THE QUANTUM TORUS AS AN Ey-CATEGORY

LIN CHEN AND YIFEI ZHAO

ABSTRACT. Given an oriented 2-manifold M, a locally constant sheaf of lattices A over
M, and a pointed morphism ¢ : B2A - B*C*, we define an En-category Repq(T) which
we call the “quantum torus” at level q. We explain why this terminology is deserved and
calculate the factorization homology of Repq(T). When M arises from a global complex
curve, we confirm (a version of) a conjecture of Ben-Zvi and Nadler for tori.
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Given a reductive group G and a “level” ¢ € C*, one obtains the category Repq(G) of
representations of the quantum group. It can be regarded as a braided monoidal deformation

of the category Rep(G) of representations of the Langlands dual group G.

Morever, the category Repq(é) admits a ribbon structure, which allows one to “spread”

Repq(G) onto an oriented 2-manifold M, thus defining an Ey;-category. It is then possible

to extract a global invariant

fMRepq(G),
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called its “factorization homology”, which plays a prominent role in the Betti quantum
geometric Langlands program. We refer the reader to [BZBJ18, BZN18] for details.

The consideration above makes us suspect that Repq(G) starts life naturally as an Ep-
category. Indeed, in the context of the quantum geometric Langlands program, the level ¢
is not expected to be a complex number in general, but a (suitably categorified) degree-4
reduced cohomology class of BG. Unless G is simply connected, a level of this kind can vary
along M, so we do not expect Repq(é) to come from a single ribbon category.

In this note, we confirm this suspicion for quantum tori: We give a direct definition of
Repq(T) as an [Ep-category, which accommodates the general notion of levels as well as
nonsplit tori. From a classical perspective, one can say that this note explains how quantum
tori behave in family.

Contents of this note. Our definition of the “quantum torus” Repq(T) takes as input a
triple (M, A, q), where
(1) M is an oriented 2-manifold (with underlying co-groupoid Sing M);
(2) A is a functor from Sing M to the category of finite free Z-modules;
(3) ¢: B?A — B*C* is a morphism in the co-category Fun(Sing M, Spc, ), where Spc,
denotes the oo-category of pointed oco-groupoids.
Given the triple (M, A, ¢), we shall define Repq(T) as an Eyr-algebra in the co-category
DGCat of DG categories in §2.2.
Our definition is conceptually simple, but not quite explicit. To argue that we have given
a reasonable definition, we shall show that Repq(T) has the expected behavior of a quantum
torus: It is completely determined by its heart Repq(T)v, which is a family of “twisted”
braided monoidal categories over M whose local invariants can be expressed explicitly in
terms of those of ¢ (¢f. Proposition 2.4.5, Proposition 2.4.9).
As for global invariants, we shall compute the factorization homology of Repq(T). In
Theorem 3.1.3, we shall construct a canonical equivalence in DGCat:

fM Rep, (T) = LS, (To(M, B2A)), (0.1)

where the right-hand-side denotes the DG category of “g-twisted” local systems over the
oo-groupoid I'.(M, B2A) of compactly supported sections.

In fact, our definition of Repq(T) turns (0.1) into an immediate corollary of nonabelian
Poincaré duality, due to Salvatore, Segal, and Lurie (¢f. [Sal0l, Segl0, Lurl7]).

When M is the underlying oriented 2-manifold of a global complex curve X and A is
defined by the (locally constant) sheaf of cocharacters of an X-torus T, the equivalence
(0.1) implies a version of [BZN18, Conjecture 4.27], the quantum Betti geometric Langlands
conjecture for tori (¢f. Corollary 3.2.8).

Acknowledgements. We thank Dennis Gaitsgory, Sam Raskin, and Nick Rozenblyum for
teaching us about the geometric Langlands program.

In addition, Y.Z. thanks Thomas Nikolaus, Phil Piitzstiick, and Maxim Ramzi for pa-
tiently answering his topology questions, and JiWoong Park for helpful conversations.

1. PREPARATION

In this section, we recall the notions of Ep-algebras and factorization homology, and
gather all of their properties that we shall use later. These properties are comprehensively
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established in [Lurl7, §5.5] and, from an alternative point of view, in [AF15]. We also recall
the formalism of local systems of [GKRV22].
Needless to say, this section contains no originality.

1.1. Factorization homology.

1.1.1. Fix an integer n > 0.

Denote by Mfd,, the topological category of n-dimensional topological manifolds admitting
finite “good covers” (cf. [AF15, Definition 2.1]).

We shall suppress the operation of taking homotopy coherent nerves from our notation,
and regard Mfd,, as an oo-category.

Thus, the mapping space between My, Ms € Mfd,, is the co-groupoid Sing Emb(M;j, My),
where Emb(M7, M) is the set of embeddings My — My, endowed with the compact-open
topology, and Sing denotes the functor of singular chains.

1.1.2. Denote by BTop(n) the full subcategory of Mfd,, consisting of objects homeomorphic
to the Fuclidean space R".

The Kister-Mazur theorem shows that Top(n) := Sing Emb(R"™, R") is a grouplike monoid.
In particular, BTop(n) may be identified with the classifying space of Top(n).

Given M € Mfd,,, we have a forgetful functor

BTop(n),;m — BTop(n). (1.1)

Remark 1.1.3. The slice co-category BTop(n),y is a Kan complex equivalent to Sing M
(¢f. [Lurl7, Remark 5.4.5.2]), so (1.1) determines a morphism of co-groupoids

7y ¢ SingM — BTop(n).
By [AF15, Corollary 2.13], this morphism classifies the tangent microbundle of M.

1.1.4 The oco-operad EY;. Recall that BTop(n) is the underlying co-category of an co-operad
BTop(n)® (c¢f. [Lurl7, Definition 5.4.2.1]).

Moreover, each co-category € functorially determines an oo-operad C” (cf. [Lurl?7, §2.4.3])
and we have a natural morphism BTop(n)® — BTop(n)" (¢f. [Lurl7, Remark 5.4.2.7]).

For each M € Mfd,,, the co-operad E; is defined as the fiber product

ER := BTop(1)® xgrop(n): (BTop(n) )"

Remark 1.1.5. Let us give an informal description of Eg;.

By definition, the underlying co-category of EY; is BTop(n)/m. Given objects 2: U - M
and x; : U; = M (j = 1,---;m) of BTop(n),n, an m-ary operation from {x;};j-1,..m to {z}
in EY; consists of an embedding U; U ---u U, — U together with an identification of the
composite

U;»Uu-uU,-U5M
with z; as morphisms in Mfd,,, for each j =1,---,m.

1.1.6. We fix M € Mfd,, in the remainder of this section.

Let O be a symmetric monoidal co-category. We shall refer to EYj-algebras in O simply
as Eni-algebras. They form an oo-category Algg,, (0).

Since the co-category underlying E¥; is BTop(n)\, or equivalently SingM (cf. Remark
1.1.3), we have a forgetful functor

Algg,, (0) - Fun(Sing M, O). (1.2)
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Given A € Algg, (0) and z € Sing M, we write A, € O for the image of 2 under the functor
underlying A and refer to it as the fiber of A at z.

1.1.7 Factorization homology. When O is sifted-complete, we shall construct a functor

|+ Algs,, (0) 0, (1.3)

whose value at A € Algg (0) is called the factorization homology of A over M.

Denote by Disk,, the full subcategory of Mfd,, consisting of objects homeomorphic to
S x R™ for some finite set S.

The construction of (1.3) relies on a functor of co-categories

Disk,,/m = Eg, (1.4)
which we shall define presently.!

1.1.8 Construction of (1.4). It suffices to construct functors
Disk,, /v — BTop(n)®,

and identify their compositions with the functors to BTop(n)".

We follow the notation of [Lurl?7, §2.1.1] and write Fin, for the category of pointed finite
sets. We express any S € Fin, as S°u{*}, where * is the distinguished element. Observe that
Disk,,/y admits a natural functor to Fin,, sending U — M to the pointed finite set moUu {*}.
The functors (1.5) and (1.6), which we shall construct, intertwine this functor to Fin, with
the structural functors of the co-operads BTop(n)® and (BTop(n)/m)".

