fun(Sing M,Spc∗) → AlgEM
(Spc) (1.13)

extending (1.12) in the following sense: Given any x ∈ Sing M, corresponding to an object
U → M of the underlying ∞-category of E⊗M (cf. Remark 1.1.3), the functor evx of taking
fiber at x (cf. §1.1.6) renders the diagram below commute:

Fun(Sing M,Spc∗) AlgEM
(Spc)

Spc

ΩM

Γc(U,⋅)
evx

Lemma 1.2.3. The functor (1.13) commutes with finite limits.

Proof. The functors evx preserve limits and are jointly conservative when taken over all
x ∈ Sing M. Therefore, it suffices to prove that each functor

Γc(U, ⋅) ∶ Fun(Sing M,Spc∗) → Spc

preserves finite limits.
This holds because filtered colimits and finite limits commute in Spc. �

Remark 1.2.4. It follows from Lemma 1.2.3 that the functor (1.13) is symmetric monoidal
with respect to the Cartesian symmetric monoidal structures.

In particular, it induces a functor

ΩM ∶ Fun(Sing M,CAlg(Spc)) → CAlg(AlgEM
(Spc)). (1.14)

The target of (1.14) is equivalent to AlgEM
(CAlg(Spc)), as both ∞-categories consist of

algebra objects over the tensor product ∞-operad (cf. [Lur17, Proposition 2.2.5.6]).
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1.2.5. Next, we shall recall the statement of nonabelian Poincaré duality, due to Salvatore,
Segal, and Lurie (cf. [Sal01, Seg10, Lur17]).

Proposition 1.2.6 (Nonabelian Poincaré duality). Let X ∶ Sing M → Spc∗ be a functor
valued in n-connective ∞-groupoids. Then there is a canonical isomorphism

∫
M

ΩM(X) ≃ Γc(M,X). (1.15)

Proof. This is [Lur17, Theorem 5.5.6.6]. �

1.2.7 Local trace map. In the remainder of this subsection, we will explain how (1.15)
interacts with the trace maps in abelian Poincaré duality, when an orientation is provided.
For a more complete treatment, see [AF20, §4].

Denote by Z-mod the stable ∞-category of HZ-module spectra. Forgetting the HZ-action
and applying connective truncation, we obtain a functor

Z-mod→ CAlg(Spc). (1.16)

Let A ∶ Sing M → Z-mod be a functor. Applying (1.14) and (1.10) to the composition of
A with (1.16), we obtain EM-algebras ΩM(A), respectively AM in CAlg(Spc). When M is
equipped with a (Z-)orientation, they are related as follows:

τ loc
M ∶ ΩM(A) ≃ (ΩnA)M, (1.17)

We shall refer to (1.17) as the local trace map.

1.2.8 Construction of (1.17). We shall use a linear version of the functor (1.13) (cf. the
proof of [Lur17, Proposition 5.5.6.16]).

Namely, for any stable ∞-category O admitting limits and colimits, there is a functor

ΩM ∶ Fun(Sing M,O) → AlgEM
(O), (1.18)

where O is endowed with the Cartesian symmetric monoidal structure. For O ∶= Z-mod, the
same-named functors (1.18) and (1.14) are related by the commutative square

Fun(Sing M,Z-mod) AlgEM
(Z-mod)

Fun(Sing M,CAlg(Spc)) AlgEM
(CAlg(Spc))

ΩM

(1.16) (1.16)

ΩM

Since the symmetric monoidal structure on O is also co-Cartesian, (1.18) may be viewed
as an endofunctor of Fun(Sing M,O) (cf. [Lur17, Proposition 2.4.3.9]). It remains to identify
(1.18) with [−n] for O ∶= Z-mod, given an orientation of M.

The desired identification is obtained from the natural isomorphisms

Γc(U,A) ≃ Γc(U,Z[n]) ⊗Ax[−n]

≃ Z⊗Ax[−n] ≃ Ax[−n]

for any x ∈ Sing M, with corresponding object U→M in BTop(n)/M (cf. Remark 1.1.3). Here,
the identification Γc(U,Z[n]) ≃ Z is provided by the orientation of M, which is evidently
functorial in U→M.
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1.2.9. In the context of §1.2.7, we may apply factorization homology (1.3) to the local trace
map (1.17). This yields the integrated local trace map ∫M τ loc

M .
Suppose that A is n-connective as a Spc∗-valued functor. Then we may apply Lemma

1.1.15 and Proposition 1.2.6 to obtain a commutative diagram in CAlg(Spc):

∫M ΩM(A) ∫M(ΩnA)M

Γc(M,A) colim ΩnA

∫M τ loc
M

(1.15) (1.11)

≃

(1.19)

where all arrows are isomorphisms. Here, the fact that (1.15) lifts to an isomorphism in
CAlg(Spc) comes from the commutation of ∫M ΩM(⋅) and Γc(M, ⋅) with finite products, by
Lemma 1.2.3 and the commutation of sifted colimits with finite products in Spc.

1.2.10 Global trace map. Consider the constant functor A with values in A[k] ∈ Z-mod, for
an abelian group A and an integer k ≥ n. In this case, we have a map in CAlg(Spc):

colim Ωn(BkA) ≃ colimBk−nA→ Bk−nA. (1.20)

We define the global trace map to be the composition of the lower horizontal isomorphism
in (1.19) with (1.20):

τglob
M ∶ Γc(M,BkA) → Bk−nA. (1.21)

From the commutative square (1.19), we deduce the following compatibility between the
local and global trace maps:

∫M ΩM(BkA) ∫M(Bk−nA)M

Γc(M,BkA) Bk−nA

∫M τ loc
M

(1.15) (1.20)○(1.11)

τglob
M

(1.22)

1.3. Coefficients.

1.3.1. Denote by PrL the ∞-category of presentable ∞-categories with colimit-preserving
functors. It admits a symmetric monoidal structure given by the Lurie tensor product.

Denote by Vect the ∞-category of HC-module spectra, viewed as a commutative algebra
object in PrL. Its module objects in PrL are called DG categories:

DGCat ∶= Vect-mod(PrL).

Being a module ∞-category, DGCat inherits a symmetric monoidal structure given by the
tensor product relative to Vect.

1.3.2. Given an ∞-groupoid Y, we define the ∞-category of C-local systems over Y to be
the limit of the constant diagram

LS(Y) ∶= lim
Y

Vect.

The assignment Y ↦ LS(Y) organizes into a functor

Spcop
→ DGCat. (1.23)

We denote the image of a morphism f ∶ Y1 → Y2 under (1.23) by f † ∶ LS(Y2) → LS(Y1).
In fact, the functor (1.23) is right adjoint to the functor DGCat → Spcop sending C to

MapsDGCat(C,Vect). This implies that (1.23) preserves limits.
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Remark 1.3.3. For each M ∈Mfdn, we may consider the DG category Shv{0}(M) of sheaves
of C-vector spaces over M whose cohomology sheaves are locally constant. Then there is a
canonical equivalence of DG categories

Shv{0}(M) ≃ LS(Sing M),

according to [GKRV22, Lemma A.4.2].

1.3.4. By [GKRV22, §1.4], the DG category LS(Y) is also covariantly functorial in Y ∈ Spc.
More precisely, for each morphism f ∶ Y1 → Y1 in Spc, the functor f † admits a left adjoint
f†. Thus, we obtain a functor

Spc→ DGCat (1.24)

by passing to left adjoints in (1.23).
Moreover, the canonical self-duality of Vect induces a canonical self-duality of LS(Y) for

each Y ∈ Spc. Under this self-duality, f† is identified with the dual of f † for every morphism
f in Spc. Thus, (1.24) may also be obtained from (1.23) by passing to duals and applying
the canonical self-duality.

Lemma 1.3.5. The functor (1.24) commutes with colimits.

Proof. Given a diagram I → Spc, i ↦ Yi, the DG category colimi∈I LS(Yi) is dualiz-
able (cf. [GKRV22, Lemma 1.4.8(d)]). Moreover, its dual is canonically identified with
limi∈I LS(Yi), with transition functors given by pullbacks.

The latter is identified wtih LS(colimi∈I Yi) since (1.23) commutes with limits. �

1.3.6. Note that (1.23) admits a lax symmetric monoidal structure given by the external
tensor product construction.

For Y1,Y2 ∈ Spc, the lax symmetric monoidal structure supplies a functor

LS(Y1) ⊗ LS(Y2) → LS(Y1 ×Y2), A1,A2 ↦ A1 ⊠A2. (1.25)

Lemma 1.3.7. The functor (1.23) (hence (1.24)) is symmetric monoidal.

Proof. It suffices to prove that (1.25) is an equivalence.
Under the canonical identifications

LS(Y1 ×Y2) ≃ LS(lim
Y2

Y1) ≃ lim
Y2

LS(Y1),

the functor (1.25) corresponds to [GKRV22, (1.17)] for C ∶= LS(Y1) and Y ∶= Y2. Thus the
result follows from [GKRV22, Proposition 1.4.10]. �

1.3.8 Tautological character . Finally, we shall define a categorical analogue of the tautolog-
ical character local system on the classifying space of C×.

Let us view C× as a discrete abelian group and its deloop BC× as a commutative algebra
in Spc. Since (1.23) is symmetric monoidal (cf. Lemma 1.3.7), the tautological character
local system on BC× may be viewed as a morphism Vect → LS(BC×) of cocommutative
coalgebras in DGCat.

Dualizing, we obtain a morphism in CAlg(DGCat):

χ ∶ LS(BC×
) → Vect, (1.26)

which we call the (categorical) tautological character.
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2. Local constructions

In this section, we define the “quantum torus”, or rather its category of representations
Repq(Ť) as an EM-algebra in DGCat, for an oriented 2-manifold M (cf. §2.2). The definition

is simple, but not quite explicit. In §2.3-2.4, we make Repq(Ť) more explicit by showing

that it is the derived ∞-category of its heart Repq(Ť)♡, which may be viewed as a twisted
family of braided monoidal categories over M, and computing its local invariants.

The material of §2.3 and §2.4 will not be used later, so the reader only is only interested
in the factorization homology of Repq(Ť) may safely skip them.

2.1. Betti levels.

2.1.1. Given a C-scheme Y of finite type, we write Ytop for the topological space underlying
the analytification of Y and Sing Ytop for its homotopy type (cf. §1.1.1).

The association Y ↦ Sing Ytop determines a functor

Sing(⋅)top
∶ Schft → Spc, (2.1)

where Schft denotes the category of C-schemes of finite type.

Remark 2.1.2. The functor (2.1) does not commute with finite limits. More precisely,
the functor Y ↦ Ytop from Schft to the category of topological spaces commutes with finite
limits (cf. [GR03, Exposé XII, §1.2]), but the functor Sing does not.

However, given morphisms Y1 → Y ← Y2 in Schft where Y1 → Y induces a Serre fibration
(Y1)

top → Ytop, then the natural map in Spc is an isomorphism:

Sing(Y1 ×Y Y2)
top

≃ Sing(Y1)
top

×Sing Ytop Sing(Y2)
top.

2.1.3. Let X be a smooth C-curve and G be a reductive group X-scheme. We shall define
the ∞-groupoid Level(G) of “Betti levels” of G in this context.

Since Gtop → Xtop is a Serre fibration, Sing Gtop → Sing Xtop inherits a group structure
from G (cf. Remark 2.1.2). We view BSing Gtop as an ∞-groupoid over Sing Xtop, equipped
with a neutral section Sing Xtop → BSing Gtop.

Define the ∞-groupoid Level(G) of Betti levels of G to be:

Level(G) ∶= MapsSing Xtop/(BSing Gtop,B4C×
), (2.2)

where B4C× is viewed as an ∞-groupoid under Sing Xtop via the neutral point.

Remark 2.1.4. Denote by K(Gtop,1) the classifying space of Gtop relative to Xtop.
The definition of Level(G) renders it a “categorification” of the reduced cohomology

group H4
∗(K(Gtop,1),C×). Namely, for each n ≥ 0, we have

πnLevel(G) ≃ H4−n
∗ (K(Gtop,1),C×

).

This definition of Level(G) is inspired by the analogous notions in the étale and de Rham
cohomological contexts (cf. [GL18], [Zha22]).

To our knowledge, the first authors to suggest that H4
∗(K(Gtop,1),C×) plays the role of

levels for quantum groups are Dijkgraaf and Witten (cf. [DW90]).

2.1.5. Let us now specialize to the case where G = T is an X-torus. Denote by Λ the smooth
X-scheme representing the sheaf of cocharacters of T.

There is a short exact sequence of topological groups relative to Xtop:

0→ Λtop
→ Lie(T)

top exp
ÐÐ→ Ttop

→ 1, (2.3)
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where Lie(T) denotes the Lie algebra of T and exp the exponential map. The short exact
sequence (2.3) identifies Sing Ttop with BSing Λtop. In particular, we obtain

Level(T) ≃ MapsSing Xtop/(B
2 Sing Λtop,B4C×

). (2.4)

Remark 2.1.6. The locally constant sheaf of abelian groups Λtop corresponds to a functor

Sing Xtop
→ Z-mod. (2.5)

To each x ∈ Sing Xtop, (2.5) assigns a finite free Z-module, which we view as the fiber of Λ
at x. (This holds literally when x is defined by a C-point of X.)

Note that the double deloop of (2.5) classifies B2 Sing Λtop in the following sense: Its

composition with the forgetful functor Z-mod → Spc corresponds to B2 Sing Λtop under
unstraightening. In particular, Level(T) is equivalent to the mapping space from the double

deloop of (2.5) to B4C× in the ∞-category Fun(Sing Xtop,Spc∗).