The functor (1.5) is defined as the composition of the forgetful functor Disk,,/\; — Disky,
with the faithful embedding of topological categories?

Disk,, = BTop(n)®. (1.7)
The functor (1.6) is adjoint to a functor
DiSkn/M XFin, r* - BTop(n)/M7 (18)

where T'* denotes the category of pairs (S,¢), with S € Fin, and ¢ € S° (¢f. [Lurl7, Con-
struction 2.4.3.1]). The functor (1.8) sends (U — M, ) to the restriction of U - M to the
connected component of U corresponding to <.

To identify the compositions of (1.5) and (1.6) with the natural functors to BTop(n)",
we observe that the composition of (1.8) with the forgetful functor to BTop(n) factors as in
the following commutative diagram

Disk,,/n xFin, I'* — BTop(n)m

l |

Disk,, xfin, I'* —— BTop(n)

Here, the bottom horizontal arrow is defined by evaluation at . By construction, it is adjoint
to the composition of (1.7) with the functor BTop(n)® — BTop(n)".

IThe functor (1.4) appears implicitly in the proof of [Lurl7, Theorem 5.5.2.5], but we could not locate
its definition in op.cit..

2The topological category defining BTop(n)® is denoted by tEgTop(n) in [Lurl7, Definition 5.4.2.1] and

(1.7) identifies Disky,, with its faithful subcategory consisting of all objects and active morphisms.
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1.1.9 Construction of (1.3). The functor (1.3) is the composition of the restriction along
(1.4) with the functor of taking colimits over Disk,,/\. In other words, we have

ffl:: colim A(U).
M

UeDisk,,

The fact that this colimit exists (assuming that O is sifted-complete) is because the oco-
category Disk,,/\; is sifted (cf. [Lurl7, Proposition 5.5.2.15]).

Remark 1.1.10. By [Lurl7, Proposition 5.5.2.17(2)], (1.3) is functorial in O: Given sifted-
complete symmetric monoidal co-categories O1, O and a symmetric monoidal functor O —
05 commuting with sifted colimits, we have a commutative square

5
Alg]EM (01) i) 01

L

Alg]EM (Og) ﬂ) 02

Remark 1.1.11. We shall endow the oo-category Algg,, (O) with the symmetric monoidal
structure defined by pointwise tensor product (cf. [Lurl7, Example 3.2.4.4]).

Suppose that O is sifted-complete. Then the functor of factorization homology (1.3) is
symmetric monoidal by [Lurl7, Theorem 5.5.3.2].

1.1.12. Let O be a sifted-complete symmetric monoidal oco-category. We shall prove that
(1.3) commutes with the relative tensor product.

Namely, given an associative algebra A in Algg  (O) and right (respectively, left) A-
module By (respectively, Bs), we may form the relative tensor product as geometric real-
ization of the Bar complex (¢f. [Lurl7, Definition 4.4.2.10])

B1 ®4 By :=colimBar4(B1,Bs)..

Lemma 1.1.13. There is a natural isomorphism

[ BroaBss [ Bioy [ B (1.9)

Proof. Since (1.3) is symmetric monoidal (¢f. Remark 1.1.11), it suffices to show that (1.3)
commutes with sifted colimits. By construction, it suffices to show that the functor of
pre-composition with (1.4)

Algg,, (0) - Fun(Disk,,/\, O)

commutes with sifted colimits.
Since colimits in Fun(Disk,,/\r, O) are formed pointwise, this assertion follows from [Lurl7,
Proposition 3.2.3.1]. O

1.1.14. Finally, we recall the computation of factorization homology of (families of) com-
mutative algebras.

Let O be a symmetric monoidal co-category. Write CAlg(O) for the oo-category of com-
mutative algebras in O. The pointwise tensor structure on CAlg(O) coincides with the
co-Cartesian symmetric monoidal structure (cf. [Lurl?7, Proposition 3.2.4.7]).

Since the underlying co-category of EY; is identified with SingM (c¢f. Remark 1.1.3), we
have a canonical equivalence of co-categories (cf. [Lurl7, Proposition 2.4.3.9])

Fun(Sing M, CAlg(0)) =~ Algg,, (CAlg(0)). (1.10)
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Given a functor A : Sing M — CAlg(0), we shall denote its image under (1.10) by Ap.

Lemma 1.1.15. Suppose that O is cocomplete. Given a functor A : SingM — CAlg(0),
there is a canonical isomorphism in CAlg(O):

f Ant = colim A. (1.11)
M
Proof. This is a reformulation of (the proof of) [Lurl7, Theorem 5.5.3.8]. O

1.2. Nonabelian Poincaré duality.

1.2.1. Denote by Spc the co-category of co-groupoids, endowed with the Cartesian symmet-
ric monoidal structure. Denote by Spc, the oo-category of pointed co-groupoids.

By unstraightening, each functor X : Sing M — Spc, may be regarded as a Kan fibration
over Sing M, endowed with a neutral section. For any co-groupoid Y over Sing M, we write
['(Y,X) for the pointed space Maps, ging (Y, X).

Given a functor X : SingM — Spc, and an open subset U ¢ M, we have the co-groupoid
of compactly supported sections of X over U:

Fc(Ua :X:) = CI(glcltlInF(Slnng x) XD (Sing MAK,X) % (112)
where the colimit is taken over the poset of compact subsets K of U. The expression (1.12)
depends (covariantly) functorially on U and on X.
1.2.2. By [Lurl7, Definition 5.5.6.2, Remark 5.5.6.3], there is a functor of co-categories
O - Fun(Sing M, Spc, ) — Algg,, (Spc) (1.13)

extending (1.12) in the following sense: Given any x € SingM, corresponding to an object
U — M of the underlying oo-category of E§; (cf. Remark 1.1.3), the functor ev, of taking
fiber at  (¢f. §1.1.6) renders the diagram below commute:

Fun(Sing M, Spc,) LN Algg . (Spc)
m lev@n
Spc

Lemma 1.2.3. The functor (1.13) commutes with finite limits.
Proof. The functors ev, preserve limits and are jointly conservative when taken over all
x € Sing M. Therefore, it suffices to prove that each functor
I'.(U,-) : Fun(Sing M, Spc, ) - Spc
preserves finite limits.

This holds because filtered colimits and finite limits commute in Spc. O

Remark 1.2.4. It follows from Lemma 1.2.3 that the functor (1.13) is symmetric monoidal
with respect to the Cartesian symmetric monoidal structures.
In particular, it induces a functor

O : Fun(Sing M, CAlg(Spc)) — CAlg(Algg,, (Spc)). (1.14)

The target of (1.14) is equivalent to Algg  (CAlg(Spc)), as both co-categories consist of
algebra objects over the tensor product co-operad (cf. [Lurl7, Proposition 2.2.5.6]).
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1.2.5. Next, we shall recall the statement of nonabelian Poincaré duality, due to Salvatore,
Segal, and Lurie (¢f. [Sal01, Segl10, Lurl7]).

Proposition 1.2.6 (Nonabelian Poincaré duality). Let X : SingM — Spc, be a functor
valued in n-connective co-groupoids. Then there is a canonical isomorphism

fMQM(DC) ~ T (M, X). (1.15)
Proof. This is [Lurl7, Theorem 5.5.6.6]. O

1.2.7 Local trace map. In the remainder of this subsection, we will explain how (1.15)
interacts with the trace maps in abelian Poincaré duality, when an orientation is provided.
For a more complete treatment, see [AF20, §4].