2.1.7 Topological context. In view of Remark 2.1.6, we find it convenient to change our
context from algebra to topology.

Namely, we shall fix an oriented 2-manifold M and a functor Λ ∶ Sing M→ Z-mod valued
in finite free Z-modules. By a “Betti level”, we shall mean a morphism

q ∶ B2Λ→ B4C×

in the ∞-category Fun(Sing M,Spc∗).
Applications to the algebraic context (cf. §2.1.3) will be obtained by setting M ∶= Xtop,

Λ ∶= the functor (2.5), and q a Betti level in the sense of §2.1.3.

2.1.8 Digression: cohomology of B2Γ. Let Γ be a finite free Z-module.
Write Maps∗(B

2Γ,B4C×) for the mapping space in Spc∗ and MapsZ(B
2Γ,B4C×) for the

mapping space in Z-mod. Write Quad(Γ,C×) for the abelian group

Quad(Γ,C×
) ∶= Sym2

(Γ̌) ⊗Z C×.

Its elements can be viewed as C×-valued quadratic forms on Γ: Given c⊗ζ ∈ (Γ̌)⊗2⊗ZC×, we

obtain a quadratic form Γ→C× by the expression γ ↦ ζc(γ,γ), and this expression depends
only on the symmetrization of c.

The ∞-groupoid Maps∗(B
2Γ,B4C×) has nontrivial homotopy groups in degrees 0 and 2.

Its postnikov tower may be identified explicitly as follows:

B2π2 Maps∗(B
2Γ,B4C×) Maps∗(B

2Γ,B4C×) π0 Maps∗(B
2Γ,B4C×)

MapsZ(B
2Γ,B4C×) Maps∗(B

2Γ,B4C×) Quad(Γ,C×)

≃ ≃ ≃

α β

(2.6)

where α coincides with the map induced by the forgetful functor Z-mod→ Spc∗.

Remark 2.1.9. The map β in (2.6) admits a splitting over the abelian group of C×-valued
bilinear forms on Γ:

(Γ̌)⊗2 ⊗Z C×

Maps∗(B
2Γ,B4C×) Quad(Γ,C×)

c⊗ζ↦(γ↦ζc(γ,γ))

β

(2.7)
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Namely, there is a canonical Z-linear map given by cup product

Γ̌⊗2
→Maps∗(B

2Γ,B4Z), y ⊗ z ↦ (B2y) ∪ (B2z),

which defines the dotted arrow in (2.7) by tensoring with C×.

2.1.10 Quadratic form. In the context of §2.1.7, the fiber sequence (2.6) gives rise to fiber
sequences functorial in x ∈ Sing M:

MapsZ(B
2Λx,B

4C×
) →Maps∗(B

2Λx,B
4C×

) → Quad(Λx,C
×
),

where Λx denote the image of x under Λ.
Taking limit over Sing M, we obtain a fiber sequence

MapsZ(B
2Λ,B4C×

) →Maps∗(B
2Λ,B4C×

) → Quad(Λ,C×
) (2.8)

where the first term denotes the mapping space in Fun(Sing M,Z-mod), the second term
the mapping space in Fun(Sing M,Spc∗), and Quad(Λ,C×) consists of locally constant C×-
valued quadratic form on Λ.

In particular, every Betti level q induces a locally constant C×-valued quadratic form Q
on Λ via the second map of (2.8). We call Q the associated quadratic form of q. The fiber
sequence (2.8) shows that Q is the obstruction of q to be Z-linear.

2.1.11 Symmetric form. To each C×-valued quadratic form Q on a finite free Z-module Γ,
we may associate the symmetric bilinear form

b ∶ Γ⊗ Γ→C×, γ1, γ2 ↦ Q(γ1 + γ2)Q(γ1)
−1Q(γ2)

−1.

The symmetric form b vanishes if and only if Q is linear. When this happens, Q must take
values in {±1}.

Thus, every Betti level q of T also has an associated symmetric form b ∶ Λ⊗Λ→C×. We
shall see that b is the obstruction of q to be commutative, i.e. E∞-monoidal.

Indeed, write MapsE∞(B2Λ,B4C×) for the mapping space in Fun(Sing M,CAlg(Spc)).
The forgetful functor defines a map of ∞-groupoids

MapsE∞(B2Λ,B4C×
) →Maps∗(B

2Λ,B4C×
) (2.9)

Lemma 2.1.12. (1) The map (2.9) is fully faithful;
(2) The essential image of (2.9) consists precisely of Betti levels q whose symmetric

forms b vanish.

Proof. This is [GL18, Remark 4.6.7]. �

2.2. The EM-category Repq(Ť).

2.2.1. We remain in the context of §2.1.7 and fix a Betti level

q ∶ B2Λ→ B4C×. (2.10)

In this subsection, we construct the quantum torus as an EM-algebra (cf. §1.1.6) in the
symmetric monoidal ∞-category DGCat (cf. §1.3.1):

Repq(Ť) ∈ AlgEM
(DGCat). (2.11)

2.2.2. We first recall a special case of a construction in 1.1.14: The equivalence (1.10), when
restricted to constant functors, yields a functor

(⋅)M ∶ CAlg(O) → CAlg(AlgEM
(O)) (2.12)
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for any symmetric monoidal ∞-category O. (We identified the target with AlgEM
(CAlg(O)),

cf. Remark 1.2.4.)
The functor (2.12) is easy to describe: It is the composition of the canonical equivalence

CAlg(O) ≃ CAlg(CAlg(O)) (cf. [Lur17, Example 3.2.4.5]) with the forgetful functor.

2.2.3 Construction of (2.11). Denote by Hq the fiber of (2.10), viewed as a functor Sing M→

Spc∗ equipped with an action of B3C× ∈ CAlg(Spc).
Applying the functor (1.13), we obtain

Hloc
q ∶= ΩM(Hq) ∈ AlgEM

(Spc)

equipped with an action of the commutative algebra (cf. Remark 1.2.4)

ΩM(B3C×
) ∈ CAlg(AlgEM

(Spc)).

We shall identify ΩM(B3C×) with (BC×)M via the local trace map (1.17). (This identi-
fication depends on the orientation of M.)

On the other hand, the tautological character (1.26) induces a morphism

LS((BC×
)M) ≃ LS((BC×

))M
χM
ÐÐ→ VectM (2.13)

in CAlg(AlgEM
(DGCat)), where the isomorphism uses the symmetric monoidal structure on

LS (cf. Lemma 1.3.7) and the second map uses functoriality of (2.12).
We define the EM-algebra in DGCat:

Repq(Ť) ∶= LS(Hloc
q ) ⊗LS((BC×)M) VectM (2.14)

where LS(Hloc
q ) is acted on by LS((BC×)M) via the (BC×)M-action on Hloc

q , and VectM is
acted on by LS((BC×)M) via the tautological character (2.13).