Denote by Z-mod the stable co-category of HZ-module spectra. Forgetting the HZ-action
and applying connective truncation, we obtain a functor

Z-mod — CAlg(Spc). (1.16)

Let A : SingM — Z-mod be a functor. Applying (1.14) and (1.10) to the composition of
A with (1.16), we obtain Ey-algebras Qp(A), respectively Ay in CAlg(Spc). When M is
equipped with a (Z-)orientation, they are related as follows:

79 Opp(A) = (2" A, (1.17)
We shall refer to (1.17) as the local trace map.

1.2.8 Construction of (1.17). We shall use a linear version of the functor (1.13) (¢f. the
proof of [Lurl?, Proposition 5.5.6.16]).
Namely, for any stable co-category O admitting limits and colimits, there is a functor

O - Fun(Sing M, 0) - Algg,, (0), (1.18)

where O is endowed with the Cartesian symmetric monoidal structure. For O := Z-mod, the
same-named functors (1.18) and (1.14) are related by the commutative square

Fun(Sing M, Z-mod) —21 Algg,, (Z-mod)

l(l'm) l(ua)

Fun(Sing M, CAlg(Spc)) % Alg; (CAlg(Spc))

Since the symmetric monoidal structure on O is also co-Cartesian, (1.18) may be viewed
as an endofunctor of Fun(SingM, O) (¢f. [Lurl?, Proposition 2.4.3.9]). It remains to identify
(1.18) with [-n] for O := Z-mod, given an orientation of M.

The desired identification is obtained from the natural isomorphisms

I'.(U,A)~T.(U,Z[n]) ® A [-n]
~Z®Ay[-n] = A.[-n]
for any z € Sing M, with corresponding object U — M in BTop(n),\ (¢f. Remark 1.1.3). Here,

the identification T'.(U,Z[n]) ~ Z is provided by the orientation of M, which is evidently
functorial in U - M.
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1.2.9. In the context of §1.2.7, we may apply factorization homology (1.3) to the local trace

loc

map (1.17). This yields the integrated local trace map [y, 73;°.
Suppose that A is n-connective as a Spc,-valued functor. Then we may apply Lemma
1.1.15 and Proposition 1.2.6 to obtain a commutative diagram in CAlg(Spc):

fMTII\OC n
jMQM(‘A') > fM(Q A)M
l(us) l(l.ll) (1.19)
r.(M,A) —— colimQ"A

where all arrows are isomorphisms. Here, the fact that (1.15) lifts to an isomorphism in
CAlg(Spc) comes from the commutation of [; Qm(+) and I'c(M,-) with finite products, by
Lemma 1.2.3 and the commutation of sifted colimits with finite products in Spc.

1.2.10 Global trace map. Consider the constant functor A with values in A[k] € Z-mod, for
an abelian group A and an integer k > n. In this case, we have a map in CAlg(Spc):
colim Q"(B*A) ~ colimB* A — B* A, (1.20)
We define the global trace map to be the composition of the lower horizontal isomorphism
in (1.19) with (1.20):
8P (M, BFA) - BF A, (1.21)
From the commutative square (1.19), we deduce the following compatibility between the
local and global trace maps:

T]oc
S O (B 4) 2L (BE A
l(1~15) l(l.QO)o(l.ll) (1.22)

glob

T.(M,BFA) — 2L BF A
1.3. Coefficients.

1.3.1. Denote by Pr" the oo-category of presentable co-categories with colimit-preserving
functors. It admits a symmetric monoidal structure given by the Lurie tensor product.

Denote by Vect the co-category of HC-module spectra, viewed as a commutative algebra
object in Pr™. Its module objects in Pr are called DG categories:

DGCat := Vect-mod(Pr").

Being a module co-category, DGCat inherits a symmetric monoidal structure given by the
tensor product relative to Vect.

1.3.2. Given an oo-groupoid Y, we define the oo-category of C-local systems over Y to be
the limit of the constant diagram

LS(Y) = lim Vect.

The assignment Y ~ LS(Y) organizes into a functor
Spc? — DGCat. (1.23)
We denote the image of a morphism f:Y; - Y, under (1.23) by fT:LS(Y3) » LS(Y}).

In fact, the functor (1.23) is right adjoint to the functor DGCat — Spc® sending € to
Mapspecat (€, Vect). This implies that (1.23) preserves limits.
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Remark 1.3.3. For each M € Mfd,,, we may consider the DG category Shv oy (M) of sheaves
of C-vector spaces over M whose cohomology sheaves are locally constant. Then there is a
canonical equivalence of DG categories

Shvioy (M) =~ LS(Sing M),
according to [GKRV22, Lemma A.4.2].

1.3.4. By [GKRV22, §1.4], the DG category LS(Y) is also covariantly functorial in Y € Spc.
More precisely, for each morphism f:Y; - Y, in Spc, the functor fT admits a left adjoint
f+. Thus, we obtain a functor

Spc — DGCat (1.24)

by passing to left adjoints in (1.23).

Moreover, the canonical self-duality of Vect induces a canonical self-duality of LS(Y') for
each Y € Spc. Under this self-duality, f; is identified with the dual of f t for every morphism
f in Spc. Thus, (1.24) may also be obtained from (1.23) by passing to duals and applying
the canonical self-duality.

Lemma 1.3.5. The functor (1.24) commutes with colimits.

Proof. Given a diagram I — Spc, ¢ — Y, the DG category colim; LS(Y;) is dualiz-
able (¢f. [GKRV22, Lemma 1.4.8(d)]). Moreover, its dual is canonically identified with
lim;er LS(Y;), with transition functors given by pullbacks.

The latter is identified wtih LS(colim;e Y;) since (1.23) commutes with limits. O

1.3.6. Note that (1.23) admits a lax symmetric monoidal structure given by the external
tensor product construction.
For Y1, Y5 € Spc, the lax symmetric monoidal structure supplies a functor

LS(Yl) ® LS(YQ) - LS(Y1 X YQ), Al,.AQ ~ A ®As. (125)
Lemma 1.3.7. The functor (1.23) (hence (1.24)) is symmetric monoidal.

Proof. 1t suffices to prove that (1.25) is an equivalence.
Under the canonical identifications

LS(Y1 x Ys) = LS(lim Y1) = im LS(Y),

the functor (1.25) corresponds to [GKRV22, (1.17)] for €:=LS(Y;) and Y := Y. Thus the
result follows from [GKRV22, Proposition 1.4.10]. O

1.3.8 Tautological character. Finally, we shall define a categorical analogue of the tautolog-
ical character local system on the classifying space of C*.

Let us view C* as a discrete abelian group and its deloop BC* as a commutative algebra
in Spc. Since (1.23) is symmetric monoidal (¢f. Lemma 1.3.7), the tautological character
local system on BC* may be viewed as a morphism Vect - LS(BC*) of cocommutative
coalgebras in DGCat.

Dualizing, we obtain a morphism in CAlg(DGCat):

x : LS(BC™) — Vect, (1.26)

which we call the (categorical) tautological character.
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2. LOCAL CONSTRUCTIONS

In this section, we define the “quantum torus”, or rather its category of representations
Repq(T) as an Ey-algebra in DGCat, for an oriented 2-manifold M (cf. §2.2). The definition
is simple, but not quite explicit. In §2.3-2.4, we make Repq(T) more explicit by showing
that it is the derived oco-category of its heart Repq(T)v, which may be viewed as a twisted
family of braided monoidal categories over M, and computing its local invariants.

The material of §2.3 and §2.4 will not be used later, so the reader only is only interested
in the factorization homology of Repq(T) may safely skip them.

2.1. Betti levels.

2.1.1. Given a C-scheme Y of finite type, we write Y'°P for the topological space underlying
the analytification of Y and Sing Y*°P for its homotopy type (cf. §1.1.1).
The association Y ~ Sing Y*P determines a functor

Sing(-)*P : Schg, - Spc, (2.1)
where Schg denotes the category of C-schemes of finite type.

Remark 2.1.2. The functor (2.1) does not commute with finite limits. More precisely,
the functor Y ~ YP from Schy, to the category of topological spaces commutes with finite
limits (¢f. [GR03, Exposé XII, §1.2]), but the functor Sing does not.