Remark 2.2.4. Suppose that q is trivial. Then we have Hq ≃ B3C× × B2Λ. In particular,
Hq lifts to a functor Sing M → CAlg(Spc). Applying ΩM and using the local trace map
(1.17), we obtain an identification

Hloc
q ≃ (BC×

)M ×ΛM.

This shows that Repq(Ť) is identified with LS(Λ)M, i.e. the EM-algebra associated to the
functor LS(Λ) ∶ Sing M → CAlg(DGCat) under (1.10). The latter corresponds to the locally
constant sheaf Rep(Ť) of representations of the torus Ť with sheaf of characters Λ.

Remark 2.2.5. The formula (2.14) expresses Repq(Ť) as the geometric realization of the

Bar complex associated to the LS((BC×)M)-modules LS(Hloc
q ) and VectM.

By passing to right adjoints, we may also realize Repq(Ť) as the totalization of the co-Bar

complex associated to the LS((BC×)M)-comodules LS(Hloc
q ) and VectM, defined using the

pullback functoriality (1.23) of local systems:

Repq(Ť) ≃ colim BarLS((BC×)M)(LS(Hloc
q ),VectM)

≃ lim coBarLS((BC×)M)(LS(Hloc
q ),VectM). (2.15)

2.2.6 Fibers of Repq(Ť). The limit presentation (2.15) gives a concrete description of the

fiber of Repq(Ť) at any x ∈ Sing M.
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Indeed, the fiber of Hloc
q at x is a C×-gerbe over the set Λx:

Hloc
q,x

Λx

BC×

The expression (2.15) identifies Repq(Ť)x as the DG category of local systems on Hloc
q,x which

are BC×-equivariant against the tautological character local system.
In particular, Repq(Ť)x admits a Λx-grading determined by the support:

Repq(Ť)x ≃ ⊕
λ∈Λx

Repq(Ť)
λ
x,

where each summand Repq(Ť)λx is non-canonically equivalent to Vect.

Remark 2.2.7. Denote by b the symmetric form associated to q (cf. §2.1.11).
When b vanishes, q lifts to a morphism in Fun(Sing M,CAlg(Spc)) (cf. Lemma 2.1.12).

This equips Hloc
q with the structure of a commutative algebra in AlgEM

(Spc), so Repq(Ť)

also lifts to a commutative algebra in AlgEM
(DGCat).

In §2.4, we shall establish a converse to this assertion: When b is nonvanishing at a point
x ∈ Sing M, the fiber Repq(Ť)x does not lift to a commutative algebra.

2.3. t-structure.

2.3.1. We remain in the context of §2.1.7.
In this subsection, we shall explain in what sense Repq(Ť) is the derived category of its

heart compatibly with the EM-algebra structure.
Denote by Vect≤0

⊂ Vect the full subcategory of connective objects. Denote by Vect♡ the
heart of Vect≤0, i.e. the abelian category of C-vector spaces.

2.3.2. The ∞-categories Vect≤0 and Vect♡ inherit symmetric monoidal structures from Vect,
so we may view them as objects of CAlg(PrL).

Consider the morphisms in CAlg(PrL):

Vect♡ ← Vect≤0
→ Vect.

They induce symmetric monoidal functors

Vect≤0-mod(PrL) → Vect♡-mod(PrL), C↦ C⊗Vect≤0 Vect
♡, (2.16)

Vect≤0-mod(PrL) → DGCat, C↦ C⊗Vect≤0 Vect. (2.17)

Remark 2.3.3. Since Vect♡ is identified with Vect≤0
⊗Set, the functor (2.16) coincides with

the functor of taking discrete objects (cf. [Lur17, Example 4.8.1.22]).

Since Vect is identified with Vect≤0
⊗ Sptr, the functor (2.17) coincides with the functor

of taking spectrum objects (cf. [Lur17, Example 4.8.1.23]).

2.3.4. Given Y ∈ Spc, the DG category LS(Y) carries a t-structure, with connective and
coconnective parts defined by

LS(Y)
≤0
∶= lim

Y
Vect≤0, LS(Y)

≥0
∶= lim

Y
Vect≥0.
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Note that f † is t-exact. In particular, its left adjoint f† is right t-exact. This implies that
the functor (1.24) restricts to a functor

Spc→ Vect≤0-mod(PrL), Y ↦ LS(Y)
≤0. (2.18)

Furthermore, (2.18) inherits a symmetric monoidal structure from (1.24) (cf. Lemma
2.18) and we recover (1.24) as the composition of (2.18) with the functor of taking spectrum
objects (2.17).

2.3.5 The heart of Repq(Ť). The construction of Repq(Ť) (cf. §2.2.3) may thus be repeated

with (2.18) instead of (1.24). This yields an EM-algebra in Vect≤0-mod(PrL)

Repq(Ť)
≤0
∶= LS(Hloc

q )
≤0
⊗LS((BC×)M)≤0 (Vect≤0

)M

together with an isomorphism of EM-algebras in DGCat:

Repq(Ť) ≃ Repq(Ť)
≤0
⊗Vect≤0 Vect. (2.19)

Likewise, we may form the symmetric monoidal functor

Spc→ Vect♡-mod(PrL), Y ↦ LS(Y)
♡ (2.20)

by composing (2.18) with the functor of taking discrete objects (2.16). The construction of

§2.2.3 then yields an EM-algebra in Vect♡-mod(PrL)

Repq(Ť)
♡
∶= LS(Hloc

q )
♡
⊗LS((BC×)M)♡ (Vect♡)M,

together with an isomorphism of such:

Repq(Ť)
♡
≃ Repq(Ť)

≤0
⊗Vect≤0 Vect

♡.

Remark 2.3.6. The observation of Remark 2.2.5 also applies to Repq(Ť)≤0 and Repq(Ť)♡.
Namely, by passing to right adjoints, we obtain equivalences

Repq(Ť)
≤0

≃ lim coBarLS((BC×)M)≤0(LS(Hloc
q )

≤0, (Vect≤0
)M), (2.21)

Repq(Ť)
♡
≃ lim coBarLS((BC×)M)♡(LS(Hloc

q )
♡, (Vect♡)M). (2.22)

As in §2.2.6, the expression (2.22) allows us to identify the fiber Repq(Ť)♡x at x ∈ Sing M

as the abelian category of local systems on Hloc
q,x which are BC×-equivariant against the

tautological character local system.