However, given morphisms Y; = Y < Y5 in Schg where Y1 = Y induces a Serre fibration
(Y1)*P — Y'™P_ then the natural map in Spc is an isomorphism:

Sll’lg(Yl Xy Yg)tOp o Sing(Yl)tOp XSing Ytop Sing(Yg)tOp.

2.1.3. Let X be a smooth C-curve and G be a reductive group X-scheme. We shall define
the co-groupoid Level(G) of “Betti levels” of G in this context.

Since G'P — X'°P ig a Serre fibration, Sing G'°P — Sing X'°P inherits a group structure
from G (cf. Remark 2.1.2). We view B Sing G*P as an co-groupoid over Sing X*P, equipped
with a neutral section Sing X*°P — B Sing G*P.

Define the co-groupoid Level(G) of Betti levels of G to be:

Level(G) := Mapsg;,q xter/ (B Sing Gior BiCX), (2.2)
where B*C* is viewed as an oco-groupoid under Sing X'*°P via the neutral point.

Remark 2.1.4. Denote by K(G®*P, 1) the classifying space of G*P relative to X*P.
The definition of Level(G) renders it a “categorification” of the reduced cohomology
group HE(K(G'*P 1),C*). Namely, for each n > 0, we have

m,Level(G) ~ HI ™ (K(G™P,1),C).

This definition of Level(G) is inspired by the analogous notions in the étale and de Rham
cohomological contexts (cf. [GL18], [Zha22]).

To our knowledge, the first authors to suggest that H?(K(G%P, 1), C*) plays the role of
levels for quantum groups are Dijkgraaf and Witten (cf. [DW90]).

2.1.5. Let us now specialize to the case where G = T is an X-torus. Denote by A the smooth
X-scheme representing the sheaf of cocharacters of T.
There is a short exact sequence of topological groups relative to X'P:

exp

0 — A™P - Lie(T)"*P — T*P - 1, (2.3)
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where Lie(T) denotes the Lie algebra of T and exp the exponential map. The short exact
sequence (2.3) identifies Sing T*P with B Sing A*°P. In particular, we obtain

Level(T) = Mapsg;,,, me/(B2 Sing AP B*C*). (2.4)
Remark 2.1.6. The locally constant sheaf of abelian groups A'°P corresponds to a functor
Sing X*°P - Z-mod. (2.5)

To each x € Sing X*P, (2.5) assigns a finite free Z-module, which we view as the fiber of A
at z. (This holds literally when z is defined by a C-point of X.)

Note that the double deloop of (2.5) classifies B2 Sing AP in the following sense: Its
composition with the forgetful functor Z-mod — Spc corresponds to B? Sing A*P under
unstraightening. In particular, Level(T) is equivalent to the mapping space from the double
deloop of (2.5) to B*C* in the oo-category Fun(Sing X*°P, Spc, ).

2.1.7 Topological context. In view of Remark 2.1.6, we find it convenient to change our
context from algebra to topology.
Namely, we shall fix an oriented 2-manifold M and a functor A : Sing M - Z-mod valued
in finite free Z-modules. By a “Betti level”, we shall mean a morphism
q:B%*A > B'C*

in the oo-category Fun(Sing M, Spc,).
Applications to the algebraic context (cf. §2.1.3) will be obtained by setting M := X'°P,
A := the functor (2.5), and ¢ a Betti level in the sense of §2.1.3.

2.1.8 Digression: cohomology of B’T'. Let I' be a finite free Z-module.
Write Maps*(BgI‘, B4CX) for the mapping space in Spc, and MapsZ(BzI‘, B4CX) for the
mapping space in Z-mod. Write Quad(I", C*) for the abelian group

Quad(I, C*) := Sym?(I") ®z C*.

Its elements can be viewed as C*-valued quadratic forms on I': Given c¢®( € (I')®?®z C*, we
obtain a quadratic form T' - C* by the expression v - ¢(*7) and this expression depends
only on the symmetrization of c.

The oo-groupoid Maps*(B2F, B4CX) has nontrivial homotopy groups in degrees 0 and 2.
Its postnikov tower may be identified explicitly as follows:

B2my Maps, (BT, B*C*) — Maps, (B*I',B*C*) — 1o Maps, (B°T,B*C*)
l: lz l: (2.6)
Mapsy (BT, B*C*) — Maps, (BT, B*C*) —2— Quad(L', C*)
where « coincides with the map induced by the forgetful functor Z-mod — Spc, .

Remark 2.1.9. The map f in (2.6) admits a splitting over the abelian group of C*-valued
bilinear forms on I:

(182 @7 C*
lC®<"’('V"’<C(%7)) (2.7)

L
Maps, (BT, B*C*) 2 Quad(T', C¥)
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Namely, there is a canonical Z-linear map given by cup product
I'®% - Maps, (B’I',B*Z), y® 2z~ (B%))u(B*2),
which defines the dotted arrow in (2.7) by tensoring with C*.
2.1.10 Quadratic form. In the context of §2.1.7, the fiber sequence (2.6) gives rise to fiber
sequences functorial in = € Sing M:
Mapsy (B?A,, B*C*) » Maps, (B*A,,B*C*) - Quad(A,, C*),

where A, denote the image of z under A.

Taking limit over Sing M, we obtain a fiber sequence

Mapsy (B?A,B*C*) - Maps, (B*A,B*C*) - Quad(A, C*) (2.8)

where the first term denotes the mapping space in Fun(Sing M, Z-mod), the second term
the mapping space in Fun(SingM, Spc, ), and Quad(A, C*) consists of locally constant C*-
valued quadratic form on A.

In particular, every Betti level ¢ induces a locally constant C*-valued quadratic form Q
on A via the second map of (2.8). We call Q the associated quadratic form of q. The fiber
sequence (2.8) shows that Q is the obstruction of ¢ to be Z-linear.

2.1.11 Symmetric form. To each C*-valued quadratic form Q on a finite free Z-module T,
we may associate the symmetric bilinear form

b:T®L - C*, 71,72~ Qi +72)Q(11) ™ Q(r2) ™

The symmetric form b vanishes if and only if Q is linear. When this happens, Q must take
values in {+1}.
Thus, every Betti level ¢ of T also has an associated symmetric form b: A® A - C*. We
shall see that b is the obstruction of ¢ to be commutative, i.e. Eo-monoidal.
Indeed, write MapsEm(BQA7 B*C*) for the mapping space in Fun(Sing M, CAlg(Spc)).
The forgetful functor defines a map of co-groupoids
Mapsg_ (B®A,B*C*) - Maps, (B°A,B*C*) (2.9)

Lemma 2.1.12. (1) The map (2.9) is fully faithful;
(2) The essential image of (2.9) consists precisely of Betti levels ¢ whose symmetric
forms b vanish.

Proof. This is [GL18, Remark 4.6.7]. O
2.2. The Ey-category Repq(T).
2.2.1. We remain in the context of §2.1.7 and fix a Betti level

q:B°A > B'C™. (2.10)

In this subsection, we construct the quantum torus as an Ey-algebra (cf. §1.1.6) in the
symmetric monoidal co-category DGCat (cf. §1.3.1):

Rep, (T) € Algg,, (DGCat). (2.11)

2.2.2. We first recall a special case of a construction in 1.1.14: The equivalence (1.10), when
restricted to constant functors, yields a functor

(-)m : CAlg(0) — CAlg(Algg,, (0)) (2.12)



THE QUANTUM TORUS AS AN Eyn-CATEGORY 13

for any symmetric monoidal co-category O. (We identified the target with Algg (CAlg(0)),
¢f. Remark 1.2.4.)

The functor (2.12) is easy to describe: It is the composition of the canonical equivalence
CAlg(0) ~ CAlg(CAIg(0)) (c¢f. [Lurl7, Example 3.2.4.5]) with the forgetful functor.

2.2.3 Construction of (2.11). Denote by H, the fiber of (2.10), viewed as a functor Sing M —
Spc, equipped with an action of B*C* e CAlg(Spc).
Applying the functor (1.13), we obtain

H< = Qi (H,) € Algg,, (Spe)
equipped with an action of the commutative algebra (cf. Remark 1.2.4)
Qum(B*C*) e CAlg(Algg,, (Spc)).

We shall identify Qy(B*C*) with (BC*)y via the local trace map (1.17). (This identi-
fication depends on the orientation of M.)
On the other hand, the tautological character (1.26) induces a morphism

XM

LS((BC*)a1) = LS((BC*))ar 25 Vecty (2.13)

in CAlg(Algg,, (DGCat)), where the isomorphism uses the symmetric monoidal structure on
LS (¢f. Lemma 1.3.7) and the second map uses functoriality of (2.12).
We define the Ey-algebra in DGCat:

Repq(T) = LS(U‘(}IOC) ®LS((BC*)m) Vecty (214)

M

where LS(J—C}ZOC) is acted on by LS((BC*)y\) via the (BC*)y-action on 9—(}103, and Vecty is
acted on by LS((BC*)yp) via the tautological character (2.13).

Remark 2.2.4. Suppose that ¢ is trivial. Then we have J(, ~ B3C* x B®A. In particular,
H, lifts to a functor SingM — CAlg(Spc). Applying Oy and using the local trace map
(1.17), we obtain an identification

H = (BC)n x At

This shows that Repq(T) is identified with LS(A)w, ¢.e. the Ey-algebra associated to the
functor LS(A) : Sing M — CAlg(DGCat) under (1.10). The latter corresponds to the locally
constant sheaf Rep(T) of representations of the torus T with sheaf of characters A.

Remark 2.2.5. The formula (2.14) expresses Repq(’f) as the geometric realization of the
Bar complex associated to the LS((BC* )y )-modules LS(J—C;‘)C) and Vecty.

By passing to right adjoints, we may also realize Repq(T) as the totalization of the co-Bar
complex associated to the LS((BC*)n)-comodules LS(G{};’C) and Vecty, defined using the
pullback functoriality (1.23) of local systems:

Repq(T) ~ colimBarLS((BCx)M)(LS(fH}IOC),VectM)
~ limcoBarLS((ch)M)(LS(J{}IOC),VectM). (2.15)

2.2.6 Fibers of Repq(T). The limit presentation (2.15) gives a concrete description of the
fiber of Repq(T) at any x € Sing M.
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Indeed, the fiber of J{}IOC at x is a C*-gerbe over the set A, :
j_(lOC
ax

[ee

Ay

The expression (2.15) identifies Repq(T)$ as the DG category of local systems on J'C};f; which
are BC*-equivariant against the tautological character local system.
In particular, Repq(T)z admits a A,-grading determined by the support:

Repq(T)x ~ P Repq(T)i,
€A,

where each summand Repq(T)i‘ is non-canonically equivalent to Vect.

Remark 2.2.7. Denote by b the symmetric form associated to ¢ (¢f. §2.1.11).

When b vanishes, ¢ lifts to a morphism in Fun(Sing M, CAlg(Spc)) (¢f. Lemma 2.1.12).
This equips J—C}IOC with the structure of a commutative algebra in Algg, (Spc), so Repq(T)
also lifts to a commutative algebra in Algg (DGCat).

In §2.4, we shall establish a converse to this assertion: When b is nonvanishing at a point
x € Sing M, the fiber Repq(T)x does not lift to a commutative algebra.

2.3. t-structure.

2.3.1. We remain in the context of §2.1.7.

In this subsection, we shall explain in what sense Repq(T) is the derived category of its
heart compatibly with the Eyr-algebra structure.

Denote by Vect=® c Vect the full subcategory of connective objects. Denote by Vect” the
heart of VectSO, i.e. the abelian category of C-vector spaces.

2.3.2. The co-categories Vect=® and Vect? inherit symmetric monoidal structures from Vect,
so we may view them as objects of CAIg(PrL).
Consider the morphisms in CAlg(Pr"):

Vect” « Vect*” — Vect.
They induce symmetric monoidal functors
Vect*’-mod(Pr") — Vect®-mod(Pr"), €~ € ®yeceo Vect?, (2.16)
Vect**-mod(Pr") - DGCat, €+ € ®y =0 Vect. (2.17)

Remark 2.3.3. Since Vect? is identified with Vect*” ® Set, the functor (2.16) coincides with
the functor of taking discrete objects (c¢f. [Lurl7, Example 4.8.1.22]).

Since Vect is identified with Vect* ® Sptr, the functor (2.17) coincides with the functor
of taking spectrum objects (¢f. [Lurl7, Example 4.8.1.23]).

2.3.4. Given Y € Spc, the DG category LS(Y) carries a t-structure, with connective and
coconnective parts defined by

LS(Y)<0 := lim Vect*?, LS(Y)*":= lim Vect™®,
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Note that fis t-exact. In particular, its left adjoint fi is right ¢-exact. This implies that
the functor (1.24) restricts to a functor

Spc - Vect*"-mod(Pr"), Y ~ LS(Y)<. (2.18)

Furthermore, (2.18) inherits a symmetric monoidal structure from (1.24) (¢f. Lemma
2.18) and we recover (1.24) as the composition of (2.18) with the functor of taking spectrum
objects (2.17).

2.3.5 The heart of Repq(T). The construction of Repq(T) (cf. §2.2.3) may thus be repeated
with (2.18) instead of (1.24). This yields an Ey-algebra in Vect*'-mod(Pr™)
Repq(T)SO = LS(%}IOC)SO ®LS((BCX)p)=<0 (VeCtSO)M

together with an isomorphism of Eyr-algebras in DGCat:

Rep,(T) ~ Rep, (T)=0 ®yeq=0 Vect. (2.19)
Likewise, we may form the symmetric monoidal functor
Spc — Vect®-mod(Pr"), Y = LS(Y)? (2.20)

by composing (2.18) with the functor of taking discrete objects (2.16). The construction of
§2.2.3 then yields an Ey-algebra in Vect®-mod(Pr")

];{epq(rf)Qy = LS(:H:LOC)W ®LS((BC*)p)? (VeCtO)M7
together with an isomorphism of such:
Rep,(T)? ~ Rep, (T)=° ®yeerso Vect®.

Remark 2.3.6. The observation of Remark 2.2.5 also applies to Repq(T)SO and Repq(T)q’.
Namely, by passing to right adjoints, we obtain equivalences

Repq(T)SO = lim coBarp,g((gcx )y )=o (LS((H}]OC)SO7 (Vect**)n), (2.21)
Rep, (T)? ~ lim coBarLS((ch)M)o(LS(J—C;OC)U, (Vect?)n). (2.22)
As in §2.2.6, the expression (2.22) allows us to identify the fiber Repq(T)z at x € SingM

loc

as the abelian category of local systems on H7

tautological character local system.

2.3.7. Next, we shall show that Repq(T)SO (hence Repq(T), by (2.19)) is completely deter-
mined by Repq("_v[‘)Qy as an Ey-algebra. This requires some formalism of derived co-categories
established by Lurie (¢f. [Lurl8, Appendix C])

Denote by Groth®” the 1-full subcategory of Pr™ whose ob jects are separated Grothendieck
prestable co-categories and whose morphisms are exact functors.?

Denote by Grothy the 1-full subcategory of Pr® whose objects are Grothendieck abelian
categories and whose morphisms are exact functors. (By definition, morphisms in Groth%:P
and Grothg commute with colimits.)

By [Lurl8, Theorem C.5.4.9], the functor of taking discrete object

()7 : Groth¥? — Grothg (2.23)

admits a left adjoint, whose value at A € Grothy is identified with the connective part of the
derived oco-category D(A)=° (cf. [Lurl8, Proposition C.5.3.2, Proposition C.5.4.5]).

which are BC*-equivariant against the

3In op.cit., this co-category is denoted by GrothlSSeP,
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2.3.8. By [Lurl8, Theorem C.5.4.16], Grothg inherits a symmetric monoidal structure from
Pr’. We endow Groth®? with the symmetric monoidal structure given by the separated
Lurie tensor product (cf. [Lurl8, Corollary C.4.6.2]).*
Consider Vect<’ (respectively Vect”) as a commutative algebra in Groth®P (respectively,
Grothg). Since (2.23) is symmetric monoidal, it lifts to a functor
(-)? : Vect*"-mod(GrothP) — Vect®-mod(Grothy). (2.24)
Since (2.23) admits a left adjoint, so does (2.24).