2.3.7. Next, we shall show that Repq(Ť)≤0 (hence Repq(Ť), by (2.19)) is completely deter-

mined by Repq(Ť)♡ as an EM-algebra. This requires some formalism of derived ∞-categories
established by Lurie (cf. [Lur18, Appendix C])

Denote by Grothsep
∞ the 1-full subcategory of PrL whose objects are separated Grothendieck

prestable ∞-categories and whose morphisms are exact functors.3

Denote by Groth0 the 1-full subcategory of PrL whose objects are Grothendieck abelian
categories and whose morphisms are exact functors. (By definition, morphisms in Grothsep

∞

and Groth0 commute with colimits.)
By [Lur18, Theorem C.5.4.9], the functor of taking discrete object

(⋅)
♡
∶ Grothsep

∞ → Groth0 (2.23)

admits a left adjoint, whose value at A ∈ Groth0 is identified with the connective part of the
derived ∞-category D(A)≤0 (cf. [Lur18, Proposition C.5.3.2, Proposition C.5.4.5]).

3In op.cit., this ∞-category is denoted by Grothlex,sep∞ .
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2.3.8. By [Lur18, Theorem C.5.4.16], Groth0 inherits a symmetric monoidal structure from

PrL. We endow Grothsep
∞ with the symmetric monoidal structure given by the separated

Lurie tensor product (cf. [Lur18, Corollary C.4.6.2]).4

Consider Vect≤0 (respectively Vect♡) as a commutative algebra in Grothsep
∞ (respectively,

Groth0). Since (2.23) is symmetric monoidal, it lifts to a functor

(⋅)
♡
∶ Vect≤0-mod(Grothsep

∞ ) → Vect♡-mod(Groth0). (2.24)

Since (2.23) admits a left adjoint, so does (2.24).

2.3.9. Since LS(Y) is left complete (in particular, left separated) for any Y ∈ Spc and the
pullback functor f † ∶ LS(Y2) → LS(Y1), for any morphism f ∶ Y1 → Y2 in Spc, is t-exact,
the functor (1.23) induces functors

Spcop
→ Vect≤0-mod(Grothsep

∞ ), Y ↦ LS(Y)
≤0

Spcop
→ Vect♡-mod(Groth0), Y ↦ LS(Y)

♡

The expressions (2.21), (2.22) define Repq(Ť)≤0, respectively Repq(Ť)♡ as EM-algebras

in Vect≤0-mod(Grothsep
∞ ), respectively Vect♡-mod(Groth0).

2.3.10. Denote by L the left adjoint of (2.24). Being the left adjoint of a symmetric monoidal
functor, L is oplax symmetric monoidal.

We do not know if L is symmetric monoidal in general. Thus, we do not know if the
image L(A) of an EM-algebra A in Vect♡-mod(Groth0) automatically carries an EM-algebra
structure. This does happen, however, if the leftward arrow in the correspondence

⊗
i∈I

L(A(Ui)) ← L(⊗
i∈I

A(Ui)) → L(A(U))

associated to any active morphism {Ui}i∈I → U of E⊗M is an isomorphism.
In particular, if A is fiberwise semisimple, i.e. Ax is semisimple for every x ∈ Sing M, then

L(A) carries a natural EM-algebra structure.
Since Repq(Ť)♡ is fiberwise semisimple (cf. §2.2.6), we obtain

L(Repq(Ť)
♡
) ∈ AlgEM

(Vect≤0-mod(Grothsep
∞ )).

Lemma 2.3.11. There is a natural isomorphism in AlgEM
(Vect≤0-mod(Grothsep

∞ )):

L(Repq(Ť)
♡
) ≃ Repq(Ť)

≤0. (2.25)

Proof. The morphism in one direction is defined by the counit of the adjunction between L
and (2.24).

The fact that it is an equivalence may be checked fiberwise, where it follows immediately
from the description of §2.2.6. �

Remark 2.3.12. Informally, Lemma 2.3.11 and (2.19) express the fact that Repq(Ť) is the

derived ∞-category of Repq(Ť)♡ “compatibly with the EM-algebra structures.”

Namely, for each x ∈ Sing M, the DG category Repq(Ť)x is equivalent to the derived

∞-category D(Repq(Ť)♡x), and the EM-algebra structure on Repq(Ť) is determined by the

EM-algebra structure on Repq(Ť)♡.

4For both assertions, we invoked the fact that exactness of functors in PrL is preserved by tensor product

(cf. [Lur18, Proposition C.4.4.1]).
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2.4. The ribbon structure.

2.4.1. We remain in the context of §2.1.7.
The goal of this subsection is to provide interpretations of the discrete invariants Q and

b of q (cf. §2.1.10, §2.1.11) in terms of the EM-algebra Repq(Ť)♡ (cf. §2.3.5).

Informally, Repq(Ť)♡ may be viewed as a family of “twisted” braided monoidal categories
parametrized by M. Our results say that b controls the square of the commutativity con-
straint on Repq(Ť)♡, while Q controls an additional ribbon structure (cf. Proposition 2.4.4,
Proposition 2.4.9).

2.4.2. Given an object τ ∈ BTop(2), we define the τ -twisted E2-operad to be

E⊗τ ∶= BTop(2)⊗ ×BTop(2)⊔ ∗
⊔,

using the map ∗⊔ → BTop(2)⊔ induced from τ .
Any neutralization of τ , i.e. isomorphism with the neutral point of BTop(2), induces an

isomorphism between E⊗τ and the operad E⊗2 (cf. [Lur17, Example 5.4.2.15]).
Given x ∈ Sing M, the map x ∶ ∗ → Sing M induces a morphism of ∞-operads

E⊗τx → E⊗M, (2.26)

where τx denotes the image of x under the map τM ∶ Sing M → BTop(2) classifying the
tangent microbundle of M (cf. Remark 1.1.3).

In particular, given any symmetric monoidal ∞-category O and A ∈ AlgEM
(O), restriction

along (2.26) defines Ax ∈ AlgEτx (O), whose underlying object of O is the fiber of A at x.

2.4.3. Recall that E2-algebras in the ∞-category Cat0 of (1-)categories are precisely braided
monoidal categories (cf. [Lur17, Example 5.1.2.4]).

Thus, given any x ∈ Sing M and a neutralization of τx, the fiber Repq(Ť)♡x admits the
structure of a braided monoidal category.

Given two objects Vλ1 , Vλ2 of Repq(Ť)♡x with gradings λ1, λ2 ∈ Λx (cf. §2.2.6), the square
of the commutativity constraint

Vλ1 ⊗Vλ2 ≃ Vλ2 ⊗Vλ1 ≃ Vλ1 ⊗Vλ2 (2.27)

is an automorphism of Vλ1 ⊗Vλ2 .

Proposition 2.4.4. The automorphism (2.27) equals multiplication by b(λ1, λ2).

2.4.5. We shall prove Proposition 2.4.4 along with an assertion describing a “twisted” ribbon
structure on Repq(Ť)♡x in terms of the quadratic form Q.