2.3.9. Since LS(Y) is left complete (in particular, left separated) for any Y € Spc and the
pullback functor f7:LS(Y3) - LS(Y1), for any morphism f:Y; - Y, in Spc, is t-exact,
the functor (1.23) induces functors

Spc® — Vect="-mod(GrothiP), Y = LS(Y)<°
Spc®® — Vect”-mod(Grothg), Y = LS(Y)?

The expressions (2.21), (2.22) define Repq(T)SO7 respectively Repq(T)° as Ey-algebras
in Vect**-mod(Groth®), respectively Vect’-mod(Grothy).

2.3.10. Denote by L the left adjoint of (2.24). Being the left adjoint of a symmetric monoidal
functor, L is oplaz symmetric monoidal.

We do not know if L is symmetric monoidal in general. Thus, we do not know if the
image L(A) of an Eyp-algebra A in Vect”-mod(Grothg) automatically carries an Ey-algebra
structure. This does happen, however, if the leftward arrow in the correspondence

@L(A(Ui)) - L(@A(Ui)) = L(A(U))

associated to any active morphism {U;}ier — U of E§ is an isomorphism.

In particular, if A is fiberwise semisimple, i.e. A, is semisimple for every x € Sing M, then
L(A) carries a natural Ey-algebra structure.

Since Rep, (T)? is fiberwise semisimple (cf. §2.2.6), we obtain

L(Repq(T)O) € Algg, (Vect*’-mod(GrothS°P)).
Lemma 2.3.11. There is a natural isomorphism in Algg, (Vect**-mod(Groth5P)):
L(Repq(T)v) o Repq(T)SO. (2.25)

Proof. The morphism in one direction is defined by the counit of the adjunction between L
and (2.24).

The fact that it is an equivalence may be checked fiberwise, where it follows immediately
from the description of §2.2.6. O

Remark 2.3.12. Informally, Lemma 2.3.11 and (2.19) express the fact that Repq(T) is the
derived co-category of Repq(T)” “compatibly with the Ep;-algebra structures.”

Namely, for each z € SingM, the DG category Rep,(T). is equivalent to the derived
oco-category D(Repq(T)g), and the Ey-algebra structure on Repq(T) is determined by the
Enr-algebra structure on Repq(T)O.

4Tor both assertions, we invoked the fact that exactness of functors in Prl s preserved by tensor product
(¢f. [Lurl8, Proposition C.4.4.1]).
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2.4. The ribbon structure.

2.4.1. We remain in the context of §2.1.7.

The goal of this subsection is to provide interpretations of the discrete invariants Q and
bof g (c¢f. §2.1.10, §2.1.11) in terms of the Ey-algebra Repq(T)” (cf. §2.3.5).

Informally, Repq(T)v may be viewed as a family of “twisted” braided monoidal categories
parametrized by M. Our results say that b controls the square of the commutativity con-
straint on Repq(T)o, while Q controls an additional ribbon structure (c¢f. Proposition 2.4.4,
Proposition 2.4.9).

2.4.2. Given an object T € BTop(2), we define the T-twisted Es-operad to be
E?j = BTOp(2)® XBTop(2)V *u7

using the map *" - BTop(2)" induced from 7.

Any neutralization of 7, i.e. isomorphism with the neutral point of BTop(2), induces an
isomorphism between E® and the operad E$ (c¢f. [Lurl7, Example 5.4.2.15]).

Given z € Sing M, the map x : * - Sing M induces a morphism of co-operads

E® - Eg, (2.26)

where 7, denotes the image of z under the map 7y : SingM — BTop(2) classifying the
tangent microbundle of M (¢f. Remark 1.1.3).

In particular, given any symmetric monoidal co-category O and A € Algg (0), restriction
along (2.26) defines A, € Algg_ (0), whose underlying object of O is the fiber of A at .

2.4.3. Recall that Eq-algebras in the co-category Catg of (1-)categories are precisely braided
monoidal categories (cf. [Lurl7, Example 5.1.2.4]).

Thus, given any x € SingM and a neutralization of 7., the fiber Repq(T)z admits the
structure of a braided monoidal category.

Given two objects VA1, VA2 of Repq(T)z with gradings A1, A2 € A, (¢f. §2.2.6), the square
of the commutativity constraint

VM @ VA2 2 VA2 g VA & VA g VA2 (2.27)
is an automorphism of VM @ VA2,
Proposition 2.4.4. The automorphism (2.27) equals multiplication by b(A1, A2).

2.4.5. We shall prove Proposition 2.4.4 along with an assertion describing a “twisted” ribbon
structure on Repq(T)g in terms of the quadratic form Q.

We fix a smooth structure on M. This allows us to reduce the tangent microbundle of M
to its tangent bundle, classified by a map 7y : SingM — BGLj, where GL3 is the group of
orientation-preserving automorphisms of R2.

Consider the oo-operad (¢f. [Lurl7, Example 5.4.2.16])

]ESGL; i= BTop(2)® xgrop(2ys (BGL3)".
For any x € SingM, the map 7, : * - BGLJ induces a morphism of co-operads
EP — ESGL; (2.28)

We shall lift the E, -algebra Repq(T)w to an Epqy:-algebra along (2.28).
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Remark 2.4.6. Denote by T, the oriented 2-dimensional vector space classified by 7, €
BGL;. Then its orientation-preserving automorphisms form a topological group GL*(T,)
and we have a canonical isomorphism of co-groupoids over BTop(2):

7./GL*(T,) ~ BGLS.
Given a symmetric monoidal co-category O, we write Algy (0)GE"(T2) for the oo-category

of GL* (T, )-invariants of Algg_(0). Since E2 defines a family of co-operads over BGL™(T,,)
with assembly is E® (¢f. [Lurl7, Remark 5.4.2.13]), we obtain

BGL}
(0).

2.4.7 Construction of the Eggr; -algebra structure. Applying the construction of the quan-

tum torus (cf. §2.2.3) with T, instead of M and the constant Betti level g, : B%A, — BiC*
instead of ¢, we obtain

Algg () (1) = Algg

+
BGL2

Rep,, (T) € Algg, (DGCat) (2.29)

which recovers Repq(T)m under the canonical isomorphism E?Z ~ Eﬁ‘fiz of oo-operads.
To lift Rep,(T). to Algg__ . (DGCat), it thus suffices to endow Rep, (T) with a GL*(T,)-
2

equivariance structure (c¢f. Remark 2.4.6).
Consider the commutative diagram of Er_-algebras in Spc:

QTz(BQAw) — (Aw)Tz
lsm(qx) l (2.30)
Qr, (B'C*) = (B°C*)r,
where the horizontal isomorphisms are given by the local trace maps (cf. §1.2.7). By con-
struction, it suffices to endow the right vertical map in (2.30) with a GL* (T, )-equivariance
structure, with respect to the natural GL*(T, )-equivariance on (A, )r, and (B2C*)r, .
Note that the left vertical arrow of (2.30) admits an GL*(T,)-equivariance structure by

functoriality with respect to T,. The desired structure follows because the local trace map
(1.17) for T, is naturally GL (T, )-equivariant.

2.4.8. We return to the context of §2.4.5.
Since the underlying oo-category of Eggr; is BGL3, the Eggr;-algebra structure on

Repq(T)m yields a functor
BGL; — DGCat, (2.31)

sending the point 7, (not the neutral point!) to Repq(T)z.

Let us identify BGL; with B2Z as objects of Spc,. This identification is determined by
the homotopy equivalences

BZ ~S' ~SO(2) ~ GL}.

Once a neutralization of 7,, € BGLj is chosen, the generator 1 € Z defines an automorphism
0 of the identity endofunctor on Repq(T)w under (2.31). Given V> € Repq(T)z with grading
A€ A, the automorphism 6 specializes to an automorphism

Oyr : VA = V2, (2.32)
Proposition 2.4.9. The automorphism (2.32) equals multiplication by Q(N\).
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2.4.10. Before we prove Proposition 2.4.9, we relate the local trace map (cf. §1.2.7) for R?
to the SO(2)-action. Namely, consider the (inverse of the) local trace map

Z~T.(R? B%Z), 1~ [R?]. (2.33)
Writing B, ¢ R? for the closed disk of radius r € R, centered at the origin, we may

express I'.(R?,B?Z) as the fiber of the map
I'(R? B*Z) - colimT'(R? \ B,,, B*Z). (2.34)

The inclusion R?\ B, ¢ R? is SO(2)-equivariant. Taking the quotient by SO(2) and passing
to homotopy types, it gives rise to the neutral map e : * -~ BSO(2). In particular, the fiber
of (2.34) is identified with the fiber of e* : Maps(BSO(2), B*Z) — B®Z via pullback:

Maps, (BSO(2),B*Z) ~T'.(R? B*Z). (2.35)
Under the isomorphism (2.35), the class [R?] corresponds to the canonical isomorphism
BSO(2) ~ B*Z in Spc, (cf. §2.4.8).
2.4.11. We now turn to the proof of Proposition 2.4.9.

Proof of Proposition 2.4.9. We identify T, with R? using the chosen neutralization of 7,.
The commutative square (2.30) specializes to a commutative square of co-groupoids en-
dowed with SO(2)-action:

I.(R%,B*A,) —— A,
lrc(RQ,qm) l (2.36)
I.(R? B*'C*) =5 B2C*
Here, the horizontal isomorphisms are the local trace maps. The group SO(2) acts on the
left column of (2.36) via its action on R? and acts trivially on the right column.

Let us express fya in terms of the SO(2)-equivariant morphism A, — B*C* in (2.36).
Indeed, evaluating the latter at A yields an SO(2)-invariant object of BZC*, i.e. an object
of the oo-groupoid

I'.(R? ¢.)()\) € Maps(BSO(2),B*C*) (2.37)
Under the identification BSO(2) ~ B*Z (cf. §2.4.8), the class of (2.37) is an element () €
C*. By construction, the automorphism 6y,» acts as multiplication by 6(\).
It remains to prove the following equality for each A\ € A,:

B(N\) = Q(N). (2.38)

First, we observe that both sides of (2.38) depend linearly on ¢: For 6(\), this holds
because (2.37) depends linearly on ¢, while for Q(\), this holds because (2.6) comes from a
fiber sequence in Z-mod. By Remark 2.1.9, we may assume that ¢ is of the form

q=(B%y)u (B%),

for characters y: A, - Z and z: A, — C*. The value Q()\) then equals z(A\)YP).
Let us determine (2.37) for this choice of ¢g. Indeed, as an SO(2)-invariant object of

I'.(R? B4CX), it is given by the cup product
(y(N) - [R*]) u (2(N) - [R?]). (2.39)
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We may view z(\) - [R?] as an SO(2)-invariant object of I'(R?,B*C*) (i.e. forgetting that
it is compactly supported) and consequently as an SO(2)-equivariant morphism

z(\)-[R?]:Z - B*C*. (2.40)

If we forget the SO(2)-equivariance structure on (2.40), then it is simply the HZ-linear
morphism z(\) : Z - B2C*. The SO(2)-equivariance structure, however, is determined by
[R?]: It says that the image of the generator 1 € Z is an SO(2)-invariant object of B*C*
whose class equals z(A) (cf. §2.4.10).

The cup product (2.39) is isomorphic to a Yoneda product, i.e. the image of the SO(2)-
invariant object y(\) - [R?] € T.(R?,B*Z) under the double deloop of (2.40). By naturality
of the local trace map (cf. §1.2.7), we have a commutative square

I.(R? B*Z) =+ Z
lz()\)-[Rz] lz(/\)-[RZ]
r.(R?,B*C*) 5 B*C*

Thus, (2.37) is isomorphic to the image of y(\) € Z under the SO(2)-equivariant morphism
(2.40). In particular, its class equals z(A)Y), as desired. O

2.4.12. Finally, we shall deduce Proposition 2.4.4 from Proposition 2.4.9 and standard facts
about braided monoidal categories.

Proof of Proposition 2.4.4. Choose a smooth structure on M and a neutralization of 7, as
a point of BGLJ.

The construction of §2.4.7 lifts the braided monoidal category Repq(T)Z lifts to an Eggrs-
algebra in Catg. The latter is precisely a ribbon structure on Repq(T)g, whose ribbon twist
is provided by the automorphism (2.32) (cf. [SWO1, §4]).

In particular, this implies that the automorphism (2.27) equals

-1 -1
6)V*l @VAiz2 © (QVM ® 9V*2 )

By Proposition 2.4.9, this is the multiplication by b(A1, \2), as desired. O

Remark 2.4.13. In the proof of Proposition 2.4.4, we used the term “ribbon” as in [SWO01,
Definition 4.9], referring only to additional structure of the twist.

Some authors call this structure “balanced” and reserve the term “ribbon” for rigid
balanced braided monoidal categories. The subcategory of compact objects in Repq(T)z is
indeed rigid, hence “ribbon” in the stronger sense.

3. GLOBAL CONSTRUCTIONS

In this section, we calculate the factorization homology of Repq(T) over an oriented 2-
manifold M (¢f. Theorem 3.1.3) and use it to prove a version of the quantum Betti geometric
Langlands conjecture for tori (¢f. Corollary 3.2.8).
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3.1. Calculation of f;Rep,(T).

3.1.1. Let M be an oriented 2-manifold. Let A : Sing M — Z-mod taking values in finite free
Z-modules and fix a morphism in Fun(Sing M, Spc, ):
q:B*A > B*C™. (3.1)
In this context, we have defined the Ey;-algebra Repq(T) in DGCat (¢f. §2.2.3). The goal
of this subsection is to compute the factorization homology of Repq(T) (cf. §1.1.9).
3.1.2. Applying the functor T'.(M,-) of compactly supported sections (cf. §1.2.1) to (3.1),
we obtain a morphism in Spc:
I.(M,q): T.(M,B?A) - I'.(M,B*C). (3.2)

Composing (3.2) with the global trace map 7'1%/[101) (¢f. §1.2.10, for A := C* and k :=4), we
obtain a morphism in Spc:
(M, B%A) - B2C* (3.3)
Denote by H&'°" the fiber of (3.3). Thus H&'°" is an co-groupoid equipped with a BC*-
action. In particular, LS(U—C%IOb) carries an action of LS(BC*), using the symmetric monoidal
structure on LS (¢f. Lemma 1.3.7). Viewing Vect as an LS(BC*)-module via the tautological
character y (1.26), we form

LS, (T'-(M,B?A)) = LS(H&°") ®15(pcx) Vect.
Theorem 3.1.3. There is a canonical equivalence in DGCat:

/M Rep, (T) = LS, (Te(M, B2A)).

Proof. Recall that Repq(T) is defined as the tensor product LS(J—C;OC) ®LS((BC*)n) Vectn,

where fH}IOC is defined as Qn(Hy) for Hy the fiber of (3.1) (cf. §2.2.3). Let us rewrite it as
the tensor product

Repq(T) =~ LS(QM(:}C(])) ®LS(QM(BSCX)) VECtM, (34)
where Vecty; is viewed as a LS(Qy(B*C*))-module via the composition
LS(Qn(B*C¥)) =~ LS((BC*)\) =5 Vectyy, (3.5)

where the isomorphism is LS(739¢) for the local trace map 719 (cf. §1.2.7).
Using the presentation (3.4), we compute:

A\ARepq(T) ~ ALS(QM(}Cq)) ®fM LS(QM(BSCX)) AVeCtM (Lemma 1113)
o~ LS(_/N[ QM(j’Cq)) ®LS(fM QI\/I(B?)C)()) Vect (Remark 1110)
~ LS(FC(M, j'(q)) ®LS(FC(M,B3CX)) Vect (PrOpOSitiOn 126)

Here, the identification f; Vecty = Vect follows from the symmetric monoidal structure on
Ju (cf. Remark 1.1.11).