We fix a smooth structure on M. This allows us to reduce the tangent microbundle of M
to its tangent bundle, classified by a map τM ∶ Sing M → BGL+2 , where GL+2 is the group of
orientation-preserving automorphisms of R2.

Consider the ∞-operad (cf. [Lur17, Example 5.4.2.16])

E⊗BGL+2
∶= BTop(2)⊗ ×BTop(2)⊔ (BGL+2)

⊔.

For any x ∈ Sing M, the map τx ∶ ∗ → BGL+2 induces a morphism of ∞-operads

E⊗τx → E⊗BGL+2
. (2.28)

We shall lift the Eτx-algebra Repq(Ť)x to an EBGL+2
-algebra along (2.28).
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Remark 2.4.6. Denote by Tx the oriented 2-dimensional vector space classified by τx ∈

BGL+2 . Then its orientation-preserving automorphisms form a topological group GL+(Tx)
and we have a canonical isomorphism of ∞-groupoids over BTop(2):

τx/GL+(Tx) ≃ BGL+2 .

Given a symmetric monoidal ∞-category O, we write AlgEτx (O)GL+(Tx) for the ∞-category

of GL+(Tx)-invariants of AlgEτx (O). Since E⊗τx defines a family of ∞-operads over BGL+(Tx)

with assembly is E⊗
BGL+2

(cf. [Lur17, Remark 5.4.2.13]), we obtain

AlgEτx (O)
GL+(Tx) ≃ AlgEBGL+

2

(O).

2.4.7 Construction of the EBGL+2
-algebra structure. Applying the construction of the quan-

tum torus (cf. §2.2.3) with Tx instead of M and the constant Betti level qx ∶ B
2Λx → B4C×

instead of q, we obtain

Repqx(Ť) ∈ AlgETx
(DGCat) (2.29)

which recovers Repq(Ť)x under the canonical isomorphism E⊗τx ≃ E⊗Tx of ∞-operads.

To lift Repq(Ť)x to AlgEBGL+
2

(DGCat), it thus suffices to endow Repqx(Ť) with a GL+(Tx)-

equivariance structure (cf. Remark 2.4.6).
Consider the commutative diagram of ETx -algebras in Spc:

ΩTx(B
2Λx) (Λx)Tx

ΩTx(B
4C×) (B2C×)Tx

≃

ΩTx(qx)

≃

(2.30)

where the horizontal isomorphisms are given by the local trace maps (cf. §1.2.7). By con-
struction, it suffices to endow the right vertical map in (2.30) with a GL+(Tx)-equivariance

structure, with respect to the natural GL+(Tx)-equivariance on (Λx)Tx and (B2C×)Tx .
Note that the left vertical arrow of (2.30) admits an GL+(Tx)-equivariance structure by

functoriality with respect to Tx. The desired structure follows because the local trace map
(1.17) for Tx is naturally GL+(Tx)-equivariant.

2.4.8. We return to the context of §2.4.5.
Since the underlying ∞-category of EBGL+2

is BGL+2 , the EBGL+2
-algebra structure on

Repq(Ť)x yields a functor

BGL+2 → DGCat, (2.31)

sending the point τx (not the neutral point!) to Repq(Ť)x.

Let us identify BGL+2 with B2Z as objects of Spc∗. This identification is determined by
the homotopy equivalences

BZ ≃ S1
≃ SO(2) ≃ GL+2 .

Once a neutralization of τx ∈ BGL+2 is chosen, the generator 1 ∈ Z defines an automorphism
θ of the identity endofunctor on Repq(Ť)x under (2.31). Given Vλ ∈ Repq(Ť)♡x with grading
λ ∈ Λx, the automorphism θ specializes to an automorphism

θVλ ∶ V
λ
≃ Vλ. (2.32)

Proposition 2.4.9. The automorphism (2.32) equals multiplication by Q(λ).



THE QUANTUM TORUS AS AN EM-CATEGORY 19

2.4.10. Before we prove Proposition 2.4.9, we relate the local trace map (cf. §1.2.7) for R2

to the SO(2)-action. Namely, consider the (inverse of the) local trace map

Z ≃ Γc(R
2,B2Z), 1↦ [R2

]. (2.33)

Writing Br ⊂ R2 for the closed disk of radius r ∈ R>0 centered at the origin, we may
express Γc(R

2,B2Z) as the fiber of the map

Γ(R2,B2Z) → colim
r→∞

Γ(R2
∖Br,B

2Z). (2.34)

The inclusion R2∖Br ⊂ R2 is SO(2)-equivariant. Taking the quotient by SO(2) and passing
to homotopy types, it gives rise to the neutral map e ∶ ∗ → BSO(2). In particular, the fiber

of (2.34) is identified with the fiber of e∗ ∶ Maps(BSO(2),B2Z) → B2Z via pullback:

Maps∗(BSO(2),B2Z) ≃ Γc(R
2,B2Z). (2.35)

Under the isomorphism (2.35), the class [R2] corresponds to the canonical isomorphism

BSO(2) ≃ B2Z in Spc∗ (cf. §2.4.8).

2.4.11. We now turn to the proof of Proposition 2.4.9.

Proof of Proposition 2.4.9. We identify Tx with R2 using the chosen neutralization of τx.
The commutative square (2.30) specializes to a commutative square of ∞-groupoids en-

dowed with SO(2)-action:

Γc(R
2,B2Λx) Λx

Γc(R
2,B4C×) B2C×

≃

Γc(R
2,qx)

≃

(2.36)

Here, the horizontal isomorphisms are the local trace maps. The group SO(2) acts on the
left column of (2.36) via its action on R2 and acts trivially on the right column.

Let us express θVλ in terms of the SO(2)-equivariant morphism Λx → B2C× in (2.36).

Indeed, evaluating the latter at λ yields an SO(2)-invariant object of B2C×, i.e. an object
of the ∞-groupoid

Γc(R
2, qx)(λ) ∈ Maps(BSO(2),B2C×

) (2.37)

Under the identification BSO(2) ≃ B2Z (cf. §2.4.8), the class of (2.37) is an element θ(λ) ∈
C×. By construction, the automorphism θVλ acts as multiplication by θ(λ).

It remains to prove the following equality for each λ ∈ Λx:

θ(λ) = Q(λ). (2.38)

First, we observe that both sides of (2.38) depend linearly on q: For θ(λ), this holds
because (2.37) depends linearly on q, while for Q(λ), this holds because (2.6) comes from a
fiber sequence in Z-mod. By Remark 2.1.9, we may assume that q is of the form

q ≃ (B2y) ∪ (B2z),

for characters y ∶ Λx → Z and z ∶ Λx →C×. The value Q(λ) then equals z(λ)y(λ).
Let us determine (2.37) for this choice of q. Indeed, as an SO(2)-invariant object of

Γc(R
2,B4C×), it is given by the cup product

(y(λ) ⋅ [R2
]) ∪ (z(λ) ⋅ [R2

]). (2.39)
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We may view z(λ) ⋅ [R2] as an SO(2)-invariant object of Γ(R2,B2C×) (i.e. forgetting that
it is compactly supported) and consequently as an SO(2)-equivariant morphism

z(λ) ⋅ [R2
] ∶ Z→ B2C×. (2.40)

If we forget the SO(2)-equivariance structure on (2.40), then it is simply the HZ-linear

morphism z(λ) ∶ Z → B2C×. The SO(2)-equivariance structure, however, is determined by

[R2]: It says that the image of the generator 1 ∈ Z is an SO(2)-invariant object of B2C×

whose class equals z(λ) (cf. §2.4.10).
The cup product (2.39) is isomorphic to a Yoneda product, i.e. the image of the SO(2)-

invariant object y(λ) ⋅ [R2] ∈ Γc(R
2,B2Z) under the double deloop of (2.40). By naturality

of the local trace map (cf. §1.2.7), we have a commutative square

Γc(R
2,B2Z) Z

Γc(R
2,B4C×) B2C×

z(λ)⋅[R2
]

≃

z(λ)⋅[R2
]

≃

Thus, (2.37) is isomorphic to the image of y(λ) ∈ Z under the SO(2)-equivariant morphism

(2.40). In particular, its class equals z(λ)y(λ), as desired. �

2.4.12. Finally, we shall deduce Proposition 2.4.4 from Proposition 2.4.9 and standard facts
about braided monoidal categories.

Proof of Proposition 2.4.4. Choose a smooth structure on M and a neutralization of τx as
a point of BGL+2 .

The construction of §2.4.7 lifts the braided monoidal category Repq(Ť)♡x lifts to an EBGL+2
-

algebra in Cat0. The latter is precisely a ribbon structure on Repq(Ť)♡x, whose ribbon twist
is provided by the automorphism (2.32) (cf. [SW01, §4]).

In particular, this implies that the automorphism (2.27) equals

θVλ1⊗Vλ2 ○ (θ
−1
Vλ1 ⊗ θ

−1
Vλ2 ).

By Proposition 2.4.9, this is the multiplication by b(λ1, λ2), as desired. �

Remark 2.4.13. In the proof of Proposition 2.4.4, we used the term “ribbon” as in [SW01,
Definition 4.9], referring only to additional structure of the twist.

Some authors call this structure “balanced” and reserve the term “ribbon” for rigid
balanced braided monoidal categories. The subcategory of compact objects in Repq(Ť)♡x is
indeed rigid, hence “ribbon” in the stronger sense.

3. Global constructions

In this section, we calculate the factorization homology of Repq(Ť) over an oriented 2-
manifold M (cf. Theorem 3.1.3) and use it to prove a version of the quantum Betti geometric
Langlands conjecture for tori (cf. Corollary 3.2.8).
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3.1. Calculation of ∫M Repq(Ť).

3.1.1. Let M be an oriented 2-manifold. Let Λ ∶ Sing M→ Z-mod taking values in finite free
Z-modules and fix a morphism in Fun(Sing M,Spc∗):

q ∶ B2Λ→ B4C×. (3.1)

In this context, we have defined the EM-algebra Repq(Ť) in DGCat (cf. §2.2.3). The goal

of this subsection is to compute the factorization homology of Repq(Ť) (cf. §1.1.9).

3.1.2. Applying the functor Γc(M, ⋅) of compactly supported sections (cf. §1.2.1) to (3.1),
we obtain a morphism in Spc:

Γc(M, q) ∶ Γc(M,B2Λ) → Γc(M,B4C×
). (3.2)

Composing (3.2) with the global trace map τglob
M (cf. §1.2.10, for A ∶= C× and k ∶= 4), we

obtain a morphism in Spc:
Γc(M,B2Λ) → B2C× (3.3)

Denote by Hglob
q the fiber of (3.3). Thus Hglob

q is an ∞-groupoid equipped with a BC×-

action. In particular, LS(Hglob
q ) carries an action of LS(BC×), using the symmetric monoidal

structure on LS (cf. Lemma 1.3.7). Viewing Vect as an LS(BC×)-module via the tautological
character χ (1.26), we form

LSq(Γc(M,B2Λ)) ∶= LS(Hglob
q ) ⊗LS(BC×) Vect.

Theorem 3.1.3. There is a canonical equivalence in DGCat:

∫
M

Repq(Ť) ≃ LSq(Γc(M,B2Λ)).

Proof. Recall that Repq(Ť) is defined as the tensor product LS(Hloc
q ) ⊗LS((BC×)M) VectM,

where Hloc
q is defined as ΩM(Hq) for Hq the fiber of (3.1) (cf. §2.2.3). Let us rewrite it as

the tensor product

Repq(Ť) ≃ LS(ΩM(Hq)) ⊗LS(ΩM(B3C×)) VectM, (3.4)

where VectM is viewed as a LS(ΩM(B3C×))-module via the composition

LS(ΩM(B3C×
)) ≃ LS((BC×

)M)
χM
ÐÐ→ VectM, (3.5)

where the isomorphism is LS(τ loc
M ) for the local trace map τ loc

M (cf. §1.2.7).
Using the presentation (3.4), we compute:

∫
M

Repq(Ť) ≃ ∫
M

LS(ΩM(Hq)) ⊗∫M LS(ΩM(B3C×)) ∫
M
VectM (Lemma 1.1.13)

≃ LS(∫
M

ΩM(Hq)) ⊗LS(∫M ΩM(B3C×)) Vect (Remark 1.1.10)

≃ LS(Γc(M,Hq)) ⊗LS(Γc(M,B3C×)) Vect (Proposition 1.2.6)

Here, the identification ∫M VectM ≃ Vect follows from the symmetric monoidal structure on

∫M (cf. Remark 1.1.11).

Claim: The LS(Γc(M,B3C×))-module structure on Vect, appearing in the above expres-
sion, is induced from the morphism in CAlg(DGCat):

LS(Γc(M,B3C×
)) → LS(BC×

)
χ
Ð→ Vect (3.6)

where the first morphism is LS(τglob
M ) for the global trace map τglob

M (cf. §1.2.10).
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Indeed, assuming the claim, we obtain the desired isomorphism:

∫
M

Repq(Ť) ≃ LS(Γc(M,Hq)) ⊗LS(Γc(M,B3C×)) LS(BC×
) ⊗LS(BC×) Vect

≃ LS(Hglob
q ) ⊗LS(BC×) Vect

≃ LSq(Γc(M,B2Λ)),

using the fact that Hglob
q is the quotient of Γc(M,Hq) ×BC× by the anti-diagonal action of

Γc(M,B3C×) and that LS commutes with colimits (cf. Lemma 1.3.5).
To prove the claim, it suffices to identify (3.6) with the factorization homology of (3.5)

under nonabelian Poincaré duality (cf. Proposition 1.2.6). This amounts to the solid com-
mutative diagram in CAlg(DGCat) below:

∫M LS(ΩM(B2C×)) ∫M LS((BC×)M) ∫M VectM

LS(Γc(M,B3C×)) LS(BC×) Vect

∫M LS(τ loc
M )

≃

∫M χM

≃

LS(τglob
M

) χ

(3.7)

We shall supply the dotted arrow in (3.7) making both squares commute. Indeed, we let
it be the composite

∫
M

LS(BC×
)M ≃ colim LS(BC×

) → LS(BC×
), (3.8)

where the isomorphism is (1.11) (applied to A ∶= LS(BC×)) and the second map is induced
from the identity on LS(BC×), as it determines a constant functor out of Sing M.