Claim: The LS(T (M, BSCX))—module structure on Vect, appearing in the above expres-
sion, is induced from the morphism in CAlg(DGCat):

LS(I.(M,B3C*)) - LS(BC*) % Vect (3.6)

where the first morphism is LS(7°") for the global trace map 75°" (cf. §1.2.10).
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Indeed, assuming the claim, we obtain the desired isomorphism:
fM Rep,(T) = LS(Te(M, H,)) ®ps(r, (m.e°c)) LS(BC™) ®Ls(Bo) Vect
~ LS(HEP) ®1s(pex) Vect
~ LS,(Te(M,B*A)),

using the fact that f}{gl‘)b is the quotient of I'.(M, H,) x BC* by the anti-diagonal action of

(M, B*C*) and that LS commutes with colimits (cf. Lemma 1.3.5).

To prove the claim, it suffices to identify (3.6) with the factorization homology of (3.5)
under nonabelian Poincaré duality (cf. Proposition 1.2.6). This amounts to the solid com-
mutative diagram in CAlg(DGCat) below:

[ LS(Qu(B2C )20 1g(BeX) ) LM T Vet

l: V l: (3.7)

S 7_glob
LS(I,(M,B3C¥)) 2 ) 19(BC*) — X Vect

We shall supply the dotted arrow in (3.7) making both squares commute. Indeed, we let
it be the composite

f LS(BC*)y = colim LS(BC*) - LS(BC™), (3.8)
M

where the isomorphism is (1.11) (applied to A := LS(BC*)) and the second map is induced
from the identity on LS(BC*), as it determines a constant functor out of Sing M.

The right square of (3.7) commutes by naturality of the construction of (3.8) with respect
to x. The left square of (3.8) commutes because it is the image of (1.22) under LS. O

3.2. The Ben-Zvi—Nadler conjecture for T.

3.2.1. Let X be a smooth C-curve, assumed projective and connected. Let T be an X-torus
and g be a Betti level for T in the sense of §2.1.3.

Our goal is to interpret Theorem 3.1.3 as a version of a conjecture of Ben-Zvi and Nadler
(¢f. [BZN18, Conjecture 4.27]) for T.

To do so, we invoke the passage from the algebraic to the topological context (cf. §2.1.7):
We regard A as a functor Sing X*°P — Z-mod and ¢ as a morphism B*A - B*C* in the oo-

category Fun(Sing X"°P, Spc, ). To ease the notation, we shall denote factorization homology
over X"P by [, .

3.2.2. We also need to extend the construction of the underlying homotopy type of a C-
scheme of finite type (cf. §2.1.1) to C-prestacks.
Indeed, we write PStk(Schy) for the co-category of functors (Schy,)°P — Spc and consider
the left Kan extension of (2.1) along the Yoneda embedding. This yields a functor
PStk(Schg ) — Spc, (3.9)
which we will still denote by Sing(-)*P.
Remark 3.2.3. Let Y be an algebraic stack with a smooth cover f:7Z — Y with Z € Schg

such that for any S € Schy, over Y the base change fs:Z xy S - S induces a Serre fibration
(Z xy S)*P — S*P_ then we have a canonical isomorphism in Spc:

colim Sing(Zjy)"*P = Sing Y*°P, (3.10)
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where Z;% denotes the Cech nerve of f.

To see this, we note that (3.9) commutes with colimits, so it suffices to prove that given
a morphism Z — Y in Schg inducing a Serre fibration Z%*P — Y*P its Cech nerve induces
an isomorphism

colim Sing(Z}y )" = Sing Y*°P.

By Remark 2.1.2, Sing(Z7Y)t°p is identified with the Cech nerve of the effective epimorphism
Sing Z*°P — Sing Y*°P, so this follows from [Lur09, Corollary 6.2.3.5].

Notably, for the algebraic stack BT with the smooth cover X — BT, (3.10) yields an
isomorphism in Spc:

B Sing T*P =~ Sing(BT)"P. (3.11)

3.2.4. Denote by Bunt the moduli stack of T-bundles over X, whose S-points (for S € Schy)
are T-bundles over X x S. Let us construct a morphism in Spc:

Sing(Bunr)™P - I'(Sing X*°P, B*A). (3.12)
Indeed, applying Sing(-)*P to the universal T-bundle
X x Bunt - BT
and using its commutation with finite products (c¢f. Remark 2.1.2), we obtain a morphism:
Sing X"°P x Sing(Bunt)*P - Sing(BT)"P

~ B Sing T*P ~ B?A, (3.13)
where the two isomorphism are (3.11), respectively the one of §2.1.5. The desired map (3.12)

now follows from adjunction.

Lemma 3.2.5. The morphism (3.12) is an isomorphism.

Proof. Tt suffices to prove that (3.12) induces an isomorphism on homotopy groups.

The connected components of Sing(Bunt)™P are classified by the first Chern class of a
T-bundle, thus in natural bijection with H?(X'P A).

Denote by BunOT c Bunr the substack of T-bundles with vanishing first Chern class. Then
the homotopy groups of Sing(Bumpr)tOp are computed by Atiyah—Bott uniformization, which
yields HY(X'P A), respectively H?(X*P A) in degrees 1 and 2. O

3.2.6. By post-composing (3.13) with the Betti level ¢, we obtain a map Sing(Bunt)'*P —
I'(Sing X*°P, B*C*) by adjunction.
Post-composing with the global trace map Tf/[k’b (cf. §1.2.10, for M := X*°P A := C* and
k:=4), we obtain a map in Spc:
Sing(Buny)*P - B*C*, (3.14)

which can be viewed as a Betti C*-gerbe over Bunr.
By construction, (3.3) and (3.14) are intertwined by the isomorphism (3.12):

Sing(Bunr )P G g2

l: l (3.15)

I'(Sing Xt°?, B2A) % g2C~
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3.2.7. The authors of [BZN18] propose to study the co-category Shvy 4(Bunr) of sheaves of
C-vector space on Bunt twisted by the C*-gerbe (3.14), satisfying the condition of having
nilpotent singular support.

Since the global nilpotent cone of Bunt is the zero section, this condition is equivalent
to having locally constant cohomology sheaves. By Remark 1.3.3, we may identify

Shvy ¢(Bunt) ~ LS, (Bunr),

where LS, (Bunr) denotes the oo-category of local systems over Sing(Bunt)'™P twisted by
the C*-gerbe (3.14). In other words, we have an equivalence

Shv,q(Bunt) =~ LS(SEIOb) ®Ls(Bcx) Vect, (3.16)

where 9%10}3 denotes the fiber of (3.14), endowed with the natural BC*-action, and Vect is
viewed as an LS(BC*)-module via the tautological character .
The following is a version of [BZN18, Conjecture 4.27] for X-tori.

Corollary 3.2.8. There is a canonical equivalence in DGCat:
fXRepq(T) ~ Shvy 4 (Bunr).
Proof. Using (3.16), we reduce to constructing an equivalence
fx Rep, (T) = LS(E"") ®1.5(mcx) Vect. (3.17)

In view of (3.15), we may replace 9%1"1’ by the fiber 3{510‘) of (3.3). Thus, the right-hand-
side of (3.17) is canonically equivalent to LS((HglOb) ®Ls(BCx) Vect, which is by definition
the DG category LS, (T'(Sing X*?, B*A)) (cf. §3.1.2).

The desired equivalence (3.17) is now provided by Theorem 3.1.3. O
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