The right square of (3.7) commutes by naturality of the construction of (3.8) with respect
to χ. The left square of (3.8) commutes because it is the image of (1.22) under LS. �

3.2. The Ben-Zvi–Nadler conjecture for T.

3.2.1. Let X be a smooth C-curve, assumed projective and connected. Let T be an X-torus
and q be a Betti level for T in the sense of §2.1.3.

Our goal is to interpret Theorem 3.1.3 as a version of a conjecture of Ben-Zvi and Nadler
(cf. [BZN18, Conjecture 4.27]) for T.

To do so, we invoke the passage from the algebraic to the topological context (cf. §2.1.7):

We regard Λ as a functor Sing Xtop → Z-mod and q as a morphism B2Λ → B4C× in the ∞-
category Fun(Sing Xtop,Spc∗). To ease the notation, we shall denote factorization homology
over Xtop by ∫X.

3.2.2. We also need to extend the construction of the underlying homotopy type of a C-
scheme of finite type (cf. §2.1.1) to C-prestacks.

Indeed, we write PStk(Schft) for the ∞-category of functors (Schft)
op → Spc and consider

the left Kan extension of (2.1) along the Yoneda embedding. This yields a functor

PStk(Schft) → Spc, (3.9)

which we will still denote by Sing(⋅)top.

Remark 3.2.3. Let Y be an algebraic stack with a smooth cover f ∶ Z → Y with Z ∈ Schft

such that for any S ∈ Schft over Y the base change fS ∶ Z ×Y S → S induces a Serre fibration
(Z ×Y S)top → Stop, then we have a canonical isomorphism in Spc:

colim Sing(Z●/Y)
top

≃ SingYtop, (3.10)
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where Z●
/Y denotes the Čech nerve of f .

To see this, we note that (3.9) commutes with colimits, so it suffices to prove that given
a morphism Z → Y in Schft inducing a Serre fibration Ztop → Ytop, its Čech nerve induces
an isomorphism

colim Sing(Z●/Y)
top

≃ Sing Ytop.

By Remark 2.1.2, Sing(Z●
/Y)top is identified with the Čech nerve of the effective epimorphism

Sing Ztop → Sing Ytop, so this follows from [Lur09, Corollary 6.2.3.5].
Notably, for the algebraic stack BT with the smooth cover X → BT, (3.10) yields an

isomorphism in Spc:

BSing Ttop
≃ Sing(BT)

top. (3.11)

3.2.4. Denote by BunT the moduli stack of T-bundles over X, whose S-points (for S ∈ Schft)
are T-bundles over X × S. Let us construct a morphism in Spc:

Sing(BunT)
top
→ Γ(Sing Xtop,B2Λ). (3.12)

Indeed, applying Sing(⋅)top to the universal T-bundle

X ×BunT → BT

and using its commutation with finite products (cf. Remark 2.1.2), we obtain a morphism:

Sing Xtop
× Sing(BunT)

top
→ Sing(BT)

top

≃ BSing Ttop
≃ B2Λ, (3.13)

where the two isomorphism are (3.11), respectively the one of §2.1.5. The desired map (3.12)
now follows from adjunction.

Lemma 3.2.5. The morphism (3.12) is an isomorphism.

Proof. It suffices to prove that (3.12) induces an isomorphism on homotopy groups.
The connected components of Sing(BunT)top are classified by the first Chern class of a

T-bundle, thus in natural bijection with H2(Xtop,Λ).
Denote by Bun0

T ⊂ BunT the substack of T-bundles with vanishing first Chern class. Then
the homotopy groups of Sing(Bun0

T)top are computed by Atiyah–Bott uniformization, which
yields H1(Xtop,Λ), respectively H0(Xtop,Λ) in degrees 1 and 2. �

3.2.6. By post-composing (3.13) with the Betti level q, we obtain a map Sing(BunT)top →

Γ(Sing Xtop,B4C×) by adjunction.

Post-composing with the global trace map τglob
M (cf. §1.2.10, for M ∶= Xtop, A ∶= C× and

k ∶= 4), we obtain a map in Spc:

Sing(BunT)
top
→ B2C×, (3.14)

which can be viewed as a Betti C×-gerbe over BunT.
By construction, (3.3) and (3.14) are intertwined by the isomorphism (3.12):

Sing(BunT)top B2C×

Γ(Sing Xtop,B2Λ) B2C×

(3.14)

≃ ≃

(3.3)

(3.15)
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3.2.7. The authors of [BZN18] propose to study the ∞-category ShvN,q(BunT) of sheaves of
C-vector space on BunT twisted by the C×-gerbe (3.14), satisfying the condition of having
nilpotent singular support.

Since the global nilpotent cone of BunT is the zero section, this condition is equivalent
to having locally constant cohomology sheaves. By Remark 1.3.3, we may identify

ShvN,q(BunT) ≃ LSq(BunT),

where LSq(BunT) denotes the ∞-category of local systems over Sing(BunT)top twisted by
the C×-gerbe (3.14). In other words, we have an equivalence

ShvN,q(BunT) ≃ LS(Gglob
q ) ⊗LS(BC×) Vect, (3.16)

where Gglob
q denotes the fiber of (3.14), endowed with the natural BC×-action, and Vect is

viewed as an LS(BC×)-module via the tautological character χ.
The following is a version of [BZN18, Conjecture 4.27] for X-tori.

Corollary 3.2.8. There is a canonical equivalence in DGCat:

∫
X

Repq(Ť) ≃ ShvN,q(BunT).

Proof. Using (3.16), we reduce to constructing an equivalence

∫
X

Repq(Ť) ≃ LS(Gglob
q ) ⊗LS(BC×) Vect. (3.17)

In view of (3.15), we may replace Gglob
q by the fiber Hglob

q of (3.3). Thus, the right-hand-

side of (3.17) is canonically equivalent to LS(Hglob
q ) ⊗LS(BC×) Vect, which is by definition

the DG category LSq(Γ(Sing Xtop,B2Λ)) (cf. §3.1.2).
The desired equivalence (3.17) is now provided by Theorem 3.1.3. �
